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INTRODUCTION
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Quantum random walk algorithm is large category of quantum 
algorithms. It is used in variety of quantum information topics:
• quantum simulations; 
• quantum algorithms; 
• quantum cryptography. 

Discrete time quantum random walk search

Petar Danev & Hristo Tonchev 4

DTQRWS Grover search algorithm
Search in arbitrary topology Search only in linear database
Needs more qubits Needs less qubits
Double Oracle calls Less Oracle calls

Discrete time quantum random walk search algorithm (DTQRWS) 
• Uses quantum walk to find searched element in unordered database; 
• Quadratically faster than the corresponding classical search 

algorithms.

12/22/2022



QUANTUM CIRCUIT COMPONENTS

𝜓𝜓𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 , 𝑥𝑥𝑘𝑘 , 𝑐𝑐𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 ⊗ 𝑐𝑐𝑘𝑘

𝜓𝜓𝑘𝑘+1 = 𝑈𝑈𝑘𝑘 𝜓𝜓𝑘𝑘
yields

𝜓𝜓6 = 𝑈𝑈5𝑈𝑈4𝑈𝑈3𝑈𝑈2𝑈𝑈1𝑈𝑈0 𝜓𝜓0

𝜓𝜓0 = 0,0,0

Dim[ 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 ] = 2 Dim[ 𝑥𝑥𝑘𝑘 ] = 2^m Dim[ 𝑐𝑐𝑘𝑘 ] = m

Initial State:

𝑈𝑈0 = �𝐼𝐼2 ⊗ H⊗𝑛𝑛 ⊗ H⊗𝑚𝑚

𝐼𝐼2 ⊗ F2^𝑚𝑚 ⊗ F𝑚𝑚
𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 2
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠



𝜓𝜓1 = 0, 1
2𝑚𝑚
∑𝑗𝑗=02𝑚𝑚−1 𝑗𝑗 , 1

𝑚𝑚
∑𝑗𝑗=0𝑚𝑚−1 𝑗𝑗 = 1

𝑑𝑑
0 ⊗ ∑𝑗𝑗=0𝑚𝑚2𝑚𝑚−1 𝑗𝑗

1) Applying Hadamard Gates:

𝜓𝜓1 = 𝑈𝑈0 𝜓𝜓0

H= 1
2

1 1
1 −1𝐹𝐹 =

1
𝑚𝑚

𝑤𝑤0∗0 𝑤𝑤0∗1 ⋯ 𝑤𝑤0∗(𝑚𝑚−1)

𝑤𝑤1∗0 𝑤𝑤1∗1 ⋯ 𝑤𝑤1∗(𝑚𝑚−1)

⋮ ⋮ ⋱ ⋮
𝑤𝑤(𝑚𝑚−1)∗0 𝑤𝑤(𝑚𝑚−1)∗1 ⋯ 𝑤𝑤(𝑚𝑚−1)∗(𝑚𝑚−1)

𝑤𝑤 = 𝑒𝑒−2𝜋𝜋𝜋𝜋/𝑚𝑚

𝐼𝐼2 = 1 0
0 1

𝜓𝜓0 = 0,0,0

�𝑂𝑂 = 𝐼𝐼2𝑚𝑚+1 − ∑𝑖𝑖=1𝜆𝜆 ℎ𝑖𝑖 ℎ𝑖𝑖 + ℎ𝑖𝑖 + 2𝑚𝑚 ℎ𝑖𝑖 + 2𝑚𝑚

+�
𝑖𝑖=1

𝜆𝜆

ℎ𝑖𝑖 + 2𝑚𝑚 ℎ𝑖𝑖 + ℎ𝑖𝑖 ℎ𝑖𝑖 + 2𝑚𝑚

2) Applying First Oracle
The Oracle marks all solutions, if solutions are {ℎ1, . . , ℎ𝜆𝜆}:



𝜓𝜓2 = 1
𝑚𝑚𝑚𝑚𝑚

0,1 ⊗ ∑𝑗𝑗=0𝑑𝑑∗2^𝑑𝑑−1 𝑗𝑗 − ∑𝑖𝑖=1𝜆𝜆 ℎ𝑖𝑖 + 1,0 ⊗ ∑𝑖𝑖=1𝜆𝜆 ℎ𝑖𝑖 ⊗ ∑𝑗𝑗=0𝑚𝑚−1 𝑗𝑗

𝜓𝜓2 = 𝑈𝑈1 𝜓𝜓1

𝑈𝑈1 = �𝑂𝑂 ⊗ 𝐼𝐼𝑚𝑚

𝜓𝜓1 = 1
𝑑𝑑

0,1 ⊗ ∑𝑗𝑗=0𝑚𝑚2𝑚𝑚−1 𝑗𝑗

3) Applying Traversing Coin

𝑈𝑈2 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚 �0𝑚𝑚𝑚𝑚𝑚
�0𝑚𝑚𝑚𝑚𝑚 𝐼𝐼2𝑚𝑚 ⊗ 𝐶𝐶0

