Integrable Structures
of the Gauge/String
Correspondence

Gleb Arutyunov

Utrecht University

International School on
Modern Trends in
Mathematical Physics
24-30 September 2006




Part |. Superconformal Representation Theory

Conformal algebra in d-dimensions: SO(d,2)
Metric

nap = (=1,1,...,1),  a,b=0,...,d—1
Generators
M,, —— Lorentz rotations SO(d — 1,1)
P, —— translations
K, —— conformal boosts
D —— dilatation

Algebra relations

Mab: Pe] = i(acPp — mpePa) [Map, Ke] = i(nacKp — mpcKa) ,
[Mabs Mca] = i(MacMpd — mbeMad — MadMpe + MhaMac)
D,Pa] = iPa,  [D,Ka] = iKa,
[Ka, Pp] = —2iM,p, — 2in,,D.

M! =M,,, Pl=P,, KI=K,, D'=D.
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Quasi-primary fields ®;(x)

[Pa, ®1(x)] = 10a®1(x),  [D, ®1(x)] = i(x"a + A)D1(x)
[Map, 1(x)] = i(xad — x1,8a)P1(x) + P3(x) (Aap)” 1

[Ka, ®1(x)] = i(x°0a — 2xax 0}, — 2A%) P1(x) — 283 (x) (Agp)” 1x°

form irreps of conformal group parametrized by the conformal
weight A and the Lorentz spin s.

Operator-state correspondence

(D7) = P;(0)]0) «—  conformal state

The action of algebra generators on a conformal state

. J
Ka|®1) =0, DJ|®1) =iA[P1), Myp|P1) = [Pg)(Aap) 1

Coset = SO(d, 2)/{Ka,, D, M, }



Space of the conformal irrep span by P,:

P., ... Py |P1)

1

Generating function of conformal states (physical
field on space-time)

(I)[(CB)|O> = Z (;') C)Zal “ .. CBanPal NP Pan|(1)1>
n=0 )

== e—ixaPa | (I)]>

Remark: z® is a formal (harmonic) variable. The states |®) are not

normalizable! Operator D is hermitian but has imaginary eigenvalues.

The standard treatment of unitary irreps is based
on another coset:

SO(d, 2)/SO(d) x SO(2)
Set of generators
M,s <= generators of SO(d)

EF = Mgy, £ iMo,, r=1,....d
H = —%(Po + Kg) <= conformal Hamiltonian



Algebra

[Er_v E]_r‘_] 251‘SH o 2iMrs y
[HaE;t] - :IZEIZ*tv [Ej—vE:]:O

Conformal states are related
Up) = e 2Mod|dy), H|U) = A[Uy)
so that
(HP0—Ko) (_iDy)e~T(Po—Ko) _ g
Conformal primary state is defined
H|W ) = Al¥y), B W) =0

and all its descendants span a basis of positive
energy irrep:

Ef .. Ef|W;)

Conformal states (normalizable) form a positive
definite matrix:

(Wr|W )
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Superconformal algebra su(2,2|N)
New generators
an Qias S, SHa— Supercharges : 1=1,..., N

R, —— Internal (R—) symmetry U(N)

Algebra relations (only essential ones)

{Qfxa de} — 25ijpad ) Pos = O-dea
{gz’d, S;)c} _ 25inda : Kda — (5_a)daKa
i 1 i i
{Q..8} = 46,0~ 26.’D) — 45R’
[Rij7 sz] — 5ijiz - 5ilej
and
[R e Qa] = 9 an - 25 an
1 « 1 « 1 1T
[Rj, S.] = —9¢ ij — 15 jSk

For ' = 4 we can impose R’; = 0. Therefore
R-symmetry is su(4).



2 -1 0
The Cartan matrix for su(4): k;; = ( -1 2 -1 )
0o -1 2

The Chevalley basis for su(4):

(H;, Hj] =0, [E, E;

jl=9

+ +
ijHj, [Hi Ej] = 2K E;

An irrep of su(4) is defined by its highest weight state
|CL1, az, CL3>Z

Ei+|a’17a27a'3> — 0

Hilai,az,a3) = ailai,az,a3), a;>0

Here [a1, as, as] are Dynkin labels.

