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Abstract. The higher-derivative oscillator proposed by Pais and Uhlenbeck has
a well-defined Hamiltonian formulation in terms of a system of harmonic oscil-
lators, which allows consistent quantum treatment. In this report we consider
a system of interacting Pais-Uhlenbeck oscillators and calculate their entangle-
ment entropy using the framework of thermo-field dynamics. We also make
connection with information theory via the Fisher information metric and with
the AdS/CFT correspondence via the supergravity solution of Pilch and Warner.
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1 Introduction

The interest in higher-derivative theories is motivated by the search for a quan-
tum field theory, which is ultraviolet (UV) finite [1]. This idea is applicable in
gravitational context because higher-powers-of-curvature terms in the Einstein
action lead to a renormalisable theory [2]. However, the Hamiltonian approach
to such theories is limited to the Ostrogradsky’s approach [3], which gives un-
bounded from below Hamiltonian hence negative energies. Alternatively, the
last is equivalent to instabilities still at classical level and negative-norm states
(or ghosts) after quantisation.

One of the simplest toy models for higher-derivative theories is the Pais-
Uhlenbeck oscillator (PUO) [4]. Since the dynamical degrees of freedom obey
constraints due to the presence of higher derivatives, the quantisation of the
model requires the method of Dirac constraints [5] or path integral formal-
ism [6]. Fortunately, the PUO was recently equipped with a few well-defined
Hamiltonian formulations [7–9]. Amongst them, the most convenient for our
purposes is the representation if terms of harmonic oscillators [9]. Conse-
quently, one may use the framework of thermo-field dynamics (TFD) [10] in
order to investigate different quantum properties of systems of interacting PUOs
at (non-)equilibrium and at finite temperatures.
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The structure of this report is the following. In section 2 we consider a ring of
N Pais-Uhlenbeck oscillators and compute the entanglement entropy of one of
them in regard to the others. In section 3 we make connection with information
geometry and the AdS/CFT correspondence. In the concluding section 4 we
briefly discuss our results.

2 Ring of Pais-Uhlenbeck oscillators

We start our journey by considering a ring ofN fourth-order Pais-Uhlenbeck os-
cillators (fig. 1), each of them interacting only with the nearest neighbours [11].
The generalisation to higher than fourth-order oscillators is straightforward.
Since any fourth-order PUO has Hamiltonian representation in terms of two
harmonic oscillators, the equivalent system of 2N harmonic oscillators contains
effective next-to-nearest neighbours interaction (dashed red lines in fig. 1). The
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Figure 1. Closed chain of N identical PU oscillators.

system is effectively one-dimensional and its dynamics is governed by the fol-
lowing Hamiltonian consisting of free and interacting parts:

HN =
1
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N∑
〈µ,ν〉=1

cµνxµxν , (1)

where xµ are the coordinates of the PUOs, and xkµ and pkµ are the coordinates and
momenta of the corresponding harmonic oscillators. The interaction strength be-
tween the PUOs is set by the constants cµν and ωµ,k are the frequencies of the
harmonic oscillators. The appearance of the arbitrary non-zero constants αµ,k
in front of the free oscillators part of eq. (1) is inherited from the alternative
Hamiltonian formulation1. From now on, we will consider only positive values

1For further details on this issue, please refer to [9].
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of αµ,k, which assures positive definiteness of the Hamiltonian. The diagonali-
sation of eq. (1) boils down to diagonalisation of certain type of circulant matri-
ces, namely symmetric block circulant matrices with symmetric blocks, which
are diagonalised by a discrete Fourier transform. This calculation is performed
in detail in [11] and results in a Hamiltonian of 2N free harmonic oscillators
with frequencies λj , j = 1, . . . , 2N , which depend on the parameters cµν , ωµ,k,
and αµ,k of the original system in a highly non-trivial way. Having computed
the frequencies, one can define creation and annihilation operators a†j and aj ,
j = 1, . . . , 2N , and write the Hamiltonian as