𝜓𝜓3 = 𝑈𝑈2 𝜓𝜓2

𝑈𝑈3 = 𝐼𝐼2𝑚𝑚 ⊗ 𝐶𝐶1 �0𝑚𝑚𝑚𝑚𝑚
�0𝑚𝑚𝑚𝑚𝑚 𝐼𝐼𝑚𝑚𝑚𝑚𝑚

𝜓𝜓3 = 𝑈𝑈2 𝜓𝜓2
𝐶𝐶1 = −𝐼𝐼2

4) Applying Marking Coin

𝐶𝐶0 𝜙𝜙,𝜒𝜒, ζ = 𝑒𝑒𝑖𝑖ζ 𝐼𝐼 − (1 − 𝑒𝑒𝑖𝑖𝑖𝑖) 𝜒𝜒 𝜒𝜒 𝜒𝜒 =
1
𝑁𝑁
�
𝑗𝑗=0

𝑁𝑁−1

𝑗𝑗

ζ = −2 𝜙𝜙 + 3𝜋𝜋 + 𝛼𝛼 sin(2𝜙𝜙)



5) Applying Second Oracle
𝑈𝑈4 = 𝑈𝑈1
𝜓𝜓5 = 𝑈𝑈4 𝜓𝜓4

6) Applying Shift Operator

𝜓𝜓6 = 𝑈𝑈5 𝜓𝜓5

𝑆𝑆 = �
d=0

𝑚𝑚−1

�
x=0

2𝑚𝑚−1

� 〉𝑥𝑥𝑑𝑑 ,𝑑𝑑 〈 |x,𝑑𝑑

𝑈𝑈5 = 𝐼𝐼2 ⊗ 𝑆𝑆
Where 𝑥𝑥𝑑𝑑 is the vector 𝑥𝑥 with 𝑑𝑑th bit flipped



7) Measurement of the
node register

𝜌𝜌𝜓𝜓𝑘𝑘 = 𝜓𝜓𝑘𝑘 〈 |𝜓𝜓𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘, 𝑥𝑥𝑘𝑘 , 𝑐𝑐𝑘𝑘 〈 |𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘, 𝑥𝑥𝑘𝑘 , 𝑐𝑐𝑘𝑘

𝑇𝑇𝑇𝑇𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 𝑇𝑇𝑇𝑇𝜌𝜌𝑐𝑐𝑘𝑘 [𝜌𝜌𝜓𝜓𝑘𝑘] = �
𝑖𝑖

〈 |𝑖𝑖 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 𝑖𝑖 ⊗ 𝜌𝜌𝑥𝑥𝑘𝑘 ⊗�
𝑗𝑗

〈 |𝑗𝑗 𝜌𝜌𝑐𝑐𝑘𝑘 𝑗𝑗 = 𝜌𝜌𝑥𝑥𝑘𝑘

If 𝜌𝜌𝜓𝜓𝑘𝑘 is separatable:
𝜌𝜌𝜓𝜓𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 , 𝑥𝑥𝑘𝑘 , 𝑐𝑐𝑘𝑘 〈 |𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘, 𝑥𝑥𝑘𝑘 , 𝑐𝑐𝑘𝑘
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 〈 |𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 〈 |𝑥𝑥𝑘𝑘 ⊗ 𝑐𝑐𝑘𝑘 〈 |𝑐𝑐𝑘𝑘 =𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 ⊗ 𝜌𝜌𝑥𝑥𝑘𝑘 ⊗ 𝜌𝜌𝑐𝑐𝑘𝑘

When 𝜌𝜌𝜓𝜓𝑘𝑘 is not separatable:

𝜌𝜌𝑥𝑥𝑘𝑘 = 𝑇𝑇𝑇𝑇𝜌𝜌𝑐𝑐𝑘𝑘 𝑇𝑇𝑇𝑇𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 𝜌𝜌𝜓𝜓𝑘𝑘

= �
𝑗𝑗
𝐼𝐼𝜌𝜌𝑥𝑥𝑘𝑘 ⊗ 〈 |𝑗𝑗 𝜌𝜌𝑐𝑐𝑘𝑘

𝑇𝑇𝑇𝑇𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 𝜌𝜌𝜓𝜓𝑘𝑘 𝐼𝐼𝜌𝜌𝑥𝑥𝑘𝑘 ⊗ 𝑗𝑗 𝜌𝜌𝑐𝑐𝑘𝑘

𝑇𝑇𝑇𝑇𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 𝜌𝜌𝜓𝜓𝑘𝑘 = �
𝑗𝑗
〈 |𝑗𝑗 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘

⊗ 𝐼𝐼𝜌𝜌𝑥𝑥𝑘𝑘⊗𝜌𝜌𝑐𝑐𝑘𝑘
𝜌𝜌𝜓𝜓𝑘𝑘 𝑗𝑗 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘

⊗ 𝐼𝐼𝜌𝜌𝑥𝑥𝑘𝑘⊗𝜌𝜌𝑐𝑐𝑘𝑘

M 𝜌𝜌𝑥𝑥𝑘𝑘 - измерване на регистъра на върховете



EXAMPLE

𝜓𝜓0 = 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 𝑇𝑇

𝑈𝑈0 = 𝐼𝐼2 ⊗ (H ⊗ H) ⊗ H

𝜓𝜓1 = 1/ 8 1,1,1,1,1,1,1,1, 0,0,0,0,0,0,0,0 𝑇𝑇

Example For Coin Size 2,
solutions {2}, for walk coin is
used Hadamard gate and for
marking coin is used -I

