Ivan Todorov

The lectures covered material about higher dimensional conformal vertex algebras (using a complex variable parametrization of compactified Minkowski space) and unitary positive energy representations of infinite dimensional Lie algebras surveyed recently in [4, 5, 6]. Refs. [1, 2, 3] cover some background material.


  1. P. Di Francesco, P. Mathieu, D. Senechal, Conformal Field Theories, Springer, Berlin et al. 1996.

  2. P. Furlan, G.M. Sotkov, I.T. Todorov, Two-dimensional conformal field theory, Rivista Nuovo Cimento 12:6 (1989) 1202.

  3. N.M. Nikolov, I.T. Todorov, Conformal quantum field theory in two and four dimensions, in: Proceedings of the Summer School in Modern Mathematical Physics, eds. B. Dragovich, B. Sazdović, Belgrade 2002, pp. 1-49.

  4. N.M. Nikolov, I.T. Todorov, Conformal invariance and rationality in an even dimensional quantum field theory, Int. J. Mod. Phys. A19 (2004) 36053636; math-ph/0405005.

  5. N.M. Nikolov, I.T. Todorov, Lectures on Elliptic Functions and Modular Forms in Conformal Field Theory, math-ph/ 0412039.

  6. B. Bakalov, N.M. Nikolov, K.H. Rehren, I. Todorov, Unitary positive energy representations of scalar bilocal fields, math-ph/0604069.