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Abstract

Restricting the Z2-graded tensor product of Clifford algebras C`4⊗̂C`6
to the particle subspace allows a natural definition of the Higgs field Φ, the
scalar part of Quillen’s superconnection, as an element of C`14. We empha-
size the role of the exactly conserved weak hypercharge Y, promoted here
to a superselection rule for both observables and gauge transformations.
This yields a change of the definition of the particle subspace adopted
in recent work with Michel Dubois-Violette [DT20]; here we exclude the
zero eigensubspace of Y consisting of the sterile (anti)neutrinos which are
allowed to mix. One thus modifies the Lie superalgebra generated by the
Higgs field. Equating the normalizations of Φ in the lepton and the quark
subalgebras we obtain a relation between the masses of the W boson and
the Higgs that fits the experimental values within one percent accuracy.

∗Permanent address.
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1 Introduction

The attempts to understand ”the algebra of the Standard Model (SM) of particle
physics” started with the Grand Unified Theories (GUT) (thus interpreted in
the illuminating review [BH]), was followed by a vigorous pursuit by Connes and
collaborators of the noncommutative geometry approach to the SM (reviewed
in [CC, S]). The present work belongs to a more recent development, initiated
by Dubois-Violette [DV] and continued in [TD, TDV, DT, T], that exploits
the theory of euclidean Jordan algebras (see also [BF, B]). We modify the
superconnection associated with the Clifford algebra C`10 considered in [DT20].
A fresh look on the subject is offered with a special role assigned to the exactly
conserved elctroweak hypercharge Y, which commutes with both observables
and gauge transformations. But first, some motivation.

The spinor representation of the grand unified theory Spin(10)

32 = 16L + 16R (1.1)

fits perfectly one generation of fundamental (anti)fermions of the Standard
Model. Its other representations, however, have no satisfactory physical in-
terpretation. For instance, the 45-dimensional adjoint representation involves
leptoquarks (on top of the expected eight gluons and four electroweak gauge
bosons) and predicts unobserved proton decay. The Clifford algebra C`10, whose
derivations span the Lie algebra so(10), has, on the other hand, a single irre-
ducible representation (IR) which coincides with (1.1). The chirality operator
χ can be identified with the Coxeter element χ = ω9,1(= iω10) of the real form
C`(9, 1) of C`10 = C`(10,C). It has the property to commute with the even
part C`010 of C`10, which contains so(10), and anticommutes with its odd part.
The Higgs field intertwines between left and right chiral fermions and will be
associated with a suitable projection of the odd part of the Clifford algebra.

The complexification of the underlying algebra allows to display the duality
between observables and symmetry transformations. The important obsevables,
both external (like energy momentum) and internal (charge, hypercharge) are
conserved. Conservation laws are related to symmetries by Noether theorem.
Continuous internal symmetries are generated by antihermitian elements of Lie
algebras of compact groups. Observables, on the other hand, correspond to her-
mitian (selfadjoint) operators. In the non-exceptional case one should deal with
a complex (associative) field algebra (to borrow the term of Haag [H]) that con-
tains both observables and symmetry generators. Then the algebraic statement
of Noether’s theorem will result in identifying the conserved observables with
symmetry generators multiplied by the imaginary unit i =

√
−1 - see [K13, F19]

as well as the discussion in [B20].
In order to formulate the quark-lepton symmetry it would be convenient to

view C`10 as a Z2-graded tensor product of Clifford algebras generated by Fermi

oscillators a
(∗)
α (= aα or a∗α, α = 1, 2) and b

(∗)
j , j = 1, 2, 3, respectively:

C`10 = C`4⊗̂C`6, a(∗)
α ∈ C`4, b

(∗)
j ∈ C`6, [a

(∗)
α , b

(∗)
j ]+ = 0, (1.2)
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α playing the role of a flavour (weak isospin) and j of a colour index. (The above
tensor product has been earlier introduced by Furey [F] within the division
algebra approach to the SM.) A distinguished element of an oscillator algebra
is the number operator. The difference of normalized number operators,

1

2
Y =

1

3

3∑
j=1

b∗j bj −
1

2

2∑
α=1

a∗αaα, (1.3)

is the exactly conserved (half) weak hypercharge. To insure the quark-lepton
(colour-flavour) symmetry we shall promote it to a superselection rule1: all
observables and gauge Lie algebra generators are assumed to be invariant under

the following (global) U(1)Y phase transformation of a
(∗)
α and b

(∗)
j :

aα → e
i
2ϕaα (a∗α → e−

i
2ϕa∗α), bj → e−

i
3ϕbj , α = 1, 2; j = 1, 2, 3, ϕ ∈ R. (1.4)

This requirement yields the gauge Lie subalgebra g = u(2)⊕u(3) ⊂ so(10) that
does not involve leptoquark gauge fields2 and leads to a non-simple internal
observable algebra (see Sect. 2 and Appendix A). We note that Y annihilates the
rank two Jordan subalgebra Jsν of sterile (anti)neutrinos νR, ν̄L. The maximal
subalgebra of g that annihilates Jsν is the gauge Lie algebra of the SM:

gSM = su(3)c⊕su(2)L⊕u(1)Y ⊂ g = u(2)⊕u(3) ⊂ so(10), gSMJsν = 0. (1.5)

The extra u(1) term in g, not present in the gauge Lie algebra of the SM,
can be identified with the difference B − L of baryon and lepton numbers (or,
equivalently, with twice the third component of the right chiral isospin 2IR3 ):

B − L =
1

3

3∑
j=1

[b∗j , bj ] = Y − 2IR3 , 2IR3 =
1

2

2∑
α=1

[aα, a
∗
α] = a1a

∗
1 − a∗2a2. (1.6)

We have 2IR3 νR = νR = −(B − L)νR ⇒ Y νR = 0.
The algebra of U(1)Y -invariant elements contains besides the obvious prod-

ucts a∗αaβ , b
∗
j bk also the isotropic elements

Ω = a1a2b1b2b3, Ω∗ = b∗3b
∗
2b
∗
1a
∗
2a
∗
1, Ω2 = 0 = (Ω∗)2, (1.7)

whose products are idempotents corresponding to the sterile neutrino states:

ΩΩ∗ = νR, Ω∗Ω = ν̄L. (1.8)

We can only distinguish particles from antiparticles with Y 6= 0. The sterile
neutrino and antineutrino have not been observed and we expect them to ”os-
cillate” - and mix (see the pioneer paper [P]). By definition, observables span

1Superselection rules were introduced by G.C. Wick, A.S. Wightman and E.P. Wigner
[WWW]; superselection sectors in algebraic quantum field theory were studied by Haag and
collaborators (see Sect, IV.1 of [H]). For a pedagogical review and further references - see [G].

