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Abstract. The H+
2 molecular ion is a simple three body homonuclear system.

It has zero electrical dipole momentum and small spectral lines natural width,

features making H+
2 a suitable candidate for a high precision time standard. In

order to select the optimal transition lines for such purposes, a complete under-

standing of the structure and the characteristics of all lines of interest is needed.

In the present work we have contributed in solving this problem by extending

the class of possible candidates with a detailed study of the so-called “forbid-

den" electric dipole transitions, i.e. transitions that are forbidden by selection

rules in the non-relativistic limit. By adding spin interactions, due to mixing of

states with opposite parity under nucleus exchange, these transitions receive a

small, but different from zero intensity.

PACS codes: 33,15.Pw, 31.30.Jv

1 H+
2 structure and symmetries

1.1 Hyper-fine structure

Recently, the spectrum of the low ro-vibrational excitations of the hydrogen

molecular ion H+
2 has been evaluated with a very high precision [1, 2]. It has

been shown that the narrow natural width and the suppressed sensitivity to ex-

ternal fields of selected levels makes this ion suitable for application as time

standard. In [3, 4] the most appropriate E1 and two-photon transition lines for

such purposes were selected. In [5] "forbidden" E1 transitions between the high

ro-vibrational states of H+
2 are studied with a view to their application in astron-

omy. In this work, we have computed "forbidden" dipole transitions between

low excited rotational-vibrational levels which are of interest for the precision

spectroscopy experiments.

The molecular hydrogen ion has hyper-fine structure, consisting of one, two,

five, and six hypefine splitted levels when the total orbital momentum of the

molecule is L = 0, 1, 2n, 2n+1 respectively. On Figure 1.1, the splitting of

(v, L) = (0, 0) and (1, 1) states is shown. The "forbidden" electric dipole
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Figure 1. H+
2 molecular ion

transitions between these states are given with dotted arrows. The selection

rules prohibit the transition |vLIF5/2〉 → |v′L′I ′F ′1/2〉 even when the

spin interaction corrections are taken in account. The angular momentum

quantum numbers correspond to the following coupling scheme: I = S1 + S2,

F = I + Se , J = F + L. Here ν is the vibrational quantum number, S1,S2,

and Se are the spin vectors of the two protons and the electron.

1.2 Symmetries of the hydrogen molecular ion

The hydrogen molecular ion is three particle system with two identical nuclei.

Thus, in addition to the spatial parity it has a definite parity with respect to ex-

changing the two protons. In the non-relativistic limit the operators commuting

with the Hamiltonian are: L2, Lz - the total orbital angular momentum squared

and orbital momentum projection on the z axis, Π - spatial parity operator, and

X - the operator of the exchange of the two nuclei. Then the stationary states

could be labeled by the eigenvalues of these operators:

L2|νxλLLz〉 = L(L+ 1)|νxλLLz〉, Lz |νxλLLz〉 = Lz|νxλLLz〉, (1)

Π|νxλLLz〉 = λ|νxλLLz〉, X|νxλLLz〉 = x|νxλLLz〉.

We consider transitions between states with normal parity Π = (−1)L in which
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the electron is in its ground state. For these states the following relations holds:

X|νxλLLz〉 = (−1)L|νxλLLz〉, (2)

i.e. x = λ. (3)

Let D be the dipole moment operator

D =

3
∑

i=1

ZiRi, (4)

where Zi is the particle charge in atomic units and Ri (R3 ≡ Re) is its radius-

vector. The commutators of D with X and P are

XDX−1 = D,ΠDΠ−1 = −D. (5)

Then, from Eq. (1),(3), and (5) for dipole transitions between states of interest -

|νxλLLz〉 and |νxλL′L′

z〉, L′ = L± 1

〈ν′x′λ′L′L′

z|D|νxλLLz〉 = 〈ν′x′λ′L′L′

z|X−1
(

XDX−1
)

X |νxλLLz〉 = 0,
(6)

i.e. for transitions between states of H+
2 with normal spatial parity λ = (−1)L,

the electric dipole transitions are forbidden in the nonrelativistic limit.

