Boundedness of two-point correlators
covariant under the meta-conformal algebra

Stoimen Stoimenov1, Malte Henkel2,3
1Institute for Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences, Sofia 1784, Bulgaria
2Rechnergestützte Physik der Werkstoffe, Institut für Baustoffe (IfB),
ETH Zürich, Stefano-Franscini-Platz 3, CH - 8093 Zürich, Switzerland
3Groupe de Physique Statistique, Département de Physique de la Matière et des
Matériaux, Institut Jean Lamour (CNRS UMR 7198), Université de Lorraine
Nancy, B.P. 70239, F – 54506 Vandœuvre lès Nancy Cedex, France

Abstract. Covariant two-point functions are derived from Ward identities. For
several extensions of dynamical scaling, notably Schrödinger-invariance, con-
formal Galilei invariance or meta-conformal invariance, the results become un-
bounded for large time- or space-separations. Standard ortho-conformal invari-
ance does not have this problem. An algebraic procedure is presented which
corrects this difficulty for meta-conformal invariance in \((1 + 1)\) dimensions. A
canonical interpretation of meta-conformally covariant two-point functions as
correlators follows. Galilei-conformal correlators can be obtained from meta-
conformal invariance through a simple contraction. All these two-point func-
tions are bounded at large separations, for sufficiently positive values of the
scaling exponents.

PACS codes: 98.80.-k, 04.50.Kd, 98.80.Jk

1 Introduction

Dynamical symmetries are powerful tools in investigations of many complex
systems. The best-known examples are conformal invariance in equilibrium
phase transitions \([4, 6]\) and Schrödinger-invariance in time-dependent phenom-
ena \([8, 12]\). One of the most elementary predictions of dynamical symmetries
concerns the form of the co-variant two-point functions, to be derived form the
(e.g. conformal or Schrödinger) Ward identities, \([6, 12]\). These are built from
quasi-primary scaling operators \(\phi_i(t_i, r_i)\), depending locally on a ‘time’ coor-
dinate \(t_i \in \mathbb{R}\) and a ‘space’ coordinate \(r_i \in \mathbb{R}^d\). Since both conformal and
Schrödinger groups contain time- and space-translations, and also spatial ro-
tations, we can restrict to the difference \(t := t_1 - t_2\) and the absolute value
\(r := |r| = |r_1 - r_2|\). For conformal \([18]\) and Schrödinger-invariance \([8]\), re-
spectively, the covariant two-point functions of scalar quasi-primary operators
The properties of the conformally invariant two-point function are described by the scaling dimensions \(x_i \). It is a correlator and is symmetric under permutation of the two scaling operators, viz. \(C_{12}(t; r) = C_{21}(-t; -r) \). The result (1) is a physically reasonable correlator which decays to zero, if \(x_i > 0 \), for large time- or space separations, viz. \(|t| \to \infty \) or \(r \to \infty \).

The Schrödinger-invariant two-point function is a (linear) response function – recast here formally as a correlator by appealing to Janssen-de Dominicis theory [21], where \(\phi_i \) is the response operator conjugate to the scaling operator \(\phi_i \). The two-point function is now characterised by the pair \((x_i, M_i) \) of a scaling dimension and a mass \(M_i \) associated to each scaling operator \(\phi_i \). For ‘usual’ scaling operators, masses are positive by convention, whereas response operators \(e^{\phi_i} \) have formally negative masses, viz. \(M_i = -M_i < 0 \). Because of causality, a response function must vanish for \(t < 0 \), viz. \(R_{12} = 0 \) but one has \(R_{12} \neq 0 \) for \(t > 0 \); hence it is maximally asymmetric under permutation of the scaling operators.