HN =

2N∑
j=1

~λj
(
a†jaj +

1

2

)
. (2)

The Fock space |{nj}〉 = |n1〉 ⊗ · · · ⊗ |n2N 〉 is built from the vacuum |0〉
by acting with creation operators on it. We are now in a position to apply
thermo-field dynamics to our problem. The TFD explores two isomorphic
Hilbert spaces—|n〉 and its identical copy |m̃〉—forming the double Hilbert
space |n〉 ⊗ |m̃〉 ≡ |n〉|m̃〉 ≡ |n, m̃〉. Here the states from the auxiliary Hilbert
space play the role of pursuers of the initial quantum states. In this set-up one
can calculate the relevant statistical quantities, schematically shown bellow:

ρeq = e−βHN /Z −→ |Ψ〉 =
∑
n

√
ρeq|n〉|ñ〉 −→ ρ̂ = |Ψ〉〈Ψ| −→

ρ̂1,2 = Tr3,...,2N ρ̂ −→ Ŝ1,2 = −kBTr1,2 [ρ̂1,2 log ρ̂1,2] , (3)

where Z(Kj) = Tr{j}e
−βHN is the statistical sum, Kj = ~βλj , and β is the in-

verse temperature. The quantities in eq. (3) are as follows: the standard density
matrix in equilibrium ρeq(Kj), the statistical state |Ψ(Kj)〉, the extended den-
sity matrix ρ̂(Kj), and the renormalised extended density matrix ρ̂1,2(K1,K2).
After some tedious but straightforward calculations we obtain for the extended
entanglement entropy the expression [11]:

Ŝ1,2(K1,K2) =
kB

2
coth

K1

4
coth

K2

4

[
K1

(
1 + coth

K1

4

)
(4)

+K2

(
1 + coth

K2

4

)
− 2 log

[(
eK1 − 1

) (
eK2 − 1

)]]
.

For large values of the temperature (equivalently small values of K1 and K2)
the entanglement entropy goes to infinity (corresponding to K1 = 0 and/or
K2 = 0). Conversely, the EE approaches zero when the temperature approaches
zero (corresponding to K1 = 0 and/or K2 = 0 going to infinity). The rate
of increasing and decreasing of the EE is specified by the frequencies λ1 and
λ2. Therefore the renormalised density matrix is thermal state and the extended
entanglement entropy satisfies the Nernst heat theorem.
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3 Information geometry and the AdS/CFT correspondence

In this section we will consider two particular examples of systems appearing in
the so-called Pilch-Warner (PW) background [12,13], in which higher-derivative
oscillators arise naturally. The PW geometry is a solution to five-dimensional
N = 8 supergravity lifted to ten dimensions, whose infrared (IR) point is holo-
graphically dual to the large N limit of the N = 1 superconformal theory of
Leigh-Strassler [14]. The first example is the Penrose limit of the PW solution
in the presence of Kalb-Ramond B-field [15]. The limit is taken along a null
geodesic, which corresponds to the moduli space of a probe D3-brane. We will
consider only the bosonic part of the world-sheet action including the metric and
the NS-NS antisymmetric two-form B2, since it is relevant for our conclusions.
The ansatz Xi(τ, σ) = eiσxi(τ), i = 1, . . . , 8, for the embedding coordinates
splits the variables in the system of partial differential equations describing the
dynamics of the world-sheet scalars Xi [15], and leads to the following system
of ordinary differential equations [11]:

x(4)q +
(
5M2 + 2

)
x(2)q +

(
4M4 + 2M2 + 1

)
xq = 0,

x(2)p +
(
M2 + 1

)
xp = 0, (5)

where q = 1, 2 labels the directions affected by the B-field, p = 5, 6, 7, 8 marks
the directions unaffected by the B-field, and the quantity M = Eα′p+ is ex-
pressed in terms of the conserved energy corresponding to the Killing vector
∂/∂τ . The derivatives in eq. (5) are taken with respect to the world-sheet time
τ . Hence, we conclude that the presence of B-field (which is analog of mag-
netic field) ties the equations in such way that the dynamics is governed by two
fourth-order PUO equations.

