Affine convex flow

M. Shkolnikov¹

ICMS, IMI-BAS

based on joint projects with N. Kalinin, E. Lupercio and G. Mikhalkin

March 27, 2025

¹supported by Simons Foundation International grant no. 992227., IMI-BAS

Chapter 1

Tropical geometry

➤ Complex algebraic geometry (1971: G. Bergman – "tropicalization of constant family")

- Complex algebraic geometry (1971: G. Bergman – "tropicalization of constant family")
- Real algebraic geometry (1981: O. Viro's patchworking for Hilbert's 16th problem)

- Complex algebraic geometry (1971: G. Bergman – "tropicalization of constant family")
- Real algebraic geometry (1981: O. Viro's patchworking for Hilbert's 16th problem)
- ➤ Valuation theory (1984: R. Bieri, J.R.J. Groves – first appearance of non-Archimedean "tropicalization")

- Complex algebraic geometry (1971: G. Bergman – "tropicalization of constant family")
- Real algebraic geometry (1981: O. Viro's patchworking for Hilbert's 16th problem)
- Valuation theory (1984: R. Bieri, J.R.J. Groves – first appearance of non-Archimedean "tropicalization")
- Optimization problems and (quantum) mechanics (1980's, V. Maslov and G. Litvinov, in particular "dequantization" and "idempotent mathematics")

- Complex algebraic geometry
 (1971: G. Bergman "tropicalization of constant family")
- Real algebraic geometry (1981: O. Viro's patchworking for Hilbert's 16th problem)
- Valuation theory (1984: R. Bieri, J.R.J. Groves – first appearance of non-Archimedean "tropicalization")
- Optimization problems and (quantum) mechanics (1980's, V. Maslov and G. Litvinov, in particular "dequantization" and "idempotent mathematics")
- Computer science and cellular automata (works of I. Simon, term "tropical semiring" appears in 1988)

- Complex algebraic geometry
 (1971: G. Bergman "tropicalization of constant family")
- Real algebraic geometry (1981: O. Viro's patchworking for Hilbert's 16th problem)
- Valuation theory (1984: R. Bieri, J.R.J. Groves – first appearance of non-Archimedean "tropicalization")
- Optimization problems and (quantum) mechanics (1980's, V. Maslov and G. Litvinov, in particular "dequantization" and "idempotent mathematics")
- Computer science and cellular automata (works of I. Simon, term "tropical semiring" appears in 1988)
- ► High energy physics (first pictures of tropical curves emerge in 1997)

Type IIB Superstrings, BPS Monopoles, And Three-Dimensional Gauge Dynamics

Amihay Hanany and Edward Witten *

hanany; witten@ias.edu School of Natural Sciences Institute for Advanced Study Olden Lane, Princeton, NJ 08540, USA

Abstract

We propose an explanation via string theory of the correspondence between the Coulomb branch of certain three-dimensional supersymmetric gauge theories and certain moduli spaces of magnetic monopoles. The same construction also gives an explanation, via $SL(2, \mathbb{Z})$ duality of Type IIB superstrings, of the recently discovered "mirror symmetry" in three dimensions. New phase transitions in three dimensions as well as new infrared fixed points and even new coupling constants not present in the known Lagrangians are predicted from the string theory construction. An important role in the construction is played by a novel aspect of brane dynamics in which a third brane is created when two branes cross.

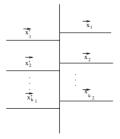


Figure 1: Here and in subsequent figures, vertical solid lines represent NS fivebranes in the 012345 directions, and horizontal lines represent 0126 threebranes. In the example depicted here, the threebranes come from left or right, and a massless hypermultiplet appears whenever a "left" and "right" threebrane meet.