2For a different approach to unification without leptoquarks - see [KS].
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a Jordan algebra3 of hermitian operators that commute with all superselection
charges (in our case with Y ). The U(1)Y -invariant Jordan subalgebra J of C`10

splits into three pieces: the particle, JP , and the antiparticle JP̄ parts (with
Y 6= 0 each) and the rank two subalgebra Jsν of sterile (anti)neutrinos.

The forces of the SM have two ingredients, the gauge fields and the Higgs
boson, liken to the Beauty and the Beast of the fairy tale in a popular account
[M]. The superconnection that includes the Higgs field is an attempt to trans-
form the Beast into Beauty as well. An effective superconnection has been used
by physicists (Ne’eman, Fairly) since 1979 - see, especially, [T-MN], before the
mathematical concept was coined by Quillen [Q, MQ]. A critical review of the
involuted history of this notion and its physical implications is given in Sect.
IV of [T-M] (see also Sect. I of [T-M20]). (One should also mention the neat
exposition of [R] - in the context of the Weinberg-Salam model with two Higgs
doublets.) The state space of the SM is Z2 graded - into left and right chiral
fermions - and the Higgs field intertwines between them. It should thus belong
to the odd part of the underlying Clifford algebra which anticommutes with chi-
rality χ (satisfying χ2 = 1). The exterior differentials entering the connection
form D = d + A = dxµ(∂µ + Aµ) anticommute. As noticed by Thierry-Mieg
[T-M] if we replace D by χD = Dχ it will also anticommute with the Higgs field
which belongs to the odd part of the Clifford algebra (Sect. 3). This change
does not alter the classical curvature D2 as χ2 = 1.

We begin in Sect. 2 by recalling the relation between the Fermi oscillator
realization of even (euclidean) Clifford algebras and isometric complex struc-

tures in C`2`, [D]. There we also introduce the basic projectors π
(′)
α = πα or

π
′

α, α = 1, 2 and p
(′)
j , j = 1, 2, 3. A complete set of commuting observables

is given by five traceless linear combinations of these projectors. Their 25 5-
element products give a complete set of primitive idempotents describing the
states of fundamental (anti)fermions in one generation. The decomposition of
the Jordan algebra of U(1)Y invariant observables into simple components, dis-
played in Sect. 2, is discussed in more detail in the Appendix.

Sect. 3 starts by reproducing a result of [DT20]: projecting on the particle

subspace kills the possible colour components b
(∗)
j of the Higgs field, thus guar-

anteeing that gluons remain massless. The exclusion of the sterile neutrino from

the projector P on the particle subspace transforms the Fermi oscillators a
(∗)
α

into the odd generators of the simple Lie superalgebra4 sl(2|1), a unexpected
new result. Previously, the same Lie superalgebra (called su(2|1)) has been
proposed on the basis of the observation that only the supertrace of Y vanishes
in the space of leptons (see the review in Sect. I of [T-M20]). In Sect. 4 we first
display the existence of a massless photon in the unitary gauge (an alternative

3The finite dimensional euclidean Jordan algebras are classified in [JvNW] (for a concise
review see Sect. 2 of [T]). Their role in the present context has been emphasized in [DV].

4Let us warn the reader that, unlike the popular Lie superalgebras whose representations
feature unobserved superpartners of known bosons and fermions, the even and odd parts of
Ne’eman-Fairly sl(2|1) representations correspond to the familiar right and left chiral leptons
and quarks.
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derivation of this result within the superconnection approach has been given in
[R]). We also reproduce the result of [DT20] on the Weinberg angle and the
ensuing ratio between the masses of the W and Z bosons. A surprizing new
result of Sect. 4 is the relation mH = 2cosθWmW between the Higgs and W
masses and the theoretical value of the Weinberg angle, verified within one per-
cent accuracy for the observed values of the masses and the value 4cos2θW = 5

2 .
After a brief survey of the chiral fermionic Lagrangian and the condition for
absence of a ”scalar anomaly” in Sect. 5 we summarize and discuss the results
in Sect. 6.

2 Fock space realization of C`4⊗̂C`6

The complexification Ec of a 2`-dimensional real euclidean space E with a
(positive) scalar product (, ) admits s family of `-dimensional isotropic sub-
spaces, in one-to-one correspondence with skew-symmetric orthogonal transfor-
mations J : (x, Jy) = −(Jx, y), J2 = −1. Each such J defines a linear complex
structure - see [D]. For each splitting of an orthonormal basis e1, ..., e2` into
two complementary sets I and I

′
of ` elements, we can define a J such that

Jej = e
′

j , Jej
′ = −ej , ej ∈ I, e

′

j ∈ I
′
. Then the two conjugate sets of ` elements

nj =
1

2
(ej + iJej), n̄j =

1

2
(ej − iJej), ej ∈ I, nj , n̄j ∈ Ec,

satisfy

(nj , nk) = 0 = (n̄j , n̄k), (n̄j , nk) = (n̄k, nj) = δjk, Jnj = −inj , Jn̄j = in̄j .

If γ : E → C`(E) is the map of E to the generators of the 2` dimensional spinor
representation of the Clifford algebra, such that

[γ(x), γ(y)]+ := γ(x)γ(y) + γ(y)γ(x) = 2(x, y)1, (2.1)

extended by linearity to Ec, then setting γ(ni) = fi, γ(n̄i) = f∗i the f
(∗)
i (= fi

or f∗i ) satisfy the canonical anticommutation relations (CAR):

[fi, fj ]+ = 0 = [f∗i , f
∗
j ]+, [fi, f

∗
j ]+ = δij .

The complexified space Ec has a natural notion of complex conjugation that
preserves E and can hence be equipped with a sesquilinear Hilbert space scalar
product such that

< x, y >= (x̄, y), < x, x >> 0 for x 6= 0, < x, y >= < y, x >. (2.2)

As a result the complexified Clifford algebra C`(Ec) = C`(E) ⊗ C admits a
hermitian conjugation A→ A∗, an antilinear antihomomorphism such that

γ(x)∗ = γ(x̄), x ∈ Ec; (AB)∗ = B∗A∗, A,B ∈ C`(Ec). (2.3)
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As stated in the introduction, we regard C`10 as the Z2-graded tensor prod-
uct (1.2) where the Fermi oscillators obey the CAR:

[aα, aβ ]+ = 0(= [a∗α, a
∗
β ]+), [bj , bk]+ = 0, [aα, a

∗
β ]+ = δαβ , [bj , b

∗
k]+ = δjk (2.4)