The result (2) of Schrödinger-invariance does not contain the causality requirement \(t > 0 \). In addition, it is not obvious why the response should vanish for large separations, even if \(x_i > 0 \) is admitted. Although one might insert these features by hand, it is preferable to derive such conditions formally. One may do so following the procedure [11]:

(i) consider the mass \(M \) as an additional coordinate and dualise by Fourier-transforming with respect to \(M_i \), which introduces dual coordinates \(\zeta_i \). The terminology is borrowed from non-relativistic versions of the AdS/CFT correspondence.

(ii) construct an extension of the Schrödinger Lie algebra \(\text{sch}(d) \) := \(\text{sch}(d) \oplus \mathbb{C}N \), where the new generator \(N \) is in the Cartan sub-algebra of \(\text{sch}(d) \).

(iii) use the extended Schrödinger Ward identities, in the dual coordinates, to find the co-variant two-point function \(R(\zeta_1 - \zeta_2, t, r) \).

(iv) finally, transform back to the fixed masses \(M_i \). The result is [11, 13]

\[
R_{12,\text{Schr}}(t; r) = \delta_{x_1, x_2} \delta(M_1 + \overline{M_2}) \Theta(M_1) t^{-x_1} \exp \left[-\frac{M_1 r^2}{2t} \right] \tag{3}
\]

With the convention \(M_1 > 0 \), the Heaviside function \(\Theta \) expresses the causality condition \(t > 0 \). In addition, if \(x_1 > 0 \), the response function decays to zero for large time- or space separations, as physically expected.
Meta-conformal invariance

A similar problem with boundedness of two-point function arise also for conformal galilean algebra \([2, 9, 10, 16, 17]\) \(cga(d)\)\(^1\). However, for the \(cga(d)\) algebra, it has been shown recently that a procedure analogous to the one of the Schrödinger algebra, as outlined above, can be applied to assure the boundedness of two-point function which in this case does obey the symmetry relations of a correlator \([14]\).

In this paper\(^2\) we wish to demonstrate that an algebraically sound procedure, as outlined above, to the formulation of Ward identities which physically reasonable results, can be applied to meta-conformal algebra. This may not appear obvious, since it is semi-simple, in contrast to Schrödinger and conformal galilean algebra which are not. Our results are stated in Theorems 1 and 2 in section 4.

2 Meta-conformal algebra and two-point function

We shall call meta-conformal algebra \(mconf(d)\) a non-standard representation of conformal algebra which leads to a two-point correlation function distinct from (1). To be precise, we shall distinguish between ortho- and meta-conformal transformations.\(^3\)

Definition 1. (i) Meta-conformal transformations are maps \((t, r) \mapsto (t', r') = M(t, r)\), depending analytically on several parameters, such that they form a Lie group. The associated Lie algebra is isomorphic to the conformal Lie algebra \(conf(d)\).

(ii) Ortho-conformal transformations (called ‘conformal transformations’ for brevity) are those meta-conformal transformations \((t, r) \mapsto (t', r') = O(t, r)\) which keep the angles in the time-space of points \((t, r) \in \mathbb{R}^{1+d}\) invariant.

In this paper, we study the meta-conformal transformations, in \((1 + 1)\) time and space dimensions, with the following infinitesimal generators \([10, 12]\):

\[
X_n = -t^{n+1} \partial_t - \frac{1}{\mu - 1}[(t + \mu r)^{n+1} - t^{n+1}]\partial_r \\
\quad - (n + 1)\frac{\gamma}{\mu}[(t + \mu r)^n - t^n] - (n + 1)x t^n
\]

\[
Y_n = -(t + \mu r)^{n+1} \partial_r - (n + 1)\gamma(t + \mu r)^n
\]

such that \(\mu^{-1}\) can be interpreted as a velocity (‘speed of light or sound’) and where \(x, \gamma\) are constants (‘scaling dimension’ and ‘rapidity’). The generators obey the Lie algebra, for \(n, m \in \mathbb{Z}\):

\[
[X_n, X_m] = (n - m)X_{n+m}, \quad [X_n, Y_m] = (n - m)Y_{n+m}
\]

\[
[Y_n, Y_m] = \mu(n - m)Y_{n+m}
\]

\(^1\)\(cga(d)\) is non-isomorphic to either the standard Galilei algebra or else the Schrödinger algebra \(sch(d)\). It is a maximal finite-dimensional sub-algebra of non-semi-simple ‘altern-Virasoro algebra’ \(altv(1)\) (but without central charges) \([3, 7, 9, 11]\).