Branes, Superpotentials and Superconformal Fixed Points

Ofer Aharony¹ and Amihay Hanany²

¹Department of Physics and Astronomy, Rutgers University Piscataway, NJ 08855-0849, USA oferah@physics.rutgers.edu

> ²School of Natural Sciences Institute for Advanced Study Princeton, NJ 08540, USA hanany@ias.edu

We analyze various brane configurations corresponding to field theories in three, four and five dimensions. We find brane configurations which correspond to three dimensional N=2 and four dimensional N=1 supersymmetric QCD theories with quartic superpotentials, in which what appear to be "hidden parameters" play an important role. We discuss the construction of five dimensional N=1 supersymmetric gauge theories and superconformal fixed points using branes, which leads to new five dimensional N=1superconformal field theories. The same five dimensional theories are also used, in a surprising way, to describe new superconformal fixed points of three dimensional N=2supersymmetric theories, which have both "electric" and "magnetic" Coulomb branches.

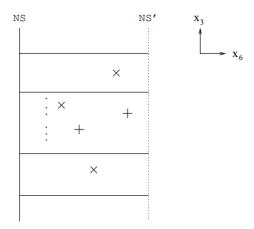


Figure 1: Three dimensional N=2 supersymmetric gauge theories with gauge group $U(N_c)$ and N_f quarks. There are N_c D3-branes (horizontal lines), which are stretched in between two NS 5-branes (vertical lines). The figure is depicted in the 36 plane as indicated by the arrows in the upper right of the figure. The left 5-brane stretches along the 012345 directions and is denoted NS and the right 5-brane stretches along the 012389 directions and is denoted NS'. The "X"s denote D5-branes, and the "+"s denote D' 5-branes, both of which give rise to quarks.

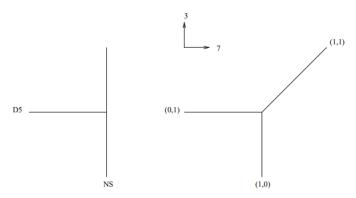


Figure 4: A D5-brane which ends on a NS 5-brane. The left side describes the naive configuration, and the right side the correct configuration, which implements conservation of charge at the vertex.

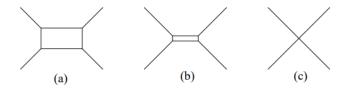


Figure 5: Pure SU(2) gauge theory in five dimensions. Horizontal lines represent D5-branes, vertical lines represent N5 5-branes, and diagonal lines at an angle θ such that $\tan(\theta) = p/q$ represent (p,q) 5-branes. Figure (a) shows a generic point on the Coulomb branch, figure (b) shows a point near the origin of moduli space, and figure (c) corresponds to the strong coupling fixed point.

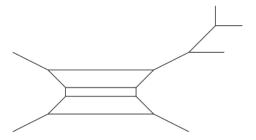


Figure 8: SU(4) gauge theory with two (massive) flavors in five dimensions.

Webs of (p,q) 5-branes, Five Dimensional Field Theories and Grid Diagrams

Ofer Aharony	Amihay Hanany	Barak Kol
Department of Physics and Astronomy	School of Natural Sciences	Department of Physics
Rutgers University	Institute for Advanced Study	Stanford University
Piscataway, NJ 08855-0849, USA	Princeton, NJ 08540, USA	Stanford, CA 94305, USA
oferah@physics.rutgers.edu	hananv@sns.ias.edu	barak@leland.stanford.edu

Abstract

We continue to study 5d N = 1 supersymmetric field theories and their compactifications on a circle through brane configurations. We develop a model, which we call (p, q) Webs, which enables simple geometrical computations to reproduce the known results, and facilitates further study. The physical concepts of field theory are transparent in this picture, offering an interpretation for global symmetries, local symmetries, the effective (running) coupling, the Coulomb and Higgs branches, the monopole tensions, and the mass of BPS particles. A rule for the dimension of the Coulomb branch is found by introducing Grid Diagrams. Some known classifications of field theories are reproduced. In addition to the study of the vacuum manifold we develop methods to determine the BPS spectrum. Some states, such as quarks, correspond to instantons inside the 5-brane which we call strips. In general, these may not be identified with (p, q) strings. We describe how a strip can bend out of a 5-brane, becoming a string. A general BPS state corresponds to a Web of strings and strips. For special values of the string coupling a few strips can combine and leave the 5-brane as a string.