𝑈𝑈1 = 𝑂𝑂⊗ 𝐼𝐼2
𝜓𝜓2 = 1/ 8 1,1,0,01,1,1,1,0,0,1,1,0,0,0,0 𝑇𝑇

𝑈𝑈2 =Diag[𝐼𝐼8, 𝐼𝐼4 ⊗ 𝐶𝐶0]

𝜓𝜓3 =
1
2

, 0,0,0,
1
2

, 0,
1
2

, 0,0,0,
1
8

,
1
8

, 0,0,0,0
𝑇𝑇

H= 1
2

1 1
1 −1

O=

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

𝐼𝐼2 = 1 0
0 1

𝐼𝐼4 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



𝜓𝜓3 =
1
2

, 0,0,0,
1
2

, 0,
1
2

, 0,0,0,
1
8

,
1
8

, 0,0,0,0
𝑇𝑇

𝜓𝜓4 =
1
2

, 0,0,0,
1
2

, 0,
1
2

, 0,0,0,
−1

8
,
−1

8
, 0,0,0,0

𝑇𝑇

𝑈𝑈3 =Diag[𝐼𝐼4 ⊗ 𝐶𝐶1, 𝐼𝐼8]

𝜓𝜓5 =
1
2

, 0,
−1

8
,
−1

8
,
1
2

, 0,
1
2

, 0,0,0,0,0,0,0,0,0
𝑇𝑇

𝑈𝑈4 = 𝑂𝑂⊗ 𝐼𝐼2

𝜓𝜓6 =
1
2

,
−1

8
,
1
2

, 0,
1
2

, 0,
−1

8
, 0,0,0,0,0,0,0,0,0

𝑇𝑇
𝑈𝑈5 = 𝐼𝐼2 ⊗ 𝑆𝑆

M 𝜓𝜓6 = 3
8

, 2
8

, 2
8

, 1
8

S=

0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0

𝐶𝐶1 = − 1 0
0 1



ROBUSTNESS OF QRWS WITH 
MODIFIED COIN
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Modification of the walk coin

The probability to find solution 𝑝𝑝 = 𝑝𝑝(ζ,𝜙𝜙, n) depends 
on ζ, 𝜙𝜙 and coin register size n.

𝜒𝜒 =
1
𝑚𝑚𝑛𝑛

�
𝑗𝑗=0

𝑚𝑚𝑛𝑛−1

𝑗𝑗

𝐶𝐶0 𝜙𝜙,𝜒𝜒, ζ = �𝑒𝑒𝑖𝑖ζ
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

× 𝐼𝐼 − (1 − 𝑒𝑒𝑖𝑖𝑖𝑖) 𝜒𝜒 𝜒𝜒
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

We study the following walk coin:

Both Generalized Householder reflection and phase gate can be 
done efficiently in some physical Quantum circuit implementations like 
the ion traps.

To have equal probability to go at each direction 𝜒𝜒 must be equal 
weight superposition of the basis vectors |j〉

Petar Danev & Hristo Tonchev12/22/2022
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MC simulations of p(ζ,𝜙𝜙) of QRWS for Hypercube 
In each run n is fixed and for ζ,𝜙𝜙 ∈ [0,2𝜋𝜋) are taken random values 

Monte Carlo simulations of the algorithm

Two qubit coin Three qubit coinOne qubit coin

There exist connected areas in (𝜙𝜙, ζ) plane with 
high probability to find solution!

Petar Danev & Hristo Tonchev 12/22/2022
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Robustness of 𝑝𝑝(ζ,𝜙𝜙)

Note: For Grover coin both phases 𝜙𝜙 and ζ are
equal to 𝜋𝜋, and 𝜒𝜒 is equal weight superposition

In order to make QRWS more robust to change in the phases,
we search for areas in the plane defined by (𝜙𝜙, ζ) that give high
probability to find solution when one or both of the parameters vary:

𝑝𝑝(𝜙𝜙 ∈ 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜀𝜀,𝜙𝜙𝑚𝑚𝑎𝑎𝑎𝑎 + 𝜀𝜀 ) ≅ 𝑝𝑝𝑚𝑚𝑎𝑎𝑎𝑎 = 𝑝𝑝 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚

In our case p can be expressed as function of just one of the phases:

ζ = ζ(𝜙𝜙) ⟹ 𝑝𝑝(ζ(𝜙𝜙),𝜙𝜙 , n = const) ⟶ 𝑝𝑝(𝜙𝜙)

Petar Danev & Hristo Tonchev

Different functions ζ(𝜙𝜙) were fitted to MC data points, to find the 
one that makes the algorithm as robust as possible

12/22/2022
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Improvement of algorithm’s stability

Best linear approximation:
ζ = −2 𝜙𝜙 + 3𝜋𝜋

ζ =const
ζ = 𝜋𝜋

Almost linear:
ζ = −2 𝜙𝜙 + 3𝜋𝜋 + 𝛼𝛼 sin(2𝜙𝜙)

Nonlinear functions:

Examples for linear functions:

𝛼𝛼 = 0.204

𝛼𝛼 = 1/(2𝜋𝜋)
𝛼𝛼 = 1/(3𝜋𝜋)

Petar Danev & Hristo Tonchev12/22/2022
Coin size 𝑛𝑛 = 3



ROBUSTNESS OF QRWS WITH QUDIT
COIN

17Petar Danev & Hristo Tonchev12/22/2022



18

Qudits can be implemented by 
using any system with d levels, e.g. 
hyperfine states of one split level due 
to external electric or magnetic field. 
All those levels should be metastable.
Qudits can be implemented with ion 
trap.