\(^2\)Following mainly our original work \([20]\).

\(^3\)From the greek prefixes \(o\varrho\theta\): right, standard; and \(\mu\varphi\tau\alpha\): of secondary rank.
A. Stoimen Stoimenov, B. Malte Henkel

The isomorphism of (5) with the conformal Lie algebra $\text{conf}(2)$ is seen for example in [10, 14, 20].

The meta-conformal Lie algebra (5) acts as a dynamical symmetry on the linear advection equation [15]

$$S\phi(t, r) = (-\mu \partial_t + \partial_r)\phi(t, r) = 0$$ \hspace{1cm} (6)

in the sense that a solution ϕ of $S\phi = 0$, with scaling dimension $x_\phi = \gamma / \mu$, is mapped to another solution of the same equation. This follows from ($n \in \mathbb{Z}$)

$$[S, Y_n] = 0, \quad [S, X_n] = -(n + 1)t^n \dot{S} + n(n + 1)(\mu x - \gamma)t^{n-1}$$ \hspace{1cm} (7)

Hence the space of solutions of $S\phi = 0$ is meta-conformal invariant [10] (extended to Jeans-Poisson systems in [19]).

Now, quasi-primary scaling operators [4] are characterised by the parameters (x_i, γ_i) (μ is simply a global dimensionful scale) and by co-variance under the maximal finite-dimensional sub-algebra $(X_{\pm 1, 0}, Y_{\pm 1, 0}) \cong \mathfrak{sl}(2, \mathbb{R}) \oplus \mathfrak{sl}(2, \mathbb{R})$ for $\mu \neq 0$. Explicitly

$$X_{-1} = -\partial_t, \quad X_0 = -t\partial_t - r\partial_r - x$$
$$X_1 = -t^2\partial_t - 2tr\partial_r - \mu^2\partial_r - 2xt - 2\gamma r$$
$$Y_{-1} = -\partial_r, \quad Y_0 = -t\partial_r - \mu r\partial_r - \gamma$$
$$Y_1 = -t^2\partial_r - 2\mu t\partial_r - \mu^2 r^2\partial_r - 2\gamma t - 2\gamma \mu r$$ \hspace{1cm} (8)

Here, the generators X_{-1}, Y_{-1} describe time- and space-translations, Y_0 is a (conformal) Galilei transformation, X_0 gives the dynamical scaling $t \rightarrow \lambda t$ of $r \rightarrow \lambda r$ (with $\lambda \in \mathbb{R}$) such that the so-called ‘dynamical exponent’ $z = 1$ since both time and space are re-scaled in the same way and finally X_{+1}, Y_{+1} give ‘special’ meta-conformal transformations.

Using the generators (8) (in their two-body forms $X_n^{[2]}, Y_n^{[2]}$) we construct the meta-conformal Ward identities $X_n^{[2]} \langle \phi_1 \phi_2 \rangle = Y_n^{[2]} \langle \phi_1 \phi_2 \rangle = 0$. One obtains the co-variant two-point function, up to normalisation [10, 12]

$$\langle \phi_1(t_1, r_1)\phi_2(t_2, r_2) \rangle = \delta_{x_1, x_2}\delta_{\gamma_1, \gamma_2}(t_1 - t_2)^{-2x_1} \left(1 + \frac{r_1 - r_2}{t_1 - t_2}\right)^{-2\gamma_1 / \mu}$$ \hspace{1cm} (9)

clearly distinct from the result (1) of ortho-conformal invariance. However, the result (9) raises immediately the following questions:

1. is $\langle \phi_1 \phi_2 \rangle$ a correlator or rather a response, since neither of the symmetry or causality conditions are obeyed?
2. even if $x_i > 0$ and $\gamma_i / \mu > 0$, why does $\langle \phi_1 \phi_2 \rangle$ not always decay to zero for large separations $|t_1 - t_2| \rightarrow \infty$ or $|r_1 - r_2| \rightarrow \infty$?
3. why is there a singularity at $\mu(r_1 - r_2) = -(t_1 - t_2)$?
Meta-conformal invariance

3 Two-point function in dual space

Our construction follows the same steps as outlined above which have already been used to recast the co-variant two-point functions of Schrödinger- and conformal Galilean invariance into a physically reasonable form, see [11, 13, 14].

First, we consider the ‘rapidity’ γ as a new variable and dualise it through a Fourier transformation, which gives the quasi-primary scaling operator

$$\hat{\phi}(\zeta, t, r) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} d\gamma e^{i\gamma\zeta} \phi_\gamma(t, r)$$ \hspace{1cm} (10)

The representation (4) of the meta-conformal algebra becomes

$$X_n = \frac{i(n+1)}{\mu} [(t+\mu r)^n - t^n] \partial_\zeta$$
$$-t^{n+1} \partial_t - \frac{1}{\mu} \left[(t+\mu r)^{n+1} - t^{n+1} \right] \partial_r - (n+1) xt^n$$
$$Y_n = i(n+1) (t+\mu r)^n \partial_\zeta - (t+\mu r)^{n+1} \partial_r$$ \hspace{1cm} (11)

Second, we seek an extension of the Cartan sub-algebra \mathfrak{h} by looking for a new generator N such that $[X_n, N] = \alpha_n X_n$ and $[Y_m, N] = \beta_m Y_m$ where α_n, β_m are constants to be determined. It turned out [20] that N must have the form

$$N := -r \partial_r - (\zeta + c) \partial_\zeta + \mu \partial_\mu - \nu$$
$$[X_n, N] = 0, \quad [Y_n, N] = -Y_n \quad n \in \mathbb{Z}.$$ \hspace{1cm} (12)

and satisfy (13). N is a dynamical symmetry of (6), since $[S, N] = -S$. This achieves the construction of the extended meta-conformal algebra $mconf(2) := mconf(2) \oplus \mathbb{C}N$, with commutators (5, 13).

Third, co-variant two-point functions of quasi-primary scaling operators are found from the Ward identities $X_n^{[2]}(\phi_1 \phi_2) = Y_n^{[2]}(\phi_1 \phi_2) = N^{[2]}(\phi_1 \phi_2) = 0$, with $X_n, Y_n, N \in mconf(2)$ and $n = \pm 1, 0$ [12]. Given the form of N, we also consider μ to be a further variable and set

$$\langle \hat{\phi}(\zeta_1, t_1, r_1; \mu_1) \hat{\phi}(\zeta_2, t_2, r_2; \mu_2) \rangle = \hat{F}(\zeta_1, \zeta_2, t_1, t_2, r_1, r_2; \mu_1, \mu_2)$$ \hspace{1cm} (14)

Clearly, co-variance under X_{-1} and Y_{-1} implements time- and space-translation-invariance, such that $\hat{F} = \hat{F}(\zeta_1, \zeta_2, t, r; \mu_1, \mu_2)$, with $t = t_1 - t_2$ and $r = r_1 - r_2$. Next, co-variance under other generators of $mconf(2)$ provides
there exist the following integral representation

A well-known mathematical result on Fourier analysis on Hardy spaces states

Forth, to un-dualise, we write

Since the constant \(\mu \) is merely a parameter, \(\hat{G}_1(\mu) \) is just a normalisation constant.