The second example is the quadratic fluctuations around classical solutions of
rotating strings in PW background considered in [16]. The experience of the
previous example hints that the Kalb-Ramond field will play crucial roll in this
case too. For this reason we will consider only the Lagrangian of the quadratic
fluctuations in the five-sphere part of the geometry wherein the B-field is turned
on. Using similar ansatz as before, i.e. ζ̃ĩ = eiσyi(τ), we reduce the system
of five partial differential equations of motion for the quadratic fluctuations ob-
tained in [16] to the following system of ordinary differential equations [11]:

y(4)p +

[
5M̃2 + 2 +

3

2
ρ̄′2
]
y(2)p

+

[
4M̃4 + 2M̃2 + 1 +

(
M̃2 + 1

) 3

2
ρ̄′

2
]
yp = 0,

y
(2)
1 + y1 = 0, (6)

where p = 2, 4 and the constant M̃2 = 4
9 (cβ + cγ + cφ)2 is expressed in terms

of the angular velocities cβ , cγ , and cφ of the rotating string. In general ρ̄′ in
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eq. (6) is σ-dependent. However, in the two limiting cases of short and long
strings ρ̄′ takes particular constant values and we again obtain the familiar two
fourth-order PUO equations of motion.

Finally, we would like to relate our results to the contemporary theory of infor-
mation geometry. The arguments K1 and K2 of the entanglement entropy in a
natural manner span a parameter space equipped with Riemannian metric. This
metric is known as Fisher information metric and can be derived from the en-
tanglement entropy using the formula gµν(K1,K2) = ∂µ∂νS(K1,K2), where
∂µ = ∂/∂Kµ for µ = 1, 2. For the entanglement entropy given by eq. (4) the
Fisher metric takes the form:

g11 =
1

64
kB coth

K2

4
csch2 K1

4

[
K1

(
3 + 5 coth2 K1

4
+ 7 csch2 K1

4

)
+4 tanh

K1

4
+ 4 coth

K1

4

(
K1 +K2 − 5 +K2 coth

K2

4

−2 log
[(
eK1 − 1

) (
eK2 − 1

)])]
, (7)

g12 =
1

32
kB csch2 K1

4
csch2 K2

4

[
−4 +K1

(
1 + 2 coth

K1

4

)
+K2

(
1 + 2 coth

K2

4

)
− 2 log

[(
eK1 − 1

) (
eK2 − 1

)]]
. (8)

The component g22 is obtained from g11 by exchanging K1 and K2, and
g21 = g12. At the end of the day we emphasise the importance of the knowl-
edge we can gain by exploring specific corners of the information space of the
Pais-Uhlenbeck oscillators. We hope that we will report on this issue soon.

4 Conclusion

We considered a system (ring) of N fourth-order Pais-Uhlenbeck oscillators,
any of which interacts with the nearest neighbours. The existence of an alter-
native Hamiltonian overcomes the problem of Ostrogradsky’s instabilities and
the consequent ghost problem occurring after quantisation. The diagonalised
Hamiltonian is equivalent to the one of a system of 2N harmonic oscillators
with modified frequencies depending on the parameters of the initial system of
PUOs and can be quantised canonically. Then we introduced thermo-field dy-
namics and calculated the extended entanglement entropy in this framework. In
section 3 we showed the appearance of the fourth-order PUO in the holographic
Pilch-Warner solution for two particular cases—the Penrose limit of the geom-
etry and the quadratic fluctuations around classical solutions of rotating strings.
Our conclusion is that the TFD is a convenient tool for studying quantum entan-
glement of higher-derivative oscillators and that the Fisher information metric
could provide useful knowledge about the parametric space structure.
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