“Old" generators Rij can be rewritten via the generators of
the Chevalley basis, e.g.

R1—1

= Z(3H1 +2H, + Hs), R',=E/

Now we see that, e.g.,
[H1, Q. = Q., [H23.Qul=[E Q)] =0

i.e. Q! is the hws of irrep [1,0, 0].
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Superconformal primary state

’hWS> — |A7 S1, 82,041, a2, CL3>

A —— Conformal dimension
s1,82 —— Lorentz spins
a1, az,as3 —— Dynkin labels of the su(4) irrep
Kilhws) = 0, D|hws) = iA|hws),
S¥hws) = S"|hws) =0

Complete basis is generated from the ordered span

[T Q)" (Qja)"% hws)

i7j7a7d
Dimension of a generic long multiplet

dim = 2"%im(a1, az, as)(2s1 + 1)(2s2 + 1)

The space of states can be expanded into irreps of the Lorenz
and su(4) algebras.



BPS states
Q2|hws>:(), i=1 or i=1,2
Compute the anticommutator {Q",, SJB} on |hws):
i By a5t B LB i
We have

Ma5|hws> = 0 ~» no spin!

and
(%A(Sij —R')|bws) =0, i=1,2
One gets
(%A_Rll)|hws> —0 - A= %(3&1 + 2a5 + asg)
(%A ~R%)[hws) =0~ A= %(—al + 2ag + a3)
Thus

: 1
=1 ~ A:§(3a1—|—2a2—|—a3)

, 1
221,2 ~ A:§(2a2—|—a3)



1. We derived that
Q2|hws>:O, t=1 or 1=1,2
results into

1
1 =1 ~ A=§(3a1—|—2a2—|—a3)

: 1
221,2 ~ A:§(2a2—|—a3)

2. Simultaneous imposition
Q;alhws) = 0, j=4 or j=3,4
gives
, 1
324 > A:E(a1—|—2a2—|—3a3)
1
j:3,4 ~ AZE(a1+2a2)

Intersection of 1) and 2) allows only two cases
e i:BPS: [g,pq, A=p+2qg

o %BPS : 0,p,0], A=p



Shortening and unitary bounds of A/ = 4 SUSY

SUSY multiplets are classified by the hws:
|hWS> — |A7 S1, 825 P, k) q>
There are three series of UIRs

A) A>2+5s514+ss+p+k+q (continuous)
B) A>1+4+s1+p+k+gqg, s2=0, 1—|—31§¥

C) A=2p+k, q=p (protected)

Conclusions to Part |

e Operators from Series C) are non-renormalized even in
quantum theory (consequence of representation theory).

e Series A) and B) provide only the bounds.  For
states saturating the bounds further (more sophisticated)
shortening conditions apply. They correspond to semi-
short operators. Generically operators saturating the
bounds in free theory are driven away in quantum theory.

e Among semi-short multiplets there are very peculiar
protected ones.
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Part Il. Integrable Structure of Gauge Theory

Gauge theory

Content: ¢’ A, g,
t=1,...,6andr =1,...,4.
Action:
1 4 1 o 1 N2 |
S = ?/ d a:Tr{ ZFMV—}—E(DMcbZ) + TH Dy

1 . . ; .
DI %Fi[w, Mw}
(]

Invariance: Susy+conformal invariance ~~ psu(2, 2|4) algebra
Observables:  All gauge-invariant operators transform in UIRs of
superconformal group:

[A, 81, 825 a1, ag, as]

Example:

O(z) = Tr (@1‘]1@2‘]%3‘]3) T B, = ¢l +ig?, etc

realize irrep of SU(4) with labels [Jo — J3, J1 — Ja, Jo + J3]

Anomalous dimension: O(x) are composite

A |:>A |+A()\,N)

classica classica
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Spin chains and anomalous dimensions

Renormalization of the composite operators:

iz

o =z'0, D= 7

Eigenvalues of D are anomalous dimensions.

Consider a scalar operator made of L elementary scalars
Tr(cpilcp@? L qﬁiL)

View it as the spin chain of length L where spin at every site can have

6 polarizations.