Qubits vs Qudits

Petar Danev & Hristo Tonchev

Qubit coin register can have only 
power of two number of states –
2; 4; 8; 16; 32…

Qubit states 𝜓𝜓 = 𝛼𝛼0 0 + 𝛼𝛼1 1

𝜓𝜓 = �
𝑗𝑗=0

𝑚𝑚−1
𝛼𝛼𝑗𝑗 𝑗𝑗

One qubit can be any two level 
quantum system:
1. Levels of electron in ions;
2. Spins of quantum dots;
3. Others.

Often transitions between levels are 
made by using ancilla state.  

𝑚𝑚 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑚𝑚 = 2𝑘𝑘 k= 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

12/22/2022
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Advantages of using Qudits

Using qudits instead of qubits gives various advantages for 
the quantum algorithms:

• They are more robust against noise and give more
dependable quantum computations;

• The coin can have arbitrary dimension not only power of 2;
 Allow us to make much more reliable extrapolations

for quantum random walk search algorithm’s stability
for larger coin sizes;

• Increasing the size of the coin state space;
• More efficient construction of various quantum gates;
• New quantum error correction protocols.

12/22/2022 Petar Danev & Hristo Tonchev
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MC simulations of the algorithm with different qudit size

QRWS with Qudit coin

m=10

m=5

12/22/2022
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MC simulations with different qudit size
𝑚𝑚 = 2 𝑚𝑚 = 3 𝑚𝑚 = 4

𝑚𝑚 = 5 𝑚𝑚 = 6 𝑚𝑚 = 7

𝑚𝑚 = 8 𝑚𝑚 = 9 𝑚𝑚 = 10

• For m ≥ 3 central plateau area becomes more wide for 
higher coin size;

• The optimized coins with parameter relations
ζ = −2 𝜙𝜙 + 3𝜋𝜋 + 𝛼𝛼 sin(2𝜙𝜙) give more robust algorithm.
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Machine learning assisted optimization

Dense feedforward DNN used for predictionsRegister scaling

MC,𝑚𝑚 = 11 ML,𝑚𝑚 = 11 ML,𝑚𝑚 = 16
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Augmenting data by machine learning

Interpolation of data within the training area

MC,𝑚𝑚 = 8 ML,𝑚𝑚 = 8



Stability interval for different ζ(𝜙𝜙) 
Interval 𝜀𝜀 depends on the function that is used and the acceptable 

probability 𝑤𝑤 · 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝑝𝑝 𝜙𝜙 ∈ 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜀𝜀,𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜀𝜀 ≅ 𝑤𝑤 · 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

⟹ 𝜀𝜀 = 𝜀𝜀(𝑚𝑚,𝛼𝛼,𝑤𝑤)

ζ = −2 𝜙𝜙 + 3𝜋𝜋

ζ = 𝜋𝜋
ζ = −2 𝜙𝜙 + 3𝜋𝜋 + 𝛼𝛼 sin(2𝜙𝜙)

𝛼𝛼 = 𝛼𝛼𝑀𝑀𝑀𝑀(𝑚𝑚)

𝛼𝛼 = 1/(2𝜋𝜋)

24Petar Danev & Hristo Tonchev

𝑤𝑤 = 0.9 𝑤𝑤 = 0.7

Interval 𝜀𝜀 for different functions: found from Monte Carlo data for coin size 2-11 
and by DNN – for coin size 11-16. Best value for 𝛼𝛼 = 𝛼𝛼𝑀𝑀𝑀𝑀(𝑚𝑚) is found by ML. When 
for ζ(𝜙𝜙) is used nonlinear function, 𝜀𝜀 deceases slower with increasing the coin size.

12/22/2022



Study of the nonlinear parameter 𝛼𝛼 behavior 

25Petar Danev & Hristo Tonchev12/22/2022

𝛼𝛼(𝑚𝑚) = 𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 𝑎𝑎 𝑏𝑏 𝑐𝑐
𝛼𝛼𝟏𝟏(𝒎𝒎) 4.85 × 10−5 −4.78 × 10−3 −1.41 × 10−1

𝛼𝛼𝟐𝟐(𝒎𝒎) 2.71 × 10−4 −9.82 × 10−3 −1.20 × 10−1

𝛼𝛼𝟑𝟑(𝒎𝒎) 1.17 × 10−4 −6.24 × 10−3 −1.35 × 10−1 

ζ = −2 𝜙𝜙 + 3𝜋𝜋 + 𝛼𝛼 sin 2𝜙𝜙 − from simulations
− from ML



ζ = −2 𝜙𝜙 + 3𝜋𝜋 + 𝛼𝛼 sin(2𝜙𝜙)

26Petar Danev & Hristo Tonchev

Most promising results were achieved with relation:
ζ = −2 𝜙𝜙 + 3𝜋𝜋 + 𝛼𝛼 sin 2𝜙𝜙
⇒ 𝑝𝑝 = 𝑝𝑝 ζ 𝛼𝛼,𝜙𝜙 ,𝜙𝜙 = 𝑝𝑝 𝛼𝛼,𝜙𝜙