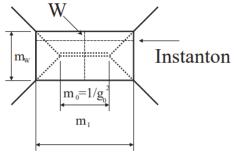


FIG. 2. The basic BPS states in the pure SU(2) gauge theory – the W boson and the instanton.

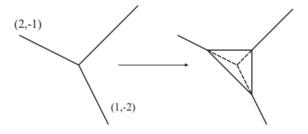


FIG. 4. A "hidden" face in the E_0 Web, realizing the 1d Coulomb branch.

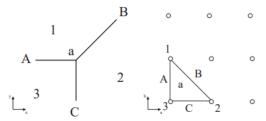


FIG. 5. The Grid diagram for the simple vertex of figure 1a. Vertices and corresponding polygons are marked a,b,c,..., edges and corresponding lines are marked A,B,C,..., and faces and corresponding points are marked 1,2,3,...

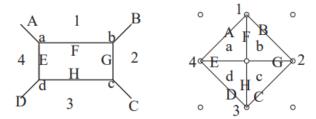


FIG. 6. The Grid diagram for the pure SU(2) gauge theory of figure 1b.

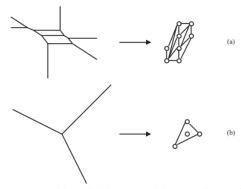


FIG. 7. Grid diagrams for (a) the $SU(3),\ N_f=2$ SQCD theory (figure 1c), and (b) the E_0

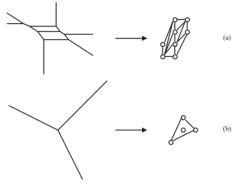


FIG. 7. Grid diagrams for (a) the SU(3), $N_f = 2$ SQCD theory (figure 1c), and (b) the E_0

All these, mathematically, are examples of "dual subdivisions" of "Newton polygons" (appearing already in Viro's work)

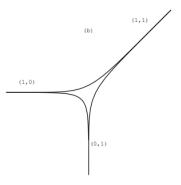


FIG. 8. A projection of the smooth curve for the simple vertex (figure 1a).

As we take the 5d limit $L_4 \to \infty$, the curve approaches the Web up to small corrections.

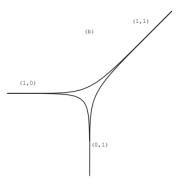


FIG. 8. A projection of the smooth curve for the simple vertex (figure 1a).

As we take the 5d limit $L_4 \to \infty$, the curve approaches the Web up to small corrections.

In mathematical terms, this is an "amoeba of a complex line".

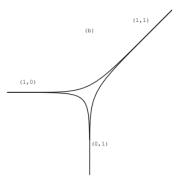


FIG. 8. A projection of the smooth curve for the simple vertex (figure 1a).

As we take the 5d limit $L_4 \rightarrow \infty$, the curve approaches the Web up to small corrections.

In mathematical terms, this is an "amoeba of a complex line". Amoebas were introduced in 1994 by Gelfand, Kapranov and Zelevinsky.

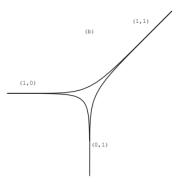


FIG. 8. A projection of the smooth curve for the simple vertex (figure 1a).

As we take the 5d limit $L_4 \to \infty$, the curve approaches the Web up to small corrections.

In mathematical terms, this is an "amoeba of a complex line". Amoebas were introduced in 1994 by Gelfand, Kapranov and Zelevinsky. The limit is a "tropicalization" (early 2000's).