A) B) ©

One-loop graphs

z [IRIkAL In A 67k s57k+1

R = I — .
Aipip g 1672 U k41
Tk Tk 1 Tk+1 Jk Ik Jk+1
Z i = I- InA (29, 5. — 6 rs — 68,4
B gty 1672 ( 1 tka1 Uk Yka1 'k'k+1
P L T O
"'lk:zk:—|—1"' 871’2 1L Zk:—|—1

Valid only in the large N limit!

13
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Sample calculation: Quartic Scalar Interaction

feefetedidloie]

Tr(n T965, o TP .. )

Using Jacobi identity:

abe pcde cbe pdae dbe pace
===

We get
5jkler<....(f§da¢fTa) ..... (fgbcqﬁl;Tc)....):

= —5jkler<.... T, ¢ ..... T, ¢l )

k l

In the large IV limit the leading contribution is only due to
the term with [ = k£ + 1!

We thus obtain the nearest-neighbor structure

NajkijTr(.... b b; ) —

N Vd
k k+1

= Néjkjk+161klk+1Tr(----¢ik¢ik+1----)
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Complete Z is

?'k?zk}—l-l
Tk+1 57k Ik sTk+1 ik
1 InA (29, o) — 256 o +1
* 1672 ( 'k k41 25%5%4_1 + ’k’k+15 >

Introducing the trace operator K and the permutation operator P:

5TkIk+1 : pP— 6‘.7k+15‘7k

K =9 Y Uet-1

Uellet-1

the matrix of anomalous dimensions becomes
L 1
2
D1 _1oop = 9 Z <I — P41+ EKi,i—!—l)
1=1

where 5
92 L A o QYMN
872 872

Let us define the dilatation operator as
D=L+ g¢g°H

where
L 1
H = ;:1 (I — Piiy1 + 5Ki,i+1>

is the Hamiltonian of the SO(6) integrable spin chain!
15



Reduction to the su(2) C su(4) ~ s0(6)
One puts K = 0 and identifies

P:%(I®I—|—Zoa®aa>

The Hamiltonian of the su(2) spin chain is

L
H=> (I- P
1=1

This is the famous XXX /o Heisenberg spin chain!

Alternatively one can find the dilatation operator by
renormalizing the operators

Tr(z" " Mo™) + ...,

where Z and ® are two complex scalars.

L
T

The Heisenberg spin chain. The Hamiltonian H acts as

ol « ol matrix, where L is the length of the chain. M is

a number of magnons.
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Quantum inverse scattering method

The Lax operator

1 0+ L+ i8> iS a
L = — 2 n S 5 S —
n(¥) go—l—i( 'iS;L" go—i—%—iSf’L

is a 2 X 2 matrix in the auxiliary two-dimensional space.

Monodromy around the chain

w0 =auoao= (45 53)

Fundamental commutation relations

Ri2(¢ — ¢)T1(9)Ta(e') = Ta(¢)T1(p)Ri2(e — ¢'),

where
Ti(p) =T(p) I, Ta(p) =1Q T(p)
The Yang-Baxter equation

Ri12R13R23 = Ro3R13R12

Explicit form of the R-matrix

3
Ri2(p) = Io + mpu = L(p), R12(0) = P2

$+1
Commuting charges

[trT (), trT(¢")] = 0

17



Monodromy at ¢ = O:

tT(0) = Tr(PL’a...PLJ) — Tr(P12P23...PL_1,LPL’a) —

= P12Ps3...Pp,_1 1, = U <« shift operator

Local commuting charges can be introduced as

Simultaneous eigenstates of Q.
Clp)2=0; A(p)Q=a(p) D(p)Q=d(v);

¥ = B(p1)...B(on)Q,
the Bethe roots . are found by solving the Bethe equations

(‘Pk"’%) HSDk:_SOJ‘F@
Pr— 3 j=1 PE TP
JFk

o+ 5
U = H 2 1« cyclisity of the trace!