2 Computation of the electric dipole moments

2.1 Non-relativistic limit

The non-relativistic Hamiltonian of H+
2 is:

H0 =
p2
1

2mp
+

p2
2

2mp
+

p2
e

2me
− 1

r1
− 1

r2
+

1

R
, (7)

R and r1,2 are the distances between the two nucleus and the distance between

each of the protons and the electron, p1,2, pe are the momentum vectors of the

first and the second proton and the e−, and mp,me are the masses of the proton

and electron respectively.

We use the following decomposition of the nonrelativistic wavefunction

ΨLλx
M (r1, r2) =

L
∑

l1,l2

rl11 rl22 Y
l1l2
LM (r̂1, r̂2)F

Lλx
l1l2 (r1, r2,Θ), (8)

FLλx
l1l2 (r1, r2,Θ) =

imax
∑

i=1

[Ci cos(νiR) +Di sin(νiR)]e−αir1−βir2−γiR.
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Here Yl1l2
LM (r̂1, r̂2) are the bispherical harmonics, r1,2 = Re −R1,2, r̂1,2 is the

angular part of r1,2, and Θ is the angle between r1 and r2. l1, l2 are the an-

gular momentums associated with each of the spherical harmonics constituting

the bispherical harmonics. The numerical solution for the expansion parame-

ters αi, βi, γi, Ci, Di, νi, and for the corresponding state vectors is done with V.

Korobov’s code [2] using variational method.

2.2 Breit interaction Hamiltonian

In the relativistic picture of H+
2 the state vectors are direct products of the

nonrelativistic states |νpλLLz〉 (see Eq.(8)) with the spin state vectors of the

electron and the two protons |Siζi〉, with eigenvalue identities S2
i − Si(Si +

1))|Siζi〉 = (Szi − ζi)|Siζi〉 = 0:

|νxλLLz〉 ⊗ |S1ζ1〉 ⊗ |S2ζ2〉 ⊗ |seζe〉. (9)

In the total angular momentum representation the basis has the form

|νxλLIFJM〉 = (10)
∑

ζ1ζ1ζ2ζsLz

CIIz
S1ζ1S2ζ2

CFFz

IIzseζ
CJM

FFzLLz
|S1ζ1〉|S2ζ2〉|Seζ〉|νxλLLz〉.

In this case, the concerved quantities are J and M.

As shown in Eq. (6), in the nonrelativistic approximation the matrix elements

of the electric dipole transitions in H+
2 are zero. The Breit Hamiltonian in-

cludes operators which mix states with different nuclei exchange parity x. The

relativistic corrections to the wave function are calculated in the first order of

perturbation theory in the Breit Hamiltonian. The terms that have the most im-

portant contribution to the ortho-para mixing (or equivalently mixing with regard

to X parity) of H+
2 are:

Hss = α2 π

3

gegp
mp

(se · I−)[δ(r1)− δ(r2)], (11)

Hso = α2 gp
4mp

(

r1 × pe

r31
− r2 × pe

r32

)

I−,

I− = (S1 − S2) being the X symmetry breaking operator. In the expression

above ~ = me = e = 1, α = 1/c, where c is the speed of light and ge, gp are

the gyromagnetic ratios for the electron and the proton. The next step is the

calculation of the corrections to the nonrelativistic wavefunction by using the

perturbation theory. The numerical computation of these corrections is the non-

trivial part in obtaining the dipole transition matrix elements.
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|νpλLIFJM(1)〉 = |νpλLIFJM(0)〉+ (12)

∑

ν′x′L′I′F ′

〈ν′x′λL′I ′F ′JM(0)|Hss +Hso|νxλLIFJM(0)〉
EλνxL

(0) − Eλν′x′L′

(0)

|ν′x′λL′I ′F ′JM(0)〉

or in short notation

Ψ1 = Ψ0 +∆Ψ, (13)

∆Ψ = Q(E0 −H0)QHop, Hop = Hss +Hso.

The indices (0) and (1) label the vawefunctions in zeroeth and first order in

perturbation theory.

In dipole approximation (longwave approximation), we compute the transition

matrix element by using the molecule-photon dipole interaction operator (4)

〈Ψ′

1

∣

∣D
∣

∣Ψ1〉 = 〈Ψ′

0

∣

∣D
∣

∣Ψ0〉+
〈Ψ′

0

∣

∣DQ(E0 −H0)
−1QHop

∣

∣Ψ0〉+ 〈Ψ′

0

∣

∣HopQ
′(E′

0 −H0)
−1Q′D

∣

∣Ψ0〉+
(14)

〈Ψ′

0

∣

∣HopQ
′(E′

0 −H0)
−1Q′DQ(E0 −H0)

−1QHgu

∣

∣Ψ0〉.