 M. Kontsevich, Ya. Soibelman, Homological mirror symmetry and torus fibrations, Preprint 2000 ("large complex structure limit")

- M. Kontsevich, Ya. Soibelman, Homological mirror symmetry and torus fibrations, Preprint 2000 ("large complex structure limit")
- M. Kapranov, Amoebas over non-Archimedian fields, Preprint 2000 (deleted, impossible to find in the internet)

- M. Kontsevich, Ya. Soibelman, Homological mirror symmetry and torus fibrations, Preprint 2000 ("large complex structure limit")
- M. Kapranov, Amoebas over non-Archimedian fields, Preprint 2000 (deleted, impossible to find in the internet)
- ▶ G. Mikhalkin, Amoebas of algebraic varieties, Preprint 2001 (tropical pictures, but no use of word "tropical")

- M. Kontsevich, Ya. Soibelman, Homological mirror symmetry and torus fibrations, Preprint 2000 ("large complex structure limit")
- M. Kapranov, Amoebas over non-Archimedian fields, Preprint 2000 (deleted, impossible to find in the internet)
- ▶ G. Mikhalkin, Amoebas of algebraic varieties, Preprint 2001 (tropical pictures, but no use of word "tropical")
- ▶ B. Sturmfels, Solving systems of polynomial equations. No. 97. American Mathematical Soc., 2002.
 (A very influential book on computational methods, the appearance of term "tropical algebraic geometry")

AMOEBAS OF ALGEBRAIC VARIETIES

GRIGORY MIKHALKIN

The notion of amoebas for algebraic varieties was introduced in 1994 by Gelfand, Kapranov and Zelevinski [7]. Some traces of amoebas were appearing from time to time, even before the formal introduction, as auxiliary tools in several problems (see e.g. [3]). After 1994 amoebas have been seen and studied in several areas of mathematics, from algebraic geometry and topology to complex analysis and combinatorics.

In particular, amoebas provided a very powerful tool for studying topology of algebraic varieties. The purpose of this survey is to summarize our current state of knowledge about amoebas and to outline their applications to real algebraic geometry and adjacent areas. Most proofs are omitted here. An expanded version of this survey is currently under preparation jointly with Oleg Viro [19].

Remark 4 (Non-Archimedian amoebas and Enumerative Geometry). In a seminar talk in Paris, November 2000, Kontsevich noted a possibility of using non-Archimedian amoebas in enumerative geometry. As an example consider the problem of counting the number n_d of rational curves of degree d in \mathbb{CP}^2 which pass through 3d-1 fixed generic points. A generic complex polynomial defines a curve of genus (d-1)(d-2)/2. The polynomials defining rational curves form a subset of codimension (d-1)(d-2)/2 and thus the rational curves form a (3d-1)-dimensional space (the space of curves has dimension one less than the dimension of the space of corresponding polynomials).

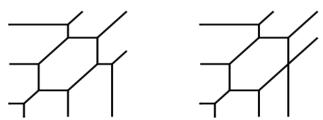


FIGURE 5. A smooth "non-Archimedian cubic amoeba" and a rational "non-Archimedian cubic amoeba".

My favorite introduction

For Proceedings of 21^{st} Gökova Geometry-Topology Conference

Brief introduction to tropical geometry

Erwan Brugallé, Ilia Itenberg, Grigory Mikhalkin, and Kristin Shaw

ABSTRACT. The paper consists of lecture notes for a mini-course given by the authors at the Gökova Geometry & Topology conference in May 2014. We start the exposition with tropical curves in the plane and their applications to problems in classical enumerative geometry, and continue with a look at more general tropical varieties and their homology theories.

Tropicalization=Dequantization

Let $\mathbb C$ denote the field of complex numbers and $\mathbb C^*=\mathbb C\backslash\{0\}$. Let $\mathrm{Log}:(\mathbb C^*)^2\to\mathbb R^2$ be given by $\mathrm{Log}(x,y)=(\log|x|,\log|y|)$. Let $\mathcal L=\{(x,y)\in(\mathbb C^*)^2|x+y=1\}$, then $\mathrm{Log}(\mathcal L)\subset\mathbb R^2$ is its **amoeba**.