7
j=1 Pk — 2

On the state with M magnons one gets

00 M 7 M 31

, r—1 ¥~ Pk 2 v \L Y=Y+ 5

Qr) = -+ . -

eXp<@z_:SO 7“) k];[1¢_¢k+§ <4p—|—z> kl;llﬁ"_‘»ok:"‘%

For Q, with » < L the second term on the rhs can be put to zero.
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One gets

M
Qr = Z ar(¥k)

k=1
where qr () are local excitation charges
{ 1 1

ar(ek) = — (9% B %) —1 (9% B %.)7“—1

An eigenvalue of the Hamiltonian is

M M 1
H=Q =) alpr) =), —57
k=1 =1 %r T 1

Particle interpretation of the Bethe Ansatz: a magnon is a particle with
momentum pg

. or + 3
exp(ipy) = ——
Pk — 39
The Bethe Ansatz reads
M M
exp(iLpy) = [[ Stpk,pj), Y pk=0
JFk

Here S(py, p;) is the S-matrix for pairwise scattering of local excitations
with momenta py.:

o(pr) — p(pj) +1

p(pr) — @(pj) — i’ #(p) = 3 cot(zp)

S(pkapj) —

19



Thermodynamic Limit (TDL)

M, L — oo with % = « fixed,

2 92 A
w=—-—
2172 1672 L2

fixed

One rescale the roots ¢, — L. and takes the log of the
Bethe equations:

oy M, o4 d
Llog( . ZL)—|—27mn—Zlog K J i‘), L — oo
“k ~ 2L i#k PR T
One finds

iy _— = — o —
n—|—2@k ;k% C(pk ( Z (' wj)

One introduces the distribution density p(¢)

p(e) =%JZ:1 5(p — ;) /Cdso p(e) =%

and gets the integral Bethe equations

1
fd ,p(go)go___HmC% /dgpM:O.
C o' —p 2 C ©

20



Charges in the TDL limit. Resolvent.

If we rescale the roots as ¢ — L and take the limit
L — oo we find

—T

L
ar(Pk) = .
Pk

The total charges

Q = ) arler) = / de ) qr(0)d(e — o) =
k=1

k=1

_ L—r—l—l / dgpp(gp)
C p"

\ - 7

N
moments of the density

In the TDL limit one defines the rescaled charges

a-(er) — L a.-(¢r) Q. — L' 7'Q,

Resolvent — the generating function of commuting charges

/

G(p) = /Cdso’p(so’) L 5= > Quet
k=0

@' —
It is an analytic function on the complex plane with cuts

Qp = a, Q1 = 0 « total momentum, Q9 < energy
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Integrability and degeneracy of the spectrum

There exists a distinguished (third) charge

Qs(g9) = Z Q26297

k=0

There exists discrete charge — the parity P:
PTr(Z°®°Z®) = Tr(®ZP°Z°)

One has

[D,Q3] =0=[P,D], but [P,Qs]#0 !

P and Qs cannot be simultaneously diagonalized ~~
degeneracy of the spectrum.

Example of degenerate pair:

OE”l’g] = 2Ty (®PPZZZZ) — 3Te(PPZPZZZ) + 2Tr(®PZZDZZ)
— 3T (PPZZZDPZ) + 2Tr(PZPZDZZ)
3,1,3]
oL —Tr(PPZDZZZ) + Te(PPZZZDZ)

Existence of degenerate pairs is a highly efficient criterion to
check integrability at higher loops!

22



Higher Loops

Closed subsectors for the dilatation operator D:

e su(2). Operators with [p,q,p] and Ay = 2p + ¢
can be made only from two complex scalars Z and .
Classically they are i—BPS states. Operators:

Tr(z" Mao™) + ...,
where Z and ® are two complex scalars.

e s[(2) Operators Tr(DM ZX)+..., where D = D, +iD;

e su(l,1) The Dynkin content: [0,0,L] and Ay =
3L + M. Operators Tr(DMol) 4+ ...

e s5u(2|3): Three complex scalars, two complex fermions.
Classically they are %-BPS states. Operators:

Tr(®, 1P, 20,3 W 4 W.5) + ..