12/22/2022

Probability to find solution 𝑝𝑝 = 𝑝𝑝(𝛼𝛼,𝜙𝜙) for coin size 5 and 10

Robustness analysis including all coin parameters 

ζ = −2 𝜙𝜙 + 3𝜋𝜋
𝛼𝛼 = 𝛼𝛼𝑀𝑀𝑀𝑀(𝑚𝑚)𝛼𝛼 = 1/(2𝜋𝜋)



24Petar Danev & Hristo Tonchev12/22/2022

Stability area in (𝜙𝜙, 𝛼𝛼) plane 
(𝟐𝟐 ≤ 𝒎𝒎 ≤ 𝟏𝟏𝟏𝟏)
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Root-mean-square deviation of p
Increased robustness of the QRWS algorithm can be evaluated by 

using root-mean-square deviation of the probability 𝑝𝑝(𝜙𝜙,𝛼𝛼,𝑚𝑚):

𝜎𝜎𝑝𝑝
𝑖𝑖𝑖𝑖(𝑚𝑚) =

1
𝑝𝑝𝑖𝑖𝑖𝑖

𝜕𝜕𝑝𝑝𝑖𝑖𝑖𝑖

𝜕𝜕𝜙𝜙𝑖𝑖

2

𝜎𝜎𝜙𝜙2 𝜙𝜙𝑖𝑖 − 𝜋𝜋 2 +
𝜕𝜕𝑝𝑝𝑖𝑖𝑖𝑖

𝜕𝜕𝛼𝛼𝑗𝑗

2

𝜎𝜎𝛼𝛼2 𝛼𝛼𝑗𝑗 − 𝛼𝛼𝑀𝑀𝑀𝑀(𝑚𝑚) 2,𝜎𝜎𝜙𝜙 = 𝜎𝜎𝛼𝛼 = 0.1

The large dark central area shows high stability of the QRWS 
algorithm near the optimal value of 𝛼𝛼. 
The robustness against changes in the phase 𝜙𝜙 is preserved

m=5 m=10

12/22/2022
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R.M.S. deviation of QRWS
(𝟐𝟐 ≤ 𝒎𝒎 ≤ 𝟏𝟏𝟏𝟏)



𝜎𝜎𝑝𝑝′𝑖𝑖 = 1
𝑝𝑝𝑝𝑖𝑖

𝜕𝜕𝑝𝑝𝑝𝑖𝑖

𝜕𝜕𝜙𝜙𝑖𝑖
𝜎𝜎𝜙𝜙 𝜙𝜙𝑖𝑖 − 𝜋𝜋

Robustness of the QRWS algorithm in both cases, when coin is 
constructed by using ζ = 𝜋𝜋 and nonlinear function should be compared 
to evaluate the gain of using nonlinear function. It can be done by 
dividing a root-mean-square deviations of the both probabilities.

30Petar Danev & Hristo Tonchev

Comparison of stability between standard and 
optimized coin

m=5 m=10

High stability of nonlinear coin in central region compared
to standard coin with 𝜁𝜁 = 𝜋𝜋

12/22/2022

𝜎𝜎′𝑝𝑝𝑖𝑖 = 1
𝑝𝑝𝑝𝑖𝑖

𝜕𝜕𝑝𝑝𝑝𝑖𝑖

𝜕𝜕𝜙𝜙𝑖𝑖
𝜎𝜎𝜙𝜙 𝜙𝜙𝑖𝑖 − 𝜋𝜋
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Relative robustness of QRWS (𝟐𝟐 ≤ 𝒎𝒎 ≤ 𝟏𝟏𝟏𝟏)

The relative stability of the modified algorithm
increases with increasing the coin size!
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Conclusion

Petar Danev & Hristo Tonchev

 The discrete time quantum random walk search is quantum
algorithm able to search in unordered database with arbitrary
topology. It is quadratically faster than the corresponding classical
search algorithms;

 A modification of the algorithm with walk coin constructed by
Generalized Householder reflections and a phase gate could be made
extremely robust to deviations in the coin parameters if a proper
relations between the parameters is maintained;

 Using qudits for walk coin register give the possibility to increase
even more algorithm’s stability;

 Quantitative numerical analysis of quantum random walk search
algorithm’s robustness to all coin parameters have been done;

 With Monte Carlo and machine learning methods we made
predictions for the stability of algorithm’s implementation with
larger coin size.

12/22/2022
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ECAMP14 at glance

Petar Danev & Hristo Tonchev

More than:
 260 participants from 20 countries
 220 poster presentations
 9 Plenary lectures and 50 lectures in two parallel sessions 

12/22/2022

Topics:
 Atomic and Molecular spectroscopy
 Quantum information and cavity QED
 Fundamental physics, precision measurements and metrology
 Photon induced processes
 Highly charged ions
 Rydberg atoms and ultra-cold plasmas and others



QUANTUM TECHNOLOGIES FOR SINGLE 
MOLECULAR IONS 

1. Over the past years an impressive progress in the development of 
experimental methods which enable the control of single isolated 
quantum systems has been made

2. Molecules offer prospects as novel platforms for:
precise determinations of fundamental constants and their 

possible variations, 
new frequency standards and clocks, 
high-fidelity qubits for use in quantum information processing,
cold chemistry, etc.