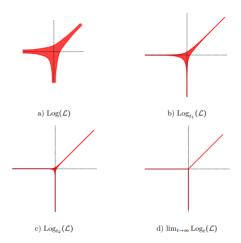


Figure 6. Dequantization of a line $(e < t_1 < t_2)$

Tropicalization of planar curves

More generally, consider a family of complex curves $C_t \subset (\mathbb{C}^*)^2$ given by $f_t = 0$, where f_t is a Laurent polynomial in two variables with coefficients analytically depending on t. Its tropicalization is the Hausdorff limit

$$\mathsf{Trop}(\mathcal{C}_t) = \lim_{t \to \infty} \mathsf{Log}_t(\mathcal{C}_t) \subset \mathbb{R}^2.$$

Such images are "planar tropical curves", i.e. graphs with straight edges of rational slope enhanced with **weights** satisfying the balancing condition at every vertex.

Balancing condition

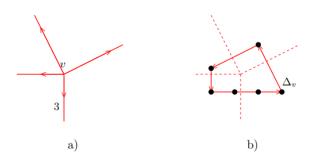


Figure 4. Balancing condition.

For every vertex, the weighted sum of outward primitive (with integer coprime coordinates) directions of adjacent edges is zero.

How to recover weights?

Let the defining Laurent polynomial f_t be written as a finite sum $\sum a_{m,n}(t)x^my^n$, where $a_{m,n}(t)=c_{m,n}t^{\beta_{m,n}}+o(t^{\beta_{m,n}})$ as $t\to +\infty$. Denote by $\operatorname{Trop}(f_t):\mathbb{R}^2\to\mathbb{R}$ a function given by

$$(X,Y) \mapsto \max(\beta_{m,n} + mX + nY).$$

Then, the set of points on \mathbb{R}^2 where $\operatorname{Trop}(f_t)$ breaks (i.e. is not linear) is precisely $\operatorname{Trop}(\mathcal{C}_t)$. Every edge E of $\operatorname{Trop}(\mathcal{C}_t)$ separates to regions of linearity of $\operatorname{Trop}(f_t)$ on which the gradients are integer vectors (m_1, n_1) and (m_2, n_2) . Then, the weight of E is the greatest common divisor of $m_1 - m_2$ and $n_1 - n_2$.

How to recover weights?

Let the defining Laurent polynomial f_t be written as a finite sum $\sum a_{m,n}(t)x^my^n$, where $a_{m,n}(t)=c_{m,n}t^{\beta_{m,n}}+o(t^{\beta_{m,n}})$ as $t\to +\infty$. Denote by $\operatorname{Trop}(f_t):\mathbb{R}^2\to\mathbb{R}$ a function given by

$$(X,Y) \mapsto \max(\beta_{m,n} + mX + nY).$$

Then, the set of points on \mathbb{R}^2 where $\operatorname{Trop}(f_t)$ breaks (i.e. is not linear) is precisely $\operatorname{Trop}(\mathcal{C}_t)$. Every edge E of $\operatorname{Trop}(\mathcal{C}_t)$ separates to regions of linearity of $\operatorname{Trop}(f_t)$ on which the gradients are integer vectors (m_1, n_1) and (m_2, n_2) . Then, the weight of E is the greatest common divisor of $m_1 - m_2$ and $n_1 - n_2$. $\operatorname{Trop}(f_t)$ is called the tropical polynomial defining $\operatorname{Trop}(\mathcal{C}_t)$.

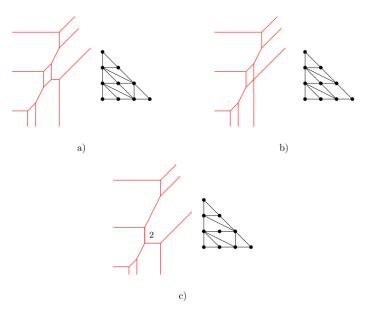


FIGURE 5. Some tropical cubics and their dual subdivisions

Min or Max?