23



The dilatation operator on the su(2) subsector (up
to three loops)

Dy = I-PF;41

3 1
Do = =51 +2P 41— 5P 042
Dgp = 51 —-7F;;11+2P ;19

1
- 5P i3Pit1id42 — Piit2Pit1,i43)

This was obtained by careful analysis of the Feynman graphs
+ susy input

Extremely important feature: the anomalous dimensions and
the higher charges obey the "BMN scaling”:

A = A(wQ, L) is finite when L — oo

where

2 92

w = =
2L 1672 L2

— —the BMN coupling

There is an heuristic all-loop asymptotic Bethe ansatz but
its formulation will be postponed till string theory section
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Part lll. Integrable Structure of String Theory

String sigma model (classical bosonic)

e The action is a sum of SO(2,4) and SO(6) sigma models

VA

I = — deJ(L5+LAdS),
27T
where

1 4 1

LS = —EaaXMa XM+§A(XMXM_1)’
1 a 1.

Lags = —5MuNOaYy O YN + oAy NYMYN + 1)
Xy, M=1,...,6; Yy, M=0,...,5

are the the embedding coordinates; A and A are Lagrange multipliers.

e \irasoro constraints

e Periodicity conditions (closed strings)

Xy(o+2m) = Xy(o), Yy(o+ 27) = Yu(o).

e (Cartan sates with only three non-vanishing components
J1 = Jig, J2 = Jz4, J3 = Js6
of the SO(6) angular momentum are relevant
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Reduction to the Neumann system. Rigid strings

The simplest case: string rotates in S° and is trivially embedded in
AdSs5 as Y5 + 1Yy = "7 with Y7, ..., Yy = 0.

Ansatz for periodic motion with three J; non-zero:
X1+ 1Xo =2x1(0) eiwlT,
X3+ iXy = x3(0) 27,
X5+ iXg = x3(0) 37,

where

3
Xyy=1 = Y z/=1.
=1

Sigma model evolution equations reduce to the 1-d (“mechanical”)
system (o is time now !)

3

" 2 ‘ 12 2 2

J=1

This is the famous Neumann dynamical system

The crucial point is the existence of the additional (to the
energy H) integral of motion:

(7 x-w-)Q 3
2 Z vity — Lyt Z
J#i . J i=1

3 3
1 2 2 2 1 2
H:—g T, + w;x; :—E w; F; .
2?,:1( 1 1 1 2?,:1 1

27



Sigma model solitons (rigid strings) are
described in terms of periodic solutions of the
Neumann system

Angular momentum components (spins):

2T do

0 v

From here
w; = w;(J1, J2, J3)

Space-time energy E:

E:\/X/{

The only non-trivial Virasoro constraint is (dot and prime are derivatives
over T and o)

E* .. I

As a consequence of this relation the energy is a function of the SO(6)
spins:

E = E(Jla J27 J3; >‘) .

28



The general three spin solutions are described in terms of the hyperelliptic
functions. Elliptic two spin solutions (x3(c) = 0) correspond to folded
or circular strings.

Folded string solution

x1(o) = dn(a\/w—%l, t) , xo(o) = \/an(a\/w—%l, t)

and )
0
5\/11)%1 = K(¢t) wii = wp —w

Solving for w'’s in terms of spins J;, the modulus ¢ can be further found from

(ﬁf‘(%f:f—f

Folded and circular rigid strings (generically hyperelliptic).

29



Gauge and String Theories Have
the Same Integrable Structure up
to Two Loops

Backlund Transform
of Rigid (Neumann)
Strings

[Arutyunov and Staudacher,

hep-th/0310182, hep-th/0403077]

Classical String
Bethe Equation

[Kazakov, Marshakov, Minahan

and Zarembo, hep-th/0402207]

Ferromagnetic
Sigma Model
[Kruczenski, hep-th/0311203;

Kruczenski and Tseytlin,

hep-th/0406189]
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‘ Quantum String Bethe Equations I

Classical String
Bethe Equation

[Kazakov, Marshakov, Minahan

and Zarembo, hep-th/0402207]

31

Gauge Theory
Asymptotic Bethe
Ansatz

[Beisert, Dippel and Staudacher,

hep-th/0405001]




Strings on R x S® ~ Rx SU(2)