Here Ψ and Ψ′ stand for the initial and final state vectors |vxλJIFJM〉 and

|v′x′λ′J ′I ′F ′J ′M ′〉, E0 and E′

0 are the corresponding non-perturbed energies,

and Q and Q′ project out of the subspaces spanned by the eigenvectors with

eigenvalues E0 and E′

0, respectively. The first term in the righthand side is the

electrical dipole transition matrix element in nonrelativistic approximation and is

zero. The forth term has both left and right side corrections to the vawefunctions

and is too small in comparison with the others. The second and the third term

are the only ones that significantly contribute to the "forbidden" E1 transitions

matrix elements Tif :

Tif = 〈Ψ′

0

∣

∣DQ(E0 −H0)
−1QHop

∣

∣Ψ0〉+ 〈Ψ′

0

∣

∣HopQ
′(E′

0 −H0)
−1Q′D

∣

∣Ψ0〉
(15)
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Denote by Tif the reduced transition matrix element. We have

〈Ψ′

0

∥

∥DQ(E0 −H0)
−1QHop

∥

∥Ψ0〉 =

α2 gegp
mp

π

3

√
3

2
(−1)L+J′+1/2

√

(2J + 1)(2J ′ + 1)

{

L 1/2 J
J ′ 1 L′

}

∑

v′′

〈

v′L′

∥

∥JE1

∥

∥v′′L
〉〈

v′′L
∣

∣ δ(r1)−δ(r2)
∣

∣vL
〉

E0 − Ev′′

(16)

α2 gp
4mp

√
3
∑

L′′

(−1)F
′+J′

−J−1/2

√

(2J + 1)(2J ′ + 1)(2F ′ + 1)(2F + 1)

{

L′′F ′ J
J ′ 1 L′

} {

I ′ 1 I
F 1/2F ′

} {

F ′ F 1
L L′′J

}

∑

v′′

〈

v′L′

∥

∥JE1

∥

∥v′′L′′
〉〈

v′′L′′

∥

∥h
(−)
so

∥

∥vL
〉

E0 − Ev′′

.

A similar expression are derived for the second term of Tif ,

〈Ψ′

0

∥

∥HopQ
′(E′

0 −H0)
−1Q′D

∥

∥Ψ0〉 as well.

The rate of the “forbidden” dipole transitions in H+
2 stimulated by an oscillating

electric field E sinωt is then obtained by summing |E.Tif |2 over the final state

and averaging over the initial state polarizations and integrating over the laser

line profile. In the present paper we focus our attention on the calculation of the

transition matrix elements and discuss the values of Tif only.

3 Results

In Table 1 the results for the reduced matrix elements are given for a few transi-

tions between hyperfine levels of the hydrogen molecular ion.

In their work [5], Bunker and Moss have calculated electric dipole "forbidden"

transitions between high ro-vibrational levels |νL〉 of the H+
2 . They use the

Born-Oppenheimer approximation. In Table 2 we make a comparison between

their results and our variational method computations of the same reduced tran-

sition matrix elements µ = 〈ν′L′||D||νL〉. As seen, there is a reasonable agree-

ment between the transition matrix element we get (third column) and the ones of

Bunker and Moss (forth column). As the square of the transition matrix element

enter into the transition rate expression its sign is not essential. The numerical

calculations are done in quadruple precision but are to be improved by using

higher (sextuple etc.) precision of the computations.
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Table 1: Selected electric dipole “forbidden” transitions between low ro-vibrational

hyperfine levels of H+
2 molecular ion. The numbers in brackets are powers of ten.