The expression $\max(\beta_{m,n}+mX+nY)=\text{``}(\sum\beta_{m,n}X^mY^n)\text{''}$ is indeed a two-variable tropical polynomial in X and Y: in tropical arithmetic one replaces the addition with taking the maximum and multiplication with the usual addition. If one takes the limit $t\to 0$, instead of $t\to \infty$, then, instead of the maximum, the minimum serves as an operation of tropical addition.

Min or Max?

The expression $\max(\beta_{m,n}+mX+nY)=\text{``}(\sum\beta_{m,n}X^mY^n)\text{''}$ is indeed a two-variable tropical polynomial in X and Y: in tropical arithmetic one replaces the addition with taking the maximum and multiplication with the usual addition. If one takes the limit $t\to 0$, instead of $t\to \infty$, then, instead of the maximum, the minimum serves as an operation of tropical addition.

The Min-convention will be adapted later on since it is slightly more convenient while working with self-organized criticality and tropical optics.

Chapter 2

Self-organized criticality

SOC started with...

Self-organized criticality: An explanation of the 1/f noise

P Bak, <u>C Tang</u>, <u>K Wiesenfeld</u>

Physical review letters, 1987 - APS

Abstract

We show that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized critical point. Flicker noise, or 1/f noise, can be identified with the dynamics of the critical state. This picture also yields insight into the origin of fractal objects.

American Physical Society

☆ Запазване 99 Позоваване С позовавания в 10669 Сродни статии Всички 31 версии Web of Science: 5973

Bak-Tang-Wiesenfeld model: topplings and relaxation

Consider a relatively large region of the square lattice $\Gamma \subset \mathbb{Z}^2$ (for example, take $\Gamma = \{1, 2, \dots, 50\}^2$). A state of the system is a function ϕ from Γ to non-negative integers. The state ϕ is called stable if all of its values are in $\{0, 1, 2, 3\}$.

Bak-Tang-Wiesenfeld model: topplings and relaxation

Consider a relatively large region of the square lattice $\Gamma \subset \mathbb{Z}^2$ (for example, take $\Gamma = \{1, 2, \dots, 50\}^2$). A state of the system is a function ϕ from Γ to non-negative integers. The state ϕ is called stable if all of its values are in $\{0, 1, 2, 3\}$. If it is not stable, i.e. $\phi(v) \geq 4$ for some $v \in \Gamma$, one performs a **toppling** at v, i.e. removes 4 at v and increases by 1 the value at the neighbors of v (one above, one below, one to the left and one to the right).

Bak-Tang-Wiesenfeld model: topplings and relaxation

Consider a relatively large region of the square lattice $\Gamma \subset \mathbb{Z}^2$ (for example, take $\Gamma = \{1,2,\ldots,50\}^2$). A state of the system is a function ϕ from Γ to non-negative integers. The state ϕ is called stable if all of its values are in $\{0,1,2,3\}$. If it is not stable, i.e. $\phi(v) \geq 4$ for some $v \in \Gamma$, one performs a **toppling** at v, i.e. removes 4 at v and increases by 1 the value at the neighbors of v (one above, one below, one to the left and one to the right). Performing topplings untill the state is stable is called a **relaxation**. Its result ϕ° doesn't depend on the order of topplings.

Start with some stable state ϕ_1 , for example $\phi \equiv 0$.

Start with some stable state ϕ_1 , for example $\phi \equiv 0$. Take uniformly at random a point v_1 in Γ and consider a new state $\phi_2 = (\phi_1 + \delta_{v_1})^\circ$, where δ_{v_1} denotes a function on Γ taking 1 at v, and 0 otherwise.