(1) Molecular-ion quantum technologies, M Sinhal, S Willitsch, arXiv preprint
arXiv:2204.08814



(1) M. Germann, X. Tong, S. Willitsch, Observation of electric-dipole-forbidden 
infrared transitions in cold molecular ionsNature Physics 10 (11), 820-824 (2014) 
(2) M. Sinhal, Z. Meir, K. Najafian, G. Hegi and S. Willitsch, Quantum-nondemolition
state detection and spectroscopy of single trapped molecules, Science 367, 1213 
(2020).

Electrical quadrupole transitions in 28N2
+ (1)                   

Trapping of singular nitrogen molecular 
ion together with Ca+.
Ca+ ions are used for:
 Sympathetic cooling
 Nondemolition state detection (2)                   

Precision spectroscopy of N2
+



Ultrafast processes are strongly 
sensitive to pulse parameters 
wavelength,

Photoelectron momentum distribution of attosecond pulses –
machine learning based parameter determination

Convolutional network to 
determine pulse parameters from 
the 2D plots of the scattered 
electron distribution – 𝑘𝑘, θ

High accuracy of CNN ( > 99% 
for pulse intensity)

Scattering of electrons with 
attosecond EM pulses 



m – angular momentum of light,
optical vortex topological charge,
winding number

Twisted light 
(Structured light, Orbital Angular Momentum of light)

Applications:
 Transfer huge quantities of data 

through optical fibers – Terabits per 
second; 

 Use in quantum information;
 Inducing high-order multipole 

transitions;
 Angular momentum transfer,…

Asadpour, S.H., Kirova, T., Qian, J. et al. 
Azimuthal modulation of 
electromagnetically induced grating using 
structured light, Sci Rep 11, 20721 (2021).
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EXAMPLE 2

𝜓𝜓0 = 0, 0,0

𝑈𝑈0 = 𝐼𝐼2 ⊗ 𝐻𝐻⊗3 ⊗ F3

𝜓𝜓1 = 𝑈𝑈0 𝜓𝜓0 =
1

2 6
0 ⊗ �

𝑗𝑗1=0

23−1

�
𝑗𝑗2=0

2

𝑗𝑗1 ⊗ 𝑗𝑗2

Example For Coin Size 3, solutions
{2,6} (or 𝑥𝑥𝑘𝑘=1 & 𝑥𝑥𝑘𝑘 =5), for walk coin is
used Grover Coin and for marking coin
is used -I

𝐼𝐼2 = 1 0
0 1

𝜓𝜓𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 , 𝑥𝑥𝑘𝑘 , 𝑐𝑐𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 ⊗ 𝑐𝑐𝑘𝑘

𝐹𝐹3 =
1
3

1 1 1
1 𝑒𝑒2𝑖𝑖𝜋𝜋/3 𝑒𝑒−2𝑖𝑖𝜋𝜋/3

1 𝑒𝑒−2𝑖𝑖𝜋𝜋/3 𝑒𝑒2𝑖𝑖𝜋𝜋/3

𝐻𝐻⊗3= 1
2

3 1 1
1 −1 ⊗ 1 1

1 −1 ⊗ 1 1
1 −1

Dim[ 𝜓𝜓𝑘𝑘 ]=3*2^(3+1)=48

𝐼𝐼3 =
1 0 0
0 1 0
0 0 1

�𝑂𝑂 = 𝐼𝐼16 − 2 2 + 10 10 + 6 6 + 14 14 + (
)

2 10 +
10 2 + 6 14 + 14 6



EXAMPLE 2

𝑈𝑈2 =Diag[𝐼𝐼24, 𝐼𝐼8 ⊗ 𝐶𝐶0]

𝐶𝐶0 =
1
3

−1 2 2
2 −1 2
2 2 −1

𝜓𝜓2 = 𝑈𝑈1 𝜓𝜓1 = 1
2 6

0 ⊗∑𝑗𝑗1=0
23−1∑𝑗𝑗2=0

2 𝑗𝑗1 ⊗ 𝑗𝑗2 - 1
2 6

0 ⊗ ( 1 + 5 ) ⊗

∑𝑗𝑗2=0
2 𝑗𝑗2 ) + 1

2 6
1 ⊗( 1 + 5 ) ⊗∑𝑗𝑗2=0

2 𝑗𝑗2

𝑈𝑈1 = 𝑂𝑂⊗ 𝐼𝐼3

𝜓𝜓3 = 𝑈𝑈2 𝜓𝜓2 = 𝜓𝜓2

𝐶𝐶1 = −𝐼𝐼3

𝑈𝑈3 =Diag[𝐼𝐼8 ⊗ 𝐶𝐶1, 𝐼𝐼24]

𝜓𝜓4 = 𝑈𝑈1 𝜓𝜓1 = 1
2 6

0 ⊗ (∑𝑗𝑗1=0
23−1∑𝑗𝑗2=0

2 𝑗𝑗1 ⊗ 𝑗𝑗2 -( 1 + 5 ) ⊗

∑𝑗𝑗2=0
2 𝑗𝑗2 ) - 1

2 6
( 1 ⊗ ( 1 + 5 )⊗∑𝑗𝑗2=0

2 𝑗𝑗2 )