(α, β = 1, 2; j, k = 1, 2, 3). The Lie subalgebra of so(10), invariant under the
superselection rule (1.4), is a u(1) extension of the Lie algebra of the SM:

g = u(2)⊕ u(3), u(2) = Span{[a∗α, aβ ], α, β = 1, 2},
u(3) = Span{[b∗j , bk], j, k = 1, 2, 3}. (2.5)

In particular, the weak (left) isospin components Iσ(= ILσ ) are given by:

I+ = a∗1a2, I− = a∗2a1, 2I3 = [I+, I−] = a∗1a1 − a∗2a2 . (2.6)

A maximal set of commuting observables is generated by five pairs of mutually
orthogonal projectors:

πα = aαa
∗
α, π

′

α = a∗αaα = 1−πα; pj = bjb
∗
j , p

′

j = b∗j bj = 1−pj ;παπ
′

α = 0 = pjp
′

j ,
(2.7)

α = 1, 2; j = 1, 2, 3. The 25 products π
(′)
1 π

(′)
2 p

(′)
1 p

(′)
2 p

(′)
3 with different distribu-

tion of primes provide a complete set of (rank one) primitive idempotents which
include all (pure) (anti)fermion states. The projections on non-zero left and
right isospin P1 and P

′

1 are mutually orthogonal:

P1 = [I+, I−]+ = (2I3)2 = π1π
′

2 + π
′

1π2, P
′

1 = (2IR3 )2 = π1π2 + π
′

1π
′

2 (2.8)

(P1 + P
′

1 = 1, P1P
′

1 = 0). The electric charge operator,

Q =
1

2
Y + I3 =

1

3

3∑
j=1

b∗j bj − a∗2a2, (2.9)

commutes with a
(∗)
1 which will single out the neutral component of the Higgs

field. We note that while there is no coherent superposition of states of differ-
ent charges (just as there is none of different Y ’s), there are charge carrying
(non-abelian) gauge fields, like W+

µ I+ +W−µ I−, while, according to the U(1)Y
superselection rule, there are none non-commuting with Y .

The left and right chiral fermion subalgebras JLP and JRP of JP have a rather
different structure: JLP is the sum of two simple Jordan subalgebras of rank 6
and 2, while JRP splits into three simple pieces of rank 3, 3, 1 (see the Appendix):

JP = JLP ⊕ JRP , JLP = J2
6 ⊕ J2

2 , J
R
P = J2

3 ⊕ J2
3 ⊕ ReR (2.10)

where J2
r = Hr(C) (we use the notation of [T], Sect. 2.2). The u(2) Lie algebra

spanned by Ω,Ω∗ and their products (1.8) is the projection of the right chiral
isospin. We will not discuss its possible role in neutrino physics in this paper.
We just note that being associated with Jsν it completes the observed duality
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between IRs of compact Lie algebras and simple components of the Jordan
algebra of superselected observables. Recall that a Majorana mass term in Jsν
violates both B − L and 2IR3 but still preserves Y .

The algebras JP and JP̄ are isomorphic mirror images of one another, their
elements differing by the signs of Y,Q,B − L, so it suffices to consider JP .

We proceed to list the primitive idempotents with their (internal space)
fermion pure states interpretation. To begin with, there are two rank four
SU(3)-invariant (colourless) projectors on leptons and antileptons:

` = p1p2p3, ¯̀= p
′

1p
′

2p
′

3, (B−L+ 1)` = 0 = (B−L− 1)¯̀, tr` = 4 = tr ¯̀. (2.11)

The pure lepton states in JP are identified by the eigenvalues of the pair (Q,Y ):

νL = π
′

1π2` (0,−1), eL = π1π
′

2` (−1,−1); eR = π
′

1π
′

2` (−1,−2). (2.12)

The sterile (anti)neutrino have both Y = 0 = Q and only differ by the chirality

χ := [a1, a
∗
1][a2, a

∗
2][b1, b

∗
1][b2, b

∗
2][b3, b

∗
3] (= ω9,1); (2.13)

νR = π1π2` = ΩΩ∗, ν̄L = Ω∗Ω, (χ− 1)νR = 0 = (χ+ 1)ν̄L. (2.14)

There are three more rank four projectors qj , j = 1, 2, 3 on the subspaces of
quarks of colour j and any flavour:

qj := U(bj , b
∗
j )

¯̀= bj ¯̀b∗j = pjp
′

kp
′

` (U(x, y)z := xzy + yzx), (2.15)

where (j, k, `) is a permutation of (1, 2, 3). The pure quark states are:

ujL = π
′

1π2qj , d
j
L = π1π

′

2qj ; u
j
R = π1π2qj , d

j
R = π

′

1π
′

2qj . (2.16)

In fact, since SU(3)c is an exact gauge symmetry individual colour states are not
observed. One should introduce instead gauge-invariant density matrices; the
sum q = q1 +q2 +q3 is also an idempotent (since the qj are mutually orthogonal)
and is SU(3)c invariant. Thus one can use the density matrices (by definition
of trace one) obtained from (2.16) by replacing qj with 1

3q.
In view of (2.12), (2.16) the 15 dimensional projector P on the particle

subspace can be written as the projector P0 used in [DT20] minus νR:

P = P0 − ΩΩ∗, P0 = `+ q, ΩΩ∗ = `π1π2(= νR). (2.17)

We shall see that this modification changes the Lie superalgebra generated by
the Higgs superconnection in an interesting way.

3 Particle subspace, Higgs field and associated
Lie superalgebra

A general problem in theories, whose configuration space is a product of a com-
mutative algebra of (continuous) functions on space-time with a finite dimen-
sional quantum algebra, is the problem of fermion doubling [GIS] (still discussed
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over twenty years later, [BS]). It was proposed in [DT20], as a remedy, to con-
sider the algebra P0C`10P0 where P0 is the projector on the 16 dimensional
particle subspace including the right handed sterile neutrino νR (see (2.17)).
Note that the 16 dimensional subspace of the fundamental representation 27
of the E6 GUT is also commonly identified with the space of particles (see e.g.
[B]). As recalled in the introduction νR and its antiparticle ν̄L both belong to
the zero eigenspace of gSM and are allowed to mix by the U(1)Y superselection
rule (as they do in the popular theory involving a Majorana neutrino). We shall
use instead the 15-dimensional projector P = P0 − νR (2.17). This will lead to
changing the projection of the flavour Lie superalgebra on the lepton subspace.