Proposition. The dual two-point function, covariant under the generators \(X_{\pm 1,0}, Y_{\pm 1,0} \), \(N \) of the dual representation (11,12) of the meta-conformal algebra mconf(2), is up to normalisation

\[
\hat{F}(\zeta_1, \zeta_2, t, r) = (\hat{\phi}_1(t, r, \zeta_1) \hat{\phi}_2(0, 0, \zeta_2)) = \delta_{x_1, x_2} |t|^{-2x_1} \left(\frac{\zeta_1 + \zeta_2}{2} + i \frac{\ln(1 + \mu r/t)}{\mu} \right)^{-\nu_1 - \nu_2}.
\]

4 Inverse dual transformation

Forth, to un-dualise, we write

\[
\hat{F} = \delta_{x_1, x_2} |t|^{-2x_1} \hat{f}_\lambda(\zeta_+),
\]

such that

\[
\hat{f}_\lambda(\zeta_+) := \hat{f}(\zeta_+ + i\lambda) = (\zeta_+ + i\lambda)^{-\nu_1 - \nu_2}, \quad \lambda := \frac{\ln(1 + \mu r/t)}{\mu}.
\]

A well-known mathematical result on Fourier analysis on Hardy spaces states there exist the following integral representation \(\hat{F}_\pm(\gamma_+) \) are square-integrable.

4for more details see [20]
Meta-conformal invariance

functions) \[1, 14, 20\]

\[
\sqrt{2\pi} \hat{f}(\zeta) = \Theta(\lambda) \int_0^{\infty} d\gamma_+ e^{i(\gamma_+ + i\lambda)\gamma} \hat{\mathcal{F}}_+(\gamma) \\
+ \Theta(-\lambda) \int_0^{\infty} d\gamma_+ e^{-i(\gamma_+ + i\lambda)\gamma} \hat{\mathcal{F}}_-(\gamma).
\]

The inverse Fourier transformation is found by distinguishing the cases \(\lambda > 0\) and \(\lambda < 0\). In the case \(\lambda > 0\), we have from (23)

\[
F = \frac{|t|^{-2x}}{\pi^{1/2}} G_1(\mu) \int_{\mathbb{R}^2} d\zeta_+ d\zeta_- e^{-i(\gamma_1 + \gamma_2)\zeta_+} e^{-i(\gamma_1 - \gamma_2)\zeta_-} \\
\times \int d\gamma_+ \Theta(\gamma_+) \hat{\mathcal{F}}_+(\gamma) e^{-\gamma_+\lambda} e^{i\gamma_+ \zeta_+} \\
= \frac{|t|^{-2x}}{\pi^{1/2}} G_1(\mu) \int_{\mathbb{R}^2} d\zeta_- e^{-(\gamma_1 - \gamma_2)\zeta_-} \int d\zeta_+ e^{i(\gamma_1 + \gamma_2 - \gamma_2)\zeta_+} \\
= \delta_{x_1, x_2} \delta(\gamma_1 - \gamma_2) \Theta(\gamma_1) |t|^{-2x_1} f_1(\mu) f_2(\gamma_1) \exp(-2\gamma_1 \ln(1 + \mu r/t)/\mu) \\
= \delta_{x_1, x_2} \delta(\gamma_1 - \gamma_2) \Theta(\gamma_1) f_1(\mu) f_2(\gamma_1) |t|^{-2x_1} (1 + \mu r/t)^{-2\gamma_1/\mu}. \tag{24}
\]

where in the third line two delta functions where recognised, and \(f_1, f_2\) contain unspecified dependencies on \(\mu\) and \(\gamma_1\), respectively.\(^5\) In the case \(\lambda < 0\), we have in quite an analogous way

\[
F = \delta_{x_1, x_2} \delta(\gamma_1 - \gamma_2) \Theta(-\gamma_1) |t|^{-2x_1} f_1(\mu) f_2(-\gamma_1) \exp(-2\gamma_1 \ln(1 + \mu r/t)/\mu) \\
= \delta_{x_1, x_2} \delta(\gamma_1 - \gamma_2) \Theta(-\gamma_1) f_1(\mu) f_2(-\gamma_1) |t|^{-2x_1} (1 + \mu r/t)^{-2\gamma_1/\mu}. \tag{25}
\]