Yi=...=Y4 = X5 = Xg = 0; Y5 + iYg = exp(ikT)

Combine

B X1 +1Xe X3+ 1Xy
9‘(—Xymx4xa—mg)eswa

and make the su(2)-current
A = gT87'97 A, = gTaag

Construct the (-dependent matrices U and V':

%, 1
U = —A +——A,
1_¢2 +1—g02

1
1 — @2 1 — @2

Zero-curvature (integrability) condition

0,U — 0,V +[U, V] =0
32



Introducing D, =0, —V and D, = 0, — U:
D, D,] =0
which is a compatibility condition for
D,V =0, D,V =0

Monodromy matrix
2
T(p) = PeXp/ Ul(a,p)de
0

Quasi-momentum

p(p) = arccos (%Tr T(gp))

Asymptotics

p—=*x1 TK
> —

Spectral density and the resolvent

TH TH d'p (o)
p(p) + + = / G
() Py ialver Sl M ()
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Classical String Bethe Equation

do'p(0) 1 1
][ pps(p) 1 o+
c p—¢ 2/ p? — dw?
d / . /
+ow? ' ps(p) "

C \/(pz _ 4w2\/cp’2 — 42
© — \/902 — 402 — 90/‘|‘ \/90/2 — 42
(0 + v/ 02 — 4w?) (@' 4+ /% — dw?) — 4w?

CSBE

X

Spectral density p.(¢) of a finite-gap solution of
the string sigma-model is normalized as

M

/Cdsops(SO)=f=Oé-

2
Effective coupling constant w is w? = 29? .

The integers n,, are winding numbers.

What is the quantum (discrete) analog of
the CSBE? This should describe the quantum
corrections of the string sigma model.
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Quantum String Bethe Equation

The BE we propose to describe the leading
quantum effects for strings in the su(2) sector

M M
exp(iLpy) = | [ S(or-pi)s Y =0

71=1 k=1

JFk

Here S(pk,p;) is the S-matrix for pairwise
scattering of local excitations with momenta py

o(pr) — ¢(pj) + i
o(pr) — p(pj) — i

S(pk, i) =

o 2 r+2
X exp (2@2 (%)

r=0

ar+2(P[k) qr+3(pj]))

QSBE

[Arutyunov, Frolov, and Staudacher, hep-th/0406256]

o(pr) — e(pj) + i
o(pr) — @(pj) — i

Gauge theory ABAE

[Beisert, Dippel and Staudacher, hep-th/0405001]

35
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Here the phase function ¢(p) is

o(p) = 5(:01; \/1 + 8¢? sin (2p)

or inverse
p = p(p)

Relation between g and the 't Hooft coupling A:

The charges q.-(p) are

r—1
_ _412sin(5Ep) \/1 T 89%sin(p) — 1
a-(p) =g r—1 2g sin(3p)
In particular,
qi(p) = p < Momentum
1 1
Qa(p) = _2 (\/1 + 8¢? sin ( p) — 1) < Energy
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The total charge of the M excitations given by the
sum of individual charges

Qr — Z qr(pk)

The energy of string states in the global AdS
coordinates is

E(9) =L+ g°Qq

Two limiting cases

e Thermodynamic Limit (TDL):

M, L — oo with % = « fixed, w? = 29—; fixed

e BMN Limit:
M =2,3,... finite, L=M+.J — 00, X =2
fixed
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Motivation

In the TDL the charge densities q,.(¢) become

1 1
r—1
Vit = e (%so + 302 - 4w2)

ar(p) =

The total commuting charges are

Q- =/C do ps(e) ar(¢)

Crucial observation:

The CSBE can be cast into the form (w? = L)

d@’ﬂs(%"/) 1 244
— TNy + _ql + W " q 7“—|—3( )Qr—l—Q
fc = 2 z(:)
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Discrete version

T o(or) — p(py) +i
I1- ”
Sﬁ(pk) - ‘

e p(pj) — 1
j#k
© 9
= oxp (iLp+20 3 (%) dps(p) Qs
r=0

To obtain the integral Bethe equations in the TDL
introduce the distribution density

Taking the log of the discrete equation and passing
to the TDL we obtain the CSBE.
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Near-BMN Limit
The BMN limit:

A

M — finite, L=M+J ~ J — o0, )\’:ﬁ—n‘ixed

Scaling in the BMN limit
pe~1/J, @(p)~J

No scattering of local excitations in the BMN limit.
BEs and their solution

2N l
€Zpkal — P = ka an:()
k=1

Anomalous dimension

M
A=A, =T+ 1+ N0
k=1

coincides with the BMN energy formula.