Start with some stable state ϕ_1 , for example $\phi \equiv 0$. Take uniformly at random a point v_1 in Γ and consider a new state $\phi_2 = (\phi_1 + \delta_{v_1})^\circ$, where δ_{v_1} denotes a function on Γ taking 1 at v, and 0 otherwise. Take again a random point v_2 in Γ . Construct another state $\phi_3 = (\phi_2 + \delta_{v_2})^\circ$.

Start with some stable state ϕ_1 , for example $\phi \equiv 0$. Take uniformly at random a point v_1 in Γ and consider a new state $\phi_2 = (\phi_1 + \delta_{v_1})^\circ$, where δ_{v_1} denotes a function on Γ taking 1 at v, and 0 otherwise. Take again a random point v_2 in Γ . Construct another state $\phi_3 = (\phi_2 + \delta_{v_2})^\circ$. Repeat...

Performing measurements at each step, one observes power laws, similar to the behavior near a phase-transition but without the fine-tuning. This suggests a possibility for scaling limits.

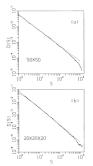


FIG. 2. Distribution of cluster sizes at criticality in two and three dimensions, computed dynamically as described in the text. (a) 50×50 array, averaged over 200 samples; (b) 20×20×20 array, averaged over 200 samples. The data have been coarse grained.

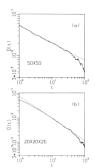


FIG. 3. Distribution of lifetimes corresponding to Fig. 2. (a) For the 50×50 array, the slope $\alpha\approx0.42$, yielding a "1/f" noise spectrum $f^{-1.58}$, (b) $20\times20\times20$ array, $\alpha\approx0.90$, yielding an $f^{-1.1}$ spectrum

In the BTW process, some states stop appearing after a sufficient number of iterations – these are called **transient** states. Other states keep appearing with equal non-zero probability – these are called **recurrent** states.

In the BTW process, some states stop appearing after a sufficient number of iterations – these are called **transient** states. Other states keep appearing with equal non-zero probability – these are called **recurrent** states.

As was shown by Deepak Dhar in 1990, the set of recurrent states $G(\Gamma)$ forms an Abelian group. The operation is $(\phi,\psi)\mapsto (\phi+\psi)^\circ$. He also suggested a new name for the model "Abelian Sandpile".

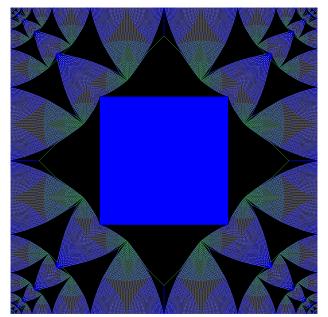
In the BTW process, some states stop appearing after a sufficient number of iterations – these are called **transient** states. Other states keep appearing with equal non-zero probability – these are called **recurrent** states.

As was shown by Deepak Dhar in 1990, the set of recurrent states $G(\Gamma)$ forms an Abelian group. The operation is $(\phi,\psi)\mapsto (\phi+\psi)^\circ$. He also suggested a new name for the model "Abelian Sandpile". The number of elements in $G(\Gamma)$ is equal to the number of spanning trees on Γ (a consequence of Kirchhoff's theorem) – which is astronomically large even for moderately big Γ . (For example, for a 30×30 square it is approximately $3.3414\cdot 10^{462}$)

In the BTW process, some states stop appearing after a sufficient number of iterations – these are called **transient** states. Other states keep appearing with equal non-zero probability – these are called **recurrent** states.

As was shown by Deepak Dhar in 1990, the set of recurrent states $G(\Gamma)$ forms an Abelian group. The operation is $(\phi,\psi)\mapsto (\phi+\psi)^\circ$. He also suggested a new name for the model "Abelian Sandpile". The number of elements in $G(\Gamma)$ is equal to the number of spanning trees on Γ (a consequence of Kirchhoff's theorem) – which is astronomically large even for moderately big Γ . (For example, for a 30×30 square it is approximately $3.3414\cdot 10^{462}$) The neutral element of $G(\Gamma)$ is very beatiful and mysterious...