We shall first display the projection of the factor C`6 in (1.2) which does
not change when substituting P0 by P. To begin with, as PP0 = P, the odd
part of C`6, killed by P0, is annihilated a fortiori by P:

P0b
(∗)
j P0 = 0⇒ Pb(∗)j P = 0. (3.1)

The generators of su(3) change in a way that preserves their commutation re-
lations (CRs). We proceed to displaying P 1

2 [b∗j , bk]P. Let again (j, k, l) be a

permutation of (1, 2, 3); then 1
2 [b∗j , bk] = b∗j bk and, using(2.15), we find:

Bjk := Pb∗j bkP = qb∗j bkq = qkb
∗
j bkqj = b∗j bkp

′

`. (3.2)

The preservation of the CRs then follows from the relations:

[Bjk, Bkl] = b∗j b`p
′

k = Bj`, P(p
′

j − p
′

k)P = (p
′

j − p
′

k)p
′

` = qk − qj . (3.3)

Novel things happen when projecting the first factor, C`4 in (1.2). The

projection of the Fermi oscillators a
(∗)
α is nontrivial. Indeed, the easily verifiable

relations aαπα = 0, παaα = aα; παa
∗
α = 0, a∗απα = a∗α imply:

PaαP = qaα + `(1− π1π2)aα, Pa∗αP = qa∗α + `a∗α(1− π1π2),

`a
(∗)
1 → `a

(∗)
1 π

′

2, `a
(∗)
2 → `a

(∗)
2 π

′

1. (3.4)

It turns out that the resulting odd elements of C`4 can be identified with the
odd generators of the Lie superalgebra s`(2|1) (also denoted as su(2|1) - see
[T-M20]). Indeed, using the conventions of (Sect. 3.1 of) [GQS] and setting

F+ = −a2π
′

1, F− = −a1π
′

2, F̄+ = a∗1π
′

2, F̄− = a∗2π
′

1, 2Z = −π
′

1−π
′

2(= `Y, (3.5)

we recover the super CRs of s`(2|1) :

[F+, F−]+ = 0 = [F̄+, F̄−]+, [F±, F̄±]+ = I±, [F±, F̄∓]+ = Z ∓ I3;

[I+, I−] = 2I3, [2I3, F±] = ±F±, [2I3, F̄±] = ±F̄±, [Z, I±] = 0 = [Z, I3];

[I±, F±] = 0 = [I±, F̄±], [I±, F∓] = −F±, [I±, F̄∓] = F̄±,

[2Z,F±] = F±, [2Z, F̄±] = −F̄± (F ∗± = −F̄∓). (3.6)
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On the other hand, the projection qa
(∗)
α of a

(∗)
α satisfies the unmodified CARs

(2.4). As a result it is simpler to display the associated lepton and quark
representation spaces separately (omitting the projectors q and `).

The 3-dimensional lepton subspace is atypical degenerate representation of
s`(2|1) (see Sect. 3.2 of [GQS]) with highest weight state π

′

1π
′

2 (annihilated by
F̄±). The lepton state vectors |Y, 2I3 >, Y = 2Z = −π′

1 − π
′

2 are given by:

|eR >= `a∗1a
∗
2 =: | − 2, 0 >, F̄±| − 2, 0 >= 0, F±| − 2, 0 >=: ±| − 1,±1 >,

| − 1,±1 >= |νL > /|eL >; I±| − 1,±1 >= 0, I±| − 1,∓1 >= | − 1,±1 > . (3.7)

We note that only the projectors π
′

1,2 = −Z ± I3 are defined in the Lie super-

algebra s`(2|1). The complementary projectors πα := 1 − π′

α do not have the
same trace:

tr1 = 3, π
′

1,2 = I3 ∓ Z ⇒ trπ
′

α = 2, trπα = tr(1− π
′

α) = 1. (3.8)

The three 4-dimensional mutually orthogonal projectors qj , j = 1, 2, 3, give rise
to isomorphic u(2) o CAR2 modules. For ease of notation we shall omit the
subscript j on q, dR, uL, .... We note that the two spinor doublets (a∗1, a

∗
2) and

(−a2,−a1) transform under commutation with u(2) in the semidirect product
u(2) o CAR2, in the same way as F̄± and F± above. The quark space Hq can
be obtained by acting on the highest weight ket vector qa∗1a

∗
2 (annihilated by

the left action of the raising operators a∗α) with polynomials of the lowering
operators aα. It is four dimensional with (Y, 2I3) basis:

|dR >= | − 2

3
, 0 >:= qa∗1a

∗
2, |uL >= |1

3
, 1 >:= −a2| −

2

3
, 0 >= qa∗1π2; |dL >=

|1
3
,−1 >:= a1| −

2

3
, 0 >= π1a

∗
2, |uR >= |4

3
, 0 >:= a2a1| −

2

3
, 0 >= qπ1π2. (3.9)

Here we have used the general formula for the hypercharge PY P = 4
3q−π

′

1−π
′

2.
Remarks 1. The representation spaces of coloured quarks and leptons appear

as minimal left ideals in the enveloping algebra of the respective Lie superalgebra
(cf. [Ab]). Individual ket vectors are elements X of the algebra, related to the
corresponding idempotents of the (euclidean) Jordan subalgebra of C`4 ⊗ C`06
by X → XX∗; for instance,

|νL >= `a∗1π2 → νL = |νL >< νL| = `π
′

1π2,

|dR >= qa∗1a
∗
2 → dR = |dR >< dR| = qπ

′

1π
′

2, |uL >= qa∗1π2 → uL = qπ
′

1π2.
(3.10)

2. The trace of the hypercharge Y takes equal values in the left and right chiral
subspaces (-2 for leptons, 2/3 for a quark of fixed colour). Only their difference,
the supertrace vanishes for a given IR of the Lie superalgebra. The sum of trY
for all left (or right) chiral particle IRs (leptons and three coloured quarks) does
vanish, reflecting the cancellation of anomalies between quarks and leptons.
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3. The s`(2|1) realization of the antileptons is somewhat tricky and we shall
spell it out (although we won’t use it later). To begin with the antiparticle
projector that excludes the sterile antineutrino reads:

P̄ = P̄0 − ν̄L = ¯̀(1− π
′

1π
′

2) + q̄, ¯̀= p
′

1p
′

2p
′

3, q̄ =
∑

q̄j , q̄j . = p
′

jpkp`, (3.11)

(j, k, `) ∈ Perm(1, 2, 3). We find P̄a(∗)
α P̄ = ¯̀a

(∗)
α πᾱ + q̄a

(∗)
α , α = 1, 2, ᾱ = 3− α.