The meaning of the signs of \(\lambda\), is carefully explained in [20]. Under convention that \(\mu > 0\) we have always \(\gamma_1 r/t = |\gamma_1 r/t| > 0\), independently of the sign of \(\lambda\). Therefore, we can always write for the time-space argument

\[
\mu_{x_1} \gamma_{x_1} r / t = \mu_{x_1} \gamma_{x_1} r / t \\
\left| r / t \right| = \mu_{x_1} \gamma_{x_1} r / t. \tag{26}
\]

(if \(\gamma_1 \neq 0\) and we have identified the source of the non-analyticity in the two-point function. Eqs. (24,25,26) combine to give our main result.

Theorem 1. With the convention that \(\mu = \mu_1 = \mu_2 > 0\), and if \(\nu_1 + \nu_2 > \frac{1}{2}\), the two-point correlator, co-variant under the representation (8), enhanced by (12), of the extended meta-conformal algebra \(\mathfrak{conf}(2)\), reads up to normalisation

\[
C_{12}(t, r) = \langle \phi(t, r) \phi(0, 0) \rangle = \delta_{x_1, x_2} \delta_{\gamma_1, \gamma_2} |t|^{-2x_1} \left(1 + \frac{\mu}{\gamma_1} \left| \frac{\gamma_1 r}{t} \right| \right)^{-2\gamma_1/\mu}. \tag{27}
\]

\(^5\)An eventual shift \(\zeta_+ \rightarrow \zeta_+ + c\), see (19), can be absorbed into the re-definition \(\hat{\mathcal{F}}(\gamma_+) e^{-\gamma_+ c} \rightarrow \hat{\mathcal{F}}(\gamma_+)\).
A. Stoimen Stoimenov, B. Malte Henkel

This form has the correct symmetry $C_{12}(t, r) = C_{21}(-t, -r)$ under permutation of the scaling operators of a correlator. For $\gamma_1 > 0$ and $x_1 > 0$, the correlator decays to zero for $t \to \pm \infty$ or $r \to \pm \infty$.

In the limit $\mu \to 0$, the extended meta-conformal algebra (5,13) contracts to the extended altern-Virasoro algebra $\mathfrak{alv}(1)$, whose maximal finite-dimensional sub-algebra is the extended conformal Galilean algebra $\mathfrak{cga}(1) = \mathfrak{cga}(1) \oplus \mathbb{C} \mathcal{N}$. We recover as a special limit case:

Theorem 2. [14] If $\nu_1 + \nu_2 > \frac{1}{2}$, the two-point correlator, co-variant under the extended conformal Galilean algebra $\mathfrak{cga}(1)$, reads (up to normalisation)

\[
C_{12}(t, r) = \langle \phi_1(t, r) \phi_2(0, 0) \rangle = \delta_{x_1, x_2} \delta_{\gamma_1, \gamma_2} |t|^{-2x_1} \exp \left(- \left| \frac{2\gamma_1 r}{t} \right| \right).
\]

Any treatment of the \mathfrak{cga} which neglects this non-analyticity cannot be correct.

5 Conclusion

Summarising, we have shown that for time-space meta-conformal invariance, as well as for its $\mu \to 0$ limit conformal galilean invariance (or BMS-invariance), the co-variant two-point correlators are given by eqs. (27,28) and are explicitly *non-analytic* in the temporal-spatial variables. Any form of the Ward identities which implicitly assumes such an analyticity cannot be correct. In our construction of physically sensible Ward identities, we extended the Cartan sub-algebra to a higher rank. The extra generator \mathcal{N} provides an important ingredient in the demonstration that in direct space, the meta-conformally and galilean-conformally covariant two-point correlators rather are *distributions*.

Acknowledgements

This work was supported by PHC Rila and from the Bulgarian National Science Fund Grant DFNI - T02/6.

References

Meta-conformal invariance