|vLIFJ〉 → |v′L′I ′F ′J ′〉 ω, [cm−1] Tif , [au]

|0, 1, 1, 1/2, 1/2〉 → |0, 0, 0, 1/2, 1/2〉 58.23 −1.62642[−8]

|0, 1, 1, 1/2, 3/2〉 → |0, 0, 0, 1/2, 1/2〉 58.23 2.26111[−8]

|0, 1, 1, 3/2, 1/2〉 → |0, 0, 0, 1/2, 1/2〉 58.23 1.14030[−8]

|0, 1, 1, 3/2, 3/2〉 → |0, 0, 0, 1/2, 1/2〉 58.23 −1.61263[−8]

|1, 1, 1, 1/2, 1/2〉 → |0, 0, 0, 1/2, 1/2〉 2246.26 −1.15774[−9]

|1, 1, 1, 1/2, 3/2〉 → |0, 0, 0, 1/2, 1/2〉 2246.26 4.66020[−9]

|1, 1, 1, 3/2, 1/2〉 → |0, 0, 0, 1/2, 1/2〉 2246.26 1.57437[−9]

|1, 1, 1, 3/2, 3/2〉 → |0, 0, 0, 1/2, 1/2〉 2246.26 −2.22650[−9]

|1, 1, 1, 1/2, 1/2〉 → |1, 0, 0, 1/2, 1/2〉 55.17 −1.54293[−8]

|1, 1, 1, 1/2, 3/2〉 → |1, 0, 0, 1/2, 1/2〉 55.17 1.28176[−8]

|1, 1, 1, 3/2, 1/2〉 → |1, 0, 0, 1/2, 1/2〉 55.17 1.08022[−8]

|1, 1, 1, 3/2, 3/2〉 → |1, 0, 0, 1/2, 1/2〉 55.17 −1.52766[−8]

|1, 0, 0, 1/2, 1/2〉 → |0, 1, 1, 1/2, 3/2〉 2132.88 −7.13890[−10]

Table 2: Comparison between the non-relativistic high ro-vibrational transition

dipole matrix elements calculated here µ and the ones given in [5]. ω is the

transition frequency in units cm−1

|vL〉 → |v′L′〉 ω, [cm−1] µ, [au] µB&M , [au]

|19, 0〉 → |18, 1〉 19.88 4.17[−2] 2.70[−2]

|19, 0〉 → |17, 1〉 146.99 7.76[−3] 5.05[−3]

|19, 0〉 → |16, 1〉 419.23 −1.25[−3] 8.20[−4]

|19, 0〉 → |15, 1〉 832.48 −2.15[−4] 1.40[−4]

|19, 0〉 → |14, 1〉 1379.30 −3.85[−5] 3.00[−5]

|19, 1〉 → |19, 0〉 0.52 −4.34[−1] −1.66[−1]

|19, 1〉 → |18, 0〉 23.83 5.31[−2] 3.24[−2]

|19, 1〉 → |17, 0〉 155.43 9.02[−3] 5.53[−3]

|19, 1〉 → |16, 0〉 431.69 −1.44[−3] 8.90[−4]

|19, 1〉 → |15, 0〉 848.54 −2.47[−4] 1.50[−4]

|19, 1〉 → |14, 0〉 1398.68 4.41[−5] 2.00[−5]

|19, 1〉 → |18, 1〉 14.03 8.38[−2] 3.54[−2]

|19, 1〉 → |17, 1〉 132.08 −1.50[−2] 6.50[−3]

|19, 1〉 → |16, 1〉 396.22 −2.34[−3] 1.05[−3]

|19, 1〉 → |15, 1〉 802.24 −3.96[−4] 1.70[−4]

|19, 1〉 → |14, 1〉 1342.44 −7.03[−5] 3.00[−5]
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4 Conclusion

In this work we have studied the "forbidden" electrical dipole transitions of the

H+
2 . The corrections to the wave function were calculated in first order of pertur-

bation theory using the Breit three particle Hamiltonian. Laser induced electric

dipole transition rates between H+
2 hyperfine levels were computed and a com-

parison with the results in [5] for E1 transition matrix elements between highly

excited ro-vibrational states of the hydrogen molecule is done. A more compre-

hensive study, including additional low ro-vibrational E1 "forbidden" transitions

of the H+
2 , which are of experimental interest, and with improved precision will

be published elsewhere. H+
2 has characteristics which make it a suitable candi-

date for a high precision time standard. The study of the "forbidden" E1 tran-

sitions is a step to the understanding of the characteristics of H+
2 . The detailed

picture requires a computation of the quadrupole and two-photon transitions be-

tween the states of this molecular ion. This, as well as the study of the D+
2 , a ion

with simmilar properties to H+
2 , will be addressed in subsequent works.
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