Thus we arrive at F+ = −a2π1, F− = −a1π2, F̄+ = a∗1π2, F̄− = a∗2π1. Finally
we apply the outer automorphism (correcting on the way Eq. (3.6) of [GQS])

I±, I3;Z;F±, F̄±, → I±, I3;−Z;±F̄±,±F±, (3.12)

ending up with the antilepton s`(2|1) generators (labelled by a superscript a):

Ia± = ¯̀I± I
a
3 = ¯̀(π1 − π2); 2Za = ¯̀(π1 + π2) = ¯̀Y ;

F a+ = ¯̀a∗1π2, F
a
− = −¯̀a∗2π1, F̄

a
+ = −¯̀a2π1, F̄

a
− = ¯̀a1π2. (3.13)

Note that the conjugation properties are not preserved by the outer automor-
phism (3.12): while F ∗± = −F̄∓, we have (F a±)∗ = F̄ a∓ for the antileptons.

We observe that the the ket vectors (3.7) (3.9) of left chiral fermions belong
to the odd subspace C`14 ⊗ C`06 of the Clifford algebra, while the right chiral
fermion kets belong to its even subalgebra C`04⊗C`06. The (antihermitian) Higgs
component of the superconnection

Φ(x) = `(φ1F̄+ + φ̄1F− + φ2F̄− + φ̄2F+) + ρq
∑
α

(φαa
∗
α − φ̄αaα) (3.14)

(φα = φα(x)) is odd and intertwines the left and right subspaces. The nor-
malization factor ρ in front of q will be fixed later. Following the suggestion of
[T-M] we include the chirality χ in the definition of superconnection:

D = χD + Φ, D = d+A = dxµ(∂µ +Aµ), iAµ = Wµ +Bµ +Gµ; (3.15)

hereW = W+I++W−I−+W 3I3, B is proportional to Y,G(∈ su(3)) is the gluon
field spanned by Bjk (3.2) and the differences qj−qk. Since [χ,D] = 0 = [χ,Φ]+
the canonical supercurvature F0 = iD2 involves, as it should, the commutator
(rather than the anticommutator) of A and Φ; recalling that χ2 = 1 we find:

−iF0 := D2 = D2 + χ[D,Φ] + Φ2, [D,Φ] = dxµ(∂µΦ + [Aµ,Φ]) (3.16)

(iD2 is spanned by hermitian matrix valued fields: iFµν = F aµνTa, T
∗
a = Ta).

Φ2 = `(φ1φ̄2I++φ̄1φ2I−−φ1φ̄1π
′

2−φ2φ̄2π
′

1)−ρ2qφφ̄, φφ̄ = φ1φ̄1+φ2φ̄2 (3.17)

(the Higgs curvature is iΦ2). As further discussed in [T-M] the Bianchi identity

DF0 = (χ(d+A) + Φ)F0 − F0(χA+ Φ) = 0 (3.18)
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for the supercurvature F0 = iD2, an expression of the associativity relation

DD2 = D2D, (3.19)

is equivalent to the (super) Jacobi identity for our Lie superalgebra. We note
that (3.18) amounts to three equations, one for each power of Φ:

[D,D2] = 0⇔ [A, dA] + dA2 = 0

[Φ, D2] + [χD,χ(dΦ + [A,Φ])] = 0⇔ [Φ, D2] +D[D,Φ] + [D,Φ]D = 0,

[χD,Φ2] + [Φ, χ[D,Φ]] = χ(dΦ2 + [A,Φ2]− [Φ, DΦ]+) = 0. (3.20)

The relation [A,Φ2] = [Φ, [A,Φ]]+ which enters the last equation (3.20) follows
from the super Jacobi identity for two odd generators F1, F2 and one even, A,

[A, [F1, F2]+] + [F1, [F2, A]]+ = [F2, [A,F1]]+, (3.21)

by setting F1 = F2 = Φ.
Happily, the Bianchi identity still holds if we add to iΦ2 a constant term:

F0 → F = F0 + im̂2, m̂2 = m2(`(1− π1π2) + ρ2q). (3.22)

Only for m2 > 0 shall we have a non trivial minimum of the classical bosnic
action and the gauge bosons will acquire a non zero mass.

4 Bosonic Lagrangian; mass relations

The action density corresponding to the curvature F (3.22) is proportional to the
product of F with its Hodge dual of its hermitian conjugate ∗F∗ (for a textbook
exposition, see Sect. 7.2 of [H17]). We shall write the action density and the
corresponding bosonic Lagrangian in the form:

L(x)dV = −Tr(F ∗ F∗), dV = dx0dx1dx2dx3(:= dx0 ∧ dx1 ∧ dx2 ∧ dx3),

F = i(D2 + χ[D,Φ] + Φ2 + m̂2)⇒ F∗ = i(D2 + χ[D,Φ]− Φ2 − m̂2);

L(x) = Tr{1

2
FµνF

µν − (∂µΦ + [Aµ,Φ])(∂µΦ + [Aµ,Φ])} − V (Φ). (4.1)

We proceed to explain and write down in more detail each term in (4.1). iFµν
is the sum of three gauge field strengths corresponding to W,B,G (3.15). The
trace Tr is normalized in a way to have the standard expression for the gluon
field strength:

1

2
Tr(GµνG

µν) = −1

4
GaµνG

µν
a , iGµν = GaµνTa, T rTaTb =

1

2
δab.

12



This yields a non trivial relation between Tr and the Jordan trace tr, normal-
ized to take the value 1 for one dimensional projectors (primitive idempotents).
Writing G (omitting the tensor indices) in the form (cf. (3.2))

G =
∑
j 6=k

GjkBjk+G3T3+G8T8, Bjk = b∗j bkp
′

`, 2T3 = q1−q2, 2
√

3T8 = q1+q2−2q3

(4.2)
((j, k, `) ∈ Perm(1, 2, 3)) we shall have

trG2 = 4
∑
j 6=k

GjkGkj + 2((G3)2 + (G8)2) = 4TrG2. (4.3)

The Higgs potential V (Φ) is given by

V (Φ) = Tr(m2(`(1−π1π2)+ρ2q)+Φ2)2− 1

4
m4 =

1

2
(1+6ρ4)(φφ̄−m2)2. (4.4)

In deriving (4.4) we have used πα+π
′

α = 1 and [I+, I−]+ = π
′

1π2 +π1π
′

2 to find:

φ1φ̄1π
′

2 + φ2φ̄2π
′

1 = φφ̄π
′

1π
′

2 + φ1φ̄1π1π
′

2 + φ2φ̄2π
′

1π2, T rΦ
4 =

1

2
(1 + 6ρ4)(φφ̄)2.

The subtraction of 1
4m

4 ensures the vanishing of the potential at its minimum
(needed to have a finite action at the corresponding constant value Φ0 of Φ).