The result is the same for both QSBE and the
gauge theory ABE.
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The near-BMN |limit:

One expands (for non-coinciding ny)

QWnk%_ggﬁ

J J?
and works out the leading large J behavior of the
phases

Pk =

J

QWnk

P(pr) = 3o\ 1+ N + O(J°)

and the charges

2mny | 4 rl o
ar(Pk) = Jk [NJ (\/1+Xni— 1)] +O(J7" )

The momentum shift

Zﬁ__ M n%\/1+)\’n§+n?\/1—|—)\’ni
27 o ng — N
J#k
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Energy formula for M excitations from QSBE

M
A=J+Y 1+ vn?
k=1

NV M 14+ N n?
ka_lnk—nj J 1+ Nng
j#k

Reproduces exactly (!) the cases M = 2, 3 of direct quantization near
plane-wave background by Callan, Lee, McLoughlin, Schwarz, Swanson
and Wu, hep-th/0307032,0404007,0405153

Anom. dimension for M excitations from ABAE

B M N M n?
Ag_J+l;\/1+A/nk——Z\/l+Xnk

Z annj N 1+ N n?
k,j= 1nk—n ! ’ 1—|—)\’n%
JFk
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Strong Coupling Limit A — oo

We expect to find the famous asymptotics v/

Simplest case: M = 2

In the large g limit one has

1
oy sin(g(r — 1)?)2%(r+1)
a-(p) — g (r—1)

The phase function ¢(p) — oo when g — oo limit.

The QSBE reduces to

Lp—8v2g cos(3p) log(cos(sp)) =0

The momentum p has an expansion

p=2 B L< VA

NI
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Solution 1
Po — 21 \/nm.

The leading large A asymptotics of A is
1
A =2 (n2)\)4

“Gauge theory” operators are dual to string modes
with masses: m? = 4nv/\!

Generic case of M excitations

M m M n
Ph: D PE=) Pt Y, P =00 Repi >0
k=1 k=1 k=m-+1

The scaling dimension is

A=2 ((ink)%\)i

k=1

“Gauge theory” operators are dual to string modes
with masses: m? = 4nvV\, n =Y 1., ny
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Where is the Gauge/String Correspondence:
Interpolating Bethe Ansatz?

o(pr) — ¢(pj) +1i

SProps) = e(pr) — o(pj) — i
X exp (2z' > er(g, L) arga(pp) qr+3(pj]))
r=0

From the gauge theory point of view the role of
c-(g, L) is to hopefully account for the wrapping
Interactions

The required properties:

e c¢.-(g,L) — 0in the asymptotic limit, L — oo and g is held finite;
e c-(g,L) ~ 0(92(L—1)) in the perturbative gauge theory, g < 1
and L is finite;
2 T'—|—2
e ¢ (g,L) — (%) in the limit L, g — oo and % is held
finite;
2 ’I"+2
e c-(g,L) — 97 in the strong coupling limit, g — oo and

1K LKL/g.
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Problems

Neither the complete dilatation operator nor the
corresponding Bethe Ansatz are known beyond one loop.
Length of the chain is not conserved.

What happens to integrability when the number of loops
start to exceed the (classical) length of the chain? No
insight on the structure of wrapping interactions.

The BMN scaling is proved rigorously in gauge theory
only up to 3 loops.

How integrability is related to conformality of the theory?

The classical string Bethe equations for the whole
PSU(2,2|4) sigma-model are yet unknown.

How to derive the classical string Bethe Ansatz from
actual quantization of string?

Get 1/‘]2 correction to the string energy and compare to
predictions of the string Bethe Ansatz
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