EXAMPLE 2

𝜓𝜓5 = 𝑈𝑈4 𝜓𝜓4 =
1

2 6
0 ⊗ �

𝑗𝑗1=0

23−1

�
𝑗𝑗2=0

2

𝑗𝑗1 ⊗ 𝑗𝑗2 −

2
2 6

0 ⊗ ( 1 + 5 )⊗ �
𝑗𝑗2=0

2

𝑗𝑗2

𝑈𝑈4 = 𝑂𝑂⊗ 𝐼𝐼3= 𝑈𝑈4

𝑆𝑆 = �
d=0

3−1

�
x=0

23−1

� 〉𝑥𝑥𝑑𝑑, 𝑑𝑑 〈 |x,𝑑𝑑

𝑈𝑈5 = 𝐼𝐼2 ⊗ 𝑆𝑆

𝜓𝜓6 = 𝑈𝑈5 𝜓𝜓5 = 1
2 6

0 ⊗ (∑𝑗𝑗1=0
23−1∑𝑗𝑗2=0

2 𝑗𝑗1 ⊗ 𝑗𝑗2 - 2*( 0 ⊗ 2 + 
1 ⊗ 0 + 3 ⊗ 1 + 4 ⊗ 2 + 5 ⊗ 0 + 7 ⊗ 1 )

M 𝜓𝜓6 = 1
2 6

1,1,1,1,1,1,1,1



EXAMPLE 2
𝑈𝑈6 ≡ 𝑈𝑈1

𝜓𝜓7 = 𝑈𝑈6 𝜓𝜓6 = 1
2 6

0 ⊗ (∑𝑗𝑗1=0
23−1∑𝑗𝑗2=0

2 𝑗𝑗1 ⊗ 𝑗𝑗2 - 1
2 6

0 ⊗

( 1 + 5 ) ⊗∑𝑗𝑗2=0
2 𝑗𝑗2 + 1

2 6
1 ⊗ ( 1 + 5 ) ⊗∑𝑗𝑗2=1

2 𝑗𝑗2 −
1
2 6

1
⊗ ( 1 + 5 ) ⊗ 0

𝜓𝜓8 = 𝑈𝑈7 𝜓𝜓7 = 1
2 6

0 ⊗ 2 + 6 ⊗∑𝑗𝑗2=0
2 𝑗𝑗2 + −1

12 6
0 ⊗

(
)

0 ⊗ 0 + 0 ⊗ 1 + 3 ⊗ 0 + 3 ⊗ 2 + 4 ⊗ 0 + 4 ⊗
1 + 7 ⊗ 0 + 7 ⊗ 2 + 10

12 6
0 ⊗ ( 0 ⊗ 2 + 3 ⊗ 1 +

4 ⊗ 2 + 7 ⊗ 1 ) + 1
2 6

1 ⊗ ( 1 + 5 ) ⊗∑𝑗𝑗2=1
2 𝑗𝑗2 −

1
2 6

1
⊗ ( 1 + 5 ) ⊗ 0

𝑈𝑈7 ≡ 𝑈𝑈2



EXAMPLE 2
𝑈𝑈8 ≡ 𝑈𝑈3

𝜓𝜓9 = 𝑈𝑈8 𝜓𝜓8 = 1
2 6

0 ⊗ 2 + 6 ⊗∑𝑗𝑗2=0
2 𝑗𝑗2 + −1

12 6
0 ⊗

(
)

0 ⊗ 0 + 0 ⊗ 1 + 3 ⊗ 0 + 3 ⊗ 2 + 4 ⊗ 0 + 4 ⊗
1 + 7 ⊗ 0 + 7 ⊗ 2 + 10

12 6
0 ⊗ ( 0 ⊗ 2 + 3 ⊗ 1 +

4 ⊗ 2 + 7 ⊗ 1 ) − 1
2 6

1 ⊗ ( 1 + 5 ) ⊗∑𝑗𝑗2=1
2 𝑗𝑗2 + 1

2 6
1

⊗ ( 1 + 5 ) ⊗ 0

𝑈𝑈9 ≡ 𝑈𝑈4

𝜓𝜓10 = 𝑈𝑈9 𝜓𝜓9 = 1
2 6

0 ⊗ 2 + 6 ⊗∑𝑗𝑗2=0
2 𝑗𝑗2 + −1

12 6
0 ⊗

(
)

0 ⊗ 0 + 0 ⊗ 1 + 3 ⊗ 0 + 3 ⊗ 2 + 4 ⊗ 0 + 4 ⊗
1 + 7 ⊗ 0 + 7 ⊗ 2 + 10

12 6
0 ⊗ ( 0 ⊗ 2 + 3 ⊗ 1 +

4 ⊗ 2 + 7 ⊗ 1 ) − 1
2 6

0 ⊗ ( 1 + 5 ) ⊗∑𝑗𝑗2=1
2 𝑗𝑗2 + 1

2 6
0

⊗ ( 1 + 5 ) ⊗ 0



EXAMPLE 2

𝜓𝜓10 = 𝑈𝑈9 𝜓𝜓9
=

1
2 6

0

⊗ (
)

0 ⊗ 1 − 0 ⊗ 2 + 1 ⊗ 0 + 2 ⊗ 0 − 3 ⊗ 1 + 3 ⊗ 2
+ 4 ⊗ 1 − 4 ⊗ 2 + 5 ⊗ 0 + 6 ⊗ 0 − 7 ⊗ 1 + 7 ⊗ 2
+ −1