Remark The standard notation µ2φ†φ− λ(φ†φ)2 for the contribution of the
Higgs potential to the Lagrangian5 of the SM corresponds in (4.4) to µ2 =
(1 + 6ρ4)m2, λ = 1

2 (1 + 6ρ4). We define however the square of the vacuum
expectation value v2 of the Higgs field as the minimum in φφ̄ of V (Φ) thus

obtaining < φφ̄ >= v2 = µ2

2λ = m2 that is half the accepted standard value.
We shall use the unitary gauge in which only the neutral component of the

Higgs field - which commutes with the electric charge Q = 1
3 (p

′

1 + p
′

2 + p
′

3)− π′

2

(2.9) - survives. The CRs [Q, a2] = a2 and

[Q,F+] = F+, [Q, F̄−] = −F̄−, [Q,F−] = 0 = [Q, F̄+] = [Q, a
(∗)
1 ], (4.5)

imply φ2(x) = 0 in the unitary gauge while φ1(x) =: φ0(x) is real and φ0 = m
minimizes the potential:

Φ0(x) := (`(F− + F̄+) + ρq(a∗1 − a1))φ0(x), φ0(x)(= φ̄0(x)) = m+H(x). (4.6)

The first approximation to the gauge bosons’ mass term is obtained by replac-
ing the Higgs field in the square of the commutator [iAµ,Φ] by its minimizing
operator value - with H(x) = 0 in (4.6) (or, more generally, setting φ0φ̄0 = m2).

The gluon field (4.2) commutes with a
(∗)
α and hence remains massless, in accord

with the fact that the SU(3)c gauge symmetry is unbroken. Thus only the
electroweak gauge field Aew contributes to the commutator [iA,Φ]:

[Aν ,Φ] = [Aewν ,Φ], iAewν = W+
ν I+ +W−ν I− +W 3

ν I3 +
N

2
BνY ; (4.7)

5See Mathematical formulation of the standard model in Wikipedia (of October 16, 2020).
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here the constant N is chosen to make the trace norms of 2I3 and NY equal:

trP(2I3)2 = 2+2×3 = 8, trP(NY )2 = N2(2+
2

3
+4+

16

3
+

4

3
) =

40

3
N2. (4.8)

It follows that N, to be identified with the tangent of the Weinberg angle, satisfies

N2 =
Tr(2I3)2

TrY 2
(=

tr(2I3)2

trY 2
) =: tg2θW =

3

5
. (4.9)

Using the CRs (3.6) and the relation Y = 2
3

∑3
j=1 p

′

j − π
′

1 − π
′

2 (1.3) we get

[W+
ν I+ +W−ν I−, ,Φ] = W+

ν (φ2(`F̄+ + ρqa∗1) + φ̄1(ρqa2 − `F+))

+W−ν (φ1(`F̄− + ρqa∗2) + φ̄2(ρqa1 − `F−));

[W 3
ν 2I3 +NBνY,Φ] = (W 3

ν −NBν)(φ1(ρqa∗1 + `F̄+) + φ̄1(ρqa1 − `F−))

−(W 3
ν +NBν)(φ2(ρqa∗2 + `F̄−) + φ̄2(ρqa2 − `F+)),

The corresponding squares and their traces have the form (omitting the summed
up 4-vector index):

Tr[W+I+ +W−I−,Φ]2 = W+W−Tr(φ1φ̄1π
′

1 + φ2φ̄2π
′

2 + ρ2qφφ̄)

=
1 + 6ρ2

4
(W+W− +W−W+)φφ̄ (4Trπ

′

α = trπ
′

α = 2, φφ̄ =

2∑
α=1

φαφ̄α),

T r[W 3I3 +
N

2
BY,Φ]2 =

1 + 6ρ2

8
((W 3 −NB)2φ1φ̄1 + (W 3 + +NB)2φ2φ̄2).

(4.10)
In the unitary gauge, for Φ = Φ0, the quadratic form in W 3, B becomes degen-
erate (corresponding to zero photon mass) and for φ0φ̄0 = m2 we find

Tr[iA,Φ0]2 =
1 + 6ρ2

4
m2(W+W− +W−W+ +

1

2
(W 3 −NB)2 ). (4.11)

It follows that only one linear combination of the neutral vector fields,

Zν = cW 3
ν − sBν ,

s

c
= tgθW = N(=

√
3

5
), c2 + s2 = 1, (4.12)

acquires mass mZ , satisfying

m2
Z =

m2
W

c2
= (1 +N2)m2

W . (4.13)

The orthogonal linear combination remains massless and will be identified with
the photon field:

Γν := sW 3
ν + cBν(⇒ Z2 + Γ2 = W 2

3 +B2,mγ = 0). (4.14)
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Remark Although we follow the standard terminology and speak of unitary
gauge it should be emphasized that the choice Φ = Φ0 (4.6) has a physical
consequence: the vanishing of the photon mass. More generally, that follows
from the vanishing of the product φ1φ2, enforced in our earlier work by adding
an extra term in the superpotential (in Eq. (4.2) of [DT20]).

The relations among gauge boson masses are independent of the normaliza-
tion constant ρ. The ratio m2

H/m
2
W (for mH the Higgs mass), however, does

depend on ρ2. Indeed, equating it to the ratio of the coefficients to φφ̄ and
W+W− + W−W+ in the Taylor expansion of the Higgs potential (4.4) and in
(4.11), respectively, we find:

m2
H = 4

6ρ4 + 1

6ρ2 + 1
m2
W . (4.15)

We shall fix ρ2 by demanding that the leptonic input to TrΦ2 equals to the
contribution of a single coloured quark (as it does if we do not project out νR):

−Tr(`Φ2) = Tr(φ1φ̄1π1π
′

2 + φ2φ̄2π
′

1π2 + φφ̄π
′

1π
′

2) =
1

2
φφ̄(=

1

2
(φ1φ̄1 + φ2φ̄2)),

−Tr(ρ2qjΦ2) = ρ2Tr(qjφφ̄) = ρ2φφ̄ ⇒ ρ2 =
1

2
. (4.16)

This choice of ρ2 yields:

6ρ4 + 1

6ρ2 + 1
=

5

8
= cos2θW , mH = 2cosθWmW =

√
5

2
mW . (4.17)

The last relation (for 2cosθW =
√

5
2 ) is verified within one percent error. Pre-

vious calculations in the superconnection approach (see, e.g. [R]) yield the
much higher value mH = 2mW that is some 35 GeV/c above the mark. An
intermediate result (closer to the experimental value) is claimed in [HLN].

Remark The equality of the ratio 5/8 to the theoretical value of cos2θW
may be fortuitous: while N2 = tg2θW equals the ratio of squares of coupling
constants and is therefore running with the energy, ρ2 equals the ratio of nor-
malizations of the same quantity TrΦ2 in two spaces and needs not run, thus
further emphasizing the significance of the last relation (4.17).

5 Fermionic Lagrangian; anomaly cancellation

Having the Yang-Mills connection D (3.15) and the Higgs field Φ it is straight-
forward to write down the fermionic part of the Lagrangian. We proceed in
some detail in order to fix our conventions.

We are using spacelike metric (ηµν = diag(−,+,+,+)) and Dirac matrices
satisfying [γµ, γν ]+ = 2 ηµν . As we shall work with chiral fermions, we choose a
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γ5 diagonal basis in which

γ5(= iγ0γ1γ2γ3 = γ1γ2γ3β) = −σ3 ⊗ 1I2 =

(
−1I 0
0 1I

)
, βγµ = i

(
−σ̃µ 0

0 σµ

)
,

σ̃0 = σ0 = −σ0 = −σ̃0 = 12, σj = σj = σ̃j , j = 1, 2, 3, (5.1)

σj being the Pauli matrices (cf. Appendix I of [T-M20]); here β = iγ0(= β∗)
defines a U(2, 2) invariant hermitean form, so that γ∗µβ = −βγµ where the star
stands for hermitian conjugation. The conditions (5.1) still leave a U(1) freedom
γµ → S(ϕ)γµS(ϕ)∗, S(ϕ) = exp

(
i
2 ϕγ5

)
, ϕ ∈ R, in the choice of γµ. The basis

β = σ1 ⊗ 1I2, γj = −σ2 ⊗ σj corresponds to charge conjugation matrix C = βγ2

(defined to obey tγµC = −Cγµ, for tγµ transposed to γµ). The two-by-two

sigma matrices σµ(= σAḂµ ), σ̃µ = (σ̃µȦB), A,B, Ȧ, Ḃ = 1, 2 are chosen to satisfy

σµ σ̃ν + σν σ̃µ = 2 ηµν1IL , σ̃µ σν + σ̃ν σµ = 2 ηµν1IR , 1IL =
(
δAB
)
, 1IR =

(
δḂ
Ȧ

)
.

(5.2)
The fermionic part of the Lagrangian for the first generation of leptons and
quarks reads:

LF = −ψ̃(γµDµ + Φ)ψ = i
(
L σ̃µDµL−RσµDµR

)
−

−i
(
Le〈eL |φ`| eR〉Re + Ld〈dL |φq| dR〉Rd + Lu〈uL |φq|uR〉Ru

)
+

+i
(
Re〈eR |φ`| eL〉Le +Rd〈dR |φq| dL〉Ld +Ru〈uR |φq|uL〉Lu

)
, (5.3)

where we have set

ψ =

(
LAf
RfḂ

)
, f = e, d, u , φ` = ` F+ φ1(x) φ` = −` F− φ1(x) ,

φq = q a∗1 φ1(x) , φq = q a1 φ1(x) , (5.4)

and the bras and kets define the idempotents

|eR〉〈eR| = ` π′1π
′
2 , |eL〉〈eL| = ` π1π

′
2 ;

|dR〉〈dR| = qπ′1π
′
2 , |dL〉〈dL| = qπ1π

′
2 , |uR〉〈uR| = qπ1π2 ,

|uL〉〈uL| = qπ′1π2

(
〈eR|F+| eL〉 = ` π1π

′
2 , tr ` π1π

′
2 = 1

)
(5.5)

(see (3.7), (3.9) for a possible choice). The full Lagrangian for the three genera-
tions of quarks (and leptons) should also involve the CKM quark mixing matrix
[PDG] (and, perhaps the Pontecorvo-Maki-Nakagawa-Sataka matrix?).

The standard treatment of the axial vector anomaly cancellation also applies
to our case (cf. Appendix I to [T-M20]). We proceed to consider a pair of
oppositely oriented triangle graphs with one vector and two Higgs lines (Fig. 1)
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Fig. 1. Scalar anomaly cancellation
(The labels in parentheses correspond to a u-quark loop)

that may involve a potential chiral “scalar anomaly”. The fact that φ̄ and φ
carry opposite values of Y (Y = 1 and Y = −1 - cf. (1.4)) ensures hypercharge
conservation in each vertex. A straightforward analysis shows that whenever
the supertrace of the charge carried by the gauge field A vanishes the divergence
in the amplitudes of the two graphs of Fig. 1 cancels out. (The conclusion of
Sect. 2 of [T-M20] holds true for any Lie superalgebra, not just for s`(2|1), and
hence applies to our treatment of the quark sector.) For instance, the total trace
of the hypercharge of up and down quarks in the left and right sector coincides,

trY |Left = 6× 1

3
= 2 = trY |Right = 3× 4

3
− 3× 2

3
= 2 , (5.6)

so that their difference, the supertrace, vanishes. This is also true for the electric
charge in both the quark and the lepton sectors but it fails for the leptonic
hypercharge unless we assume a Higgs triggered transition between νL and the
sterile neutrino – a possible manifestation of neutrino oscillation whose study
goes beyond the scope of the present paper.

6 Summary and discussion

Our starting point was the observation that the unique (faithful) IR of the
Clifford algebra C`10 = C`4⊗̂C`6 accommodates precisely the 32 fermion and
antifermion states of a single generation of fundamental particles (including
the hypothetical sterile (anti)neutrino needed to explain the observed neutrino
oscillations). The complexified Clifford algebras C`2` = C`(2`,C) can be viewed

as generated by Fermi oscillators a
(∗)
α ∈ C`4, α = 1, 2; b

(∗)
j ∈ C`6, j = 1, 2, 3 (α

and j playing the role of flavour (weak isospin) and colour index, respectively).

It was observed in [DT20] that the projector `+ q on leptons and quarks,

` = p1p2p3, q =

3∑
j=1

qj , qj = pjp
′

kp
′

` (j, k, `) ∈ Perm(1, 2, 3); pj = bjb
∗
j , p

′

k = b∗kbk,

(6.1)
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kills b
(∗)
j and, more generally, the odd part C`16 of C`6:

(`+ q)C`10(`+ q) ⊂ C`4 ⊗ C`06 ((`+ q)b
(∗)
j (`+ q) = 0). (6.2)

In the present paper we promote the exactly conserved weak hypercharge to
a superselection rule: Y commutes with all observables and all symmetry trans-
formations, and explore its consequences. As a first corollary we obtain a u(1)
extension of the gauge Lie algebra of the SM: the centralizer of Y in so(10) is
g = u(2)⊕ u(3) (2.5). The Lie algebra gSM (1.5) of the gauge group of the SM
is the maximal subalgebra of g that annihilates the rank two Jordan subalgebra
Jsν of sterile (anti) neutrinos. The superselection rules forbid coherent super-
positions of quantum states with different values of superselected charges, [G].
Conversely, we only distinguish particles from antiparticles if they carry differ-
ent eigenvalues of Y. (Allowing the existence of a Majorana neutrino one cannot
speak of a right chiral neutrino νR or of its antiparticle, both having Y = 0.)
We are thus led to project on a 15 dimensional particle subspace, excluding the
right chiral neutrino νR = `π1π2, πα = aαa