12 6
0 ⊗ (

)

0 ⊗ 0 + 2 ⊗ 1 + 2 ⊗ 2 + 3 ⊗ 0 + 4 ⊗ 0 +

6 ⊗ 1 + 6 ⊗ 2 + 7 ⊗ 0 + 10
12 6

0 ⊗ ( 1 ⊗ 1 + 1 ⊗ 2 +
5 ⊗ 1 + 5 ⊗ 2 )

𝑈𝑈10 ≡ 𝑈𝑈5

M 𝜓𝜓10 = 0.0879,0.2731,0.0509,0.0879,0.0879,0.2731,0.0509,0.0879
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Shift operator S defines the topology of the walked object

Coin 
Register 
Size is 2

Coin 
Register 
Size is 3

Shift Operator

Coin 
Register 
Size is 4

Petar Danev & Hristo Tonchev12/22/2022



Number of nodes and edges of such Hypercube are:           
𝐸𝐸0,𝑑𝑑 = 2𝑑𝑑 𝐸𝐸1,𝑑𝑑 = 𝑅𝑅2𝑑𝑑−1

Hypercube and Node Numbering

Hypercubes with different dimensions (0 - 3):

Each node (and also edges) can be
numbered with binary string label. Zeroth
node can be arbitrary chosen.

Two nodes in a hypercube are
neighbors, if they differ by only one symbol
(their Hamming distance is 1).

Petar Danev & Hristo Tonchev 4912/22/2022
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𝐺𝐺 =

−1 + 2/𝑛𝑛 2/𝑛𝑛 … 2/𝑛𝑛
2/𝑛𝑛 −1 + 2/𝑛𝑛 … 2/𝑛𝑛
⋮ ⋮ ⋱ ⋮

2/𝑛𝑛 2/𝑛𝑛 … −1 + 2/𝑛𝑛

Walk coin gives probabilities for 
transition between nodes connected by 
an edge. 
• The system can be in superposition 

of nodes, so during the evolution it 
can go to different superposition of 
states.

• If probability to go in each direction is 
the same, then off diagonal matrix 
elements should be the same.

Walk Coin

Original QRWS algorithm uses Grover coin 
G for traversing a graph. For coin with size n:

Petar Danev & Hristo Tonchev12/22/2022
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Machine learning and optimization
This neural network is used to fit
training examples to obtain a ML
model that best approximate
quantum random walk search
algorithm. This model is used to
optimize the quantum algorithm

Feed Forward NN – network were information flows from k-th to (k+1)-th layer. No
information flows between neurons on the same layer or from (k+1)-th layer to the k-th.
Activation Function of neuron – non-linear function, witch result depends on the input

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥 = �
𝑥𝑥 𝑖𝑖𝑖𝑖 𝑥𝑥 > 0

1.673 𝑒𝑒𝑥𝑥 − 1 𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 0

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥 =
1

1 + 𝑒𝑒−𝑥𝑥
Gradient descent is an iterative optimization 
algorithm for finding a local minimum of a 
function by making steps at direction of the 
steepest descent. 
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Epoch – one run of the neuron network trough
training examples. Network update its
parameters at end of each epoch.
Batch Gradient Descent – At each epoch, lost
function is calculated by smaller portion of
training examples (batch). This batch is taken
by random training examples. Therefore there
is larger uncertainty at the end of the training,
lost function oscillate around the minimum.

Training Set – set used to train NN
Validation Set – set used to evaluate NN
Lost function – measure how well ML model fit
training examples (depend of network
parameters)
Early stopping – stop training of NN when LF
on VS starts to worsen trough the epochs
On the left figure darker colors correspond to
smaller lost function => better ML model
Adam optimization is a stochastic gradient
descent method that is based on adaptive
estimation of expected value and variance
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Optimizing walk coin by machine learning 

Neural network Parameters:

1) N ∈ 1,20
2) 𝐿𝐿 ∈ 5,30
3) Training Examples 300000 
for one and two qubits and 
15000 for 3-qubits 
4) Batch size is 256 examples 
5) Early stopping is used. 
6) Training set 80% 
7) Validation set 20%
8) Adam optimization

Best results were obtained with the function: ζ = −2 𝜙𝜙 + 3𝜋𝜋 + α sin 2𝜙𝜙 where 
𝜙𝜙, ζ 𝜖𝜖 0,2𝜋𝜋
For finding the best value of 𝛼𝛼 a feed forward Neural Network is used. 

N and L are varied to find the best model. The 
model is used to fit the above function to the 
points in the ζ,𝜙𝜙 plane with highest p(ζ,𝜙𝜙). Then 
extract the corresponding value of 𝛼𝛼

Different functions were fitted to data points, to find the function that makes the 
algorithm as robust as possible. So for largest possible 𝜀𝜀 to be fulfilled:

𝑝𝑝(𝜙𝜙 ∈ 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜀𝜀,𝜙𝜙𝑚𝑚𝑎𝑎𝑎𝑎 + 𝜀𝜀 ) ≅ 𝑝𝑝𝑚𝑚𝑎𝑎𝑎𝑎 = 𝑝𝑝 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚
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