∗
α. This changes in an interesting

way the Higgs field, identified with the scalar part of a superconnection, which
belongs to C`14, and the associated Lie superalgebra:

P = `(1− π1π2)⇒ Pa(∗)
α P = `a(∗)

α π
′

ᾱ + qa(∗)
α , ᾱ = 3− α. (6.3)

The leptonic part of the transformed Fermi oscillators (the term proportional
to `) is identified with the odd generators of the simple Lie superalgebra s`(2|1)
applied over forty years ago by Ne’eman and Fairly to the Weinberg-Salam

model. The fact that the lepton and the quark parts of the transformed a
(∗)
α

and of the Higgs field operator (3.14) differ, far from being a liability, yields
(upon fixing the normalization ρ) the new relation (4.17) between the Higgs
and the W boson masses, in good agreement with their experimental values.

The Yukawa coupling of fermions and the Higgs field, considered in Sect. 5
is a manifestation of triality: the coupling of the three 8-dimensional represen-
tations of Spin(8) – the left and right chiral spinors, corresponding to six (up
and down colour) quarks and two leptons each, and an eight vector in internal
space, to which we associate the Higgs superconnection. To display it one may
use the octonion realization of Spin(10) acting on C⊗O2 described in [Br]. In
fact, the present approach was initiated in [DV] by suggesting the Albert (or
exceptional Jordan) algebra J8

3 as a natural framework for displaying the three
generations. It was soon realized that the Jordan subalgebra J8

2 ⊂ J8
3 with au-

tomorphism group Spin(9) [TD, TDV] corresponds to one generation; then the
Clifford algebra C`9 is privileged as an associative envelope of J8

2 [DT]. (The
significance of Spin(9) was further emphasized in [K]; for its role in octonionic
geometry - see also [PP].)

Considering the complexification C⊗J8
3 as a Jordan module, whose automor-

phism group is the compact E6 [Y ], Boyle [B] observes that Spin(10) naturally
appears as its subgroup corresponding to one generation of fermions – stabiliz-
ing an 1-dimensional projector in J8

3 . The particle Spin(10) module C16 is then
realized as a subspace of the complex fundamental representation 27 of E6.
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The problem of incorporating in a meaningful way the three families of
fundamental fermions into, say, a multiplicity three module of C⊗ J8

3 is still a
challenge.
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A Superselected euclidean Jordan algebras

Euclidean Jordan algebras are commutative, power associative and partially
ordered - by declaring the square of each element positive. (For a concise review
and references - see Sect. 2 of [T].) Finite dimensional euclidean Jordan algebras
can be decomposed into direct sums of simple ones, Jdr , labelled by their rank
r and degree d. Each Jdr , viewed as a real vector space, splits into a direct sum
of r 1-dimensional spaces Eii = Rei, e2

i = ei, i = 1, ..., r, and
(
r
2

)
d-dimensional

spaces Eij , 1 ≤ i < j ≤ r, Eij ◦Ejk ⊂ Eik. The Eij , i ≤ j are eigenspaces of the
left multiplication operators Lei(Lxy = x ◦ y = y ◦ x) satisfying

2LeiEjk = (δij + δik)Ejk ⇒ ei ◦ ej = δijej , E =

r∑
i=1

ei = 1r (A.1)

(i.e. E(= E(r)) plays the role of the unit operator in the simple Jordan algebra

Jdr ). Such a splitting is called the Peirce decomposition of Jdr (Benjamin Peirce,
1809-1880, was most of his life a Harvard professor). For r ≥ 2 the range of d
always includes the dimensions 1, 2, 4 of the associative division algebras. We
are only dealing here with the complex number case, d = 2, and with special
Jordan algebras - Jordan subalgebras of associative algebras in which the Jordan
product is the symmetrized associative product: 2x ◦ y = xy + yx.

The simple Jordan subalgebras of JP are labelled by the eigenvalues of Y. As
the spectra of Y for left and right chiral fermions (with the sterile (anti)neutrino
excluded) do not overlap, left and right observables belong to different simple
components. It is convenient to order the irreducible components according
to their rank. There is a single rank one Jordan subalgebra with Y = −2,
corresponding to the right chiral electron: J1 = ReR, eR = π

′

1π
′

2`. As there
are two rank two algebras in our list, we shall first describe the general J2

2

algebra and then specify its different physical interpretations. The Weyl basis
of the real 4-dimensional algebra J2

2 = H2(C) can be written as eα, α = 1, 2
and e12 = S+, e21 = S− = S∗+(e12 and e21 being two conjugate to each other
generators of the real 2-dimensional Peirce subspace E12) satisfying

e1S+ = S+ = S+e2, e2S+ = 0 = S+e1, e2S− = S− = S−e1, e1S− = 0 = S−e2,
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S2
± = 0, e1 = S+S−, e2 = S−S+, eαeβ = δαβ eα. (A.2)

The two realizations of J2
2 in our list are Jsν with e1 = νR, e2 = ν̄L, S+ = Ω and

JL2 with e1 = νL, e2 = eL, S± = I±. In any J2
2 we have a family of hermitian

elements Sϑ ∈ E12 spanning the unit circle in E12:

Sϑ = eiϑS+ + e−iϑS−,−π < ϑ ≤ π; S2
ϑ = e1 + e2 = 12. (A.3)

There are two simple Jordan components of type J2
3 of the algebra of superse-

lected observables in C`10. They both correspond to right chiral quarks differing
by their flavour projections. We shall give a unified description of J2

3 in the 3-
dimensional space of colour degrees of freedom. If (j, k, `) is a permutation of
(1, 2, 3) then a natural Weyl basis in J2

3 reads (cf. (3.2)):

ej = qj = pjp
′

kp
′

l, ejk = Bkj = b∗kbjp
′

` ⇒ qjBkjqk = Bkj , BkjBjk = qj . (A.4)

As noted in the introduction, it is no surprise that one finds here the same
expressions (3.2) encountered in computing the generators of the (complexified)
su(3) Lie algebra. Finally, the Weyl basis forJ2

6 can be written in terms of tensor
products of elements of J2

2 and J2
3 . In particular, the primitive idempotents

corresponding to left chiral coloured quarks (2.16) are products of e1 = π
′

1π2

and e2 = π1π
′

2 with qj ; a typical off diagonal element reads:

e1j,2k = a∗1a2bjb
∗
kp

′

` = ujLe1j,2kd
k
L.
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