Identity element on 1000x1000 square



Strings in sandpiles – where our journey begins!

Conservation laws for strings in the Abelian Sandpile Model

Sergio Caracciolo, ¹ Guglielmo Paoletti, ² and Andrea Sportiello

¹ Università degli Studi di Milano – Dipartimento di Fisica and INFN, via G. Celoria 16, 20133 Milano, Italy ² Università di Pisa – Dipartimento di Fisica and INFN, largo B. Pontecorvo 3, 56127 Pisa, Italy (Dated: November 7, 2018)

The Abelian Sandpile generates complex and beautiful patterns and seems to display allometry. On the plane, beyond patches, patterns periodic in both dimensions, we remark the presence of structures periodic in one dimension, that we call strings. We classify completely their constituents in terms of their principal periodic vector \boldsymbol{k} , that we call momentum. We derive a simple relation between the momentum of a string and its density of particles, E, which is reminiscent of a dispersion relation, $E=|\boldsymbol{k}|^2$. Strings interact: they can merge and split and within these processes momentum is conserved, $\sum_{\alpha}k_{\alpha}=0$. We reveal the role of the modular group SL(2, \mathbb{Z}) behind these laws.

PACS numbers: 05.65.+b, 45.70.Qj, 89.75.Fb Keywords: Sandpile Models, Lattice Automata, Pattern formation, Modular Invariance

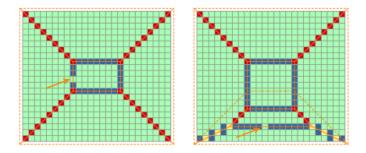


Figure 2. On the left, the configuration obtained after relaxation from $z_{\rm max}$ plus an extra grain of sand exactly at the vertex where a defect appears. On the right, the result after removing the defect and the addition of one more grain.

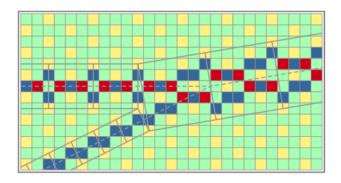


Figure 3. A scattering involving pseudo-propagators with momenta (4,0), (2,1) and (6,1), on the background pattern of Fig. 1 (also symbol code is as in Fig. 1).

Strings/solitons exist and are unique!

Sandpile solitons via smoothing of superharmonic functions

N Kalinin, M Shkolnikov

Communications in Mathematical Physics, 2020 • Springer

Abstract

Let $F:\mathbb{Z}^2 \to \mathbb{Z}$ be the pointwise minimum of several linear functions. The theory of *smoothing* allows us to prove that under certain conditions there exists the pointwise minimal function among all integer-valued superharmonic functions coinciding with F "at infinity". We develop such a theory to prove existence of so-called *solitons* (or strings) in a sandpile model, studied by S. Caracciolo, G. Paoletti, and A. Sportiello. Thus we made a step towards understanding the phenomena of the identity in the sandpile group for planar domains where solitons appear according to experiments. We prove that sandpile states, defined using our smoothing procedure, move changeless when we apply the wave operator (that is why we call them solitons), and can interact, forming triads and nodes.

Tropical scaling limit for sandpiles

TROPICAL CURVES IN SANDPILE MODELS

NIKITA KALININ, MIKHAIL SHKOLNIKOV

ABSTRACT. A sandpile is a cellular automaton on a graph that evolves by the following toppling rule: if the number of grains at a vertex is at least its valency, then this vertex sends one grain to each of its neighbors.

In the study of pattern formation in sandpiles on large subgraphs of the standard square lattice, S. Caracciolo, G. Paoletti, and A. Sportiello experimentally observed that the result of the relaxation of a small perturbation of the maximal stable state contains a clear visible thin balanced graph formed by its deviation (less than maximum) set. Such graphs are known as tropical curves.

During the early stage of our research, we have noticed that these tropical curves are approximately scale-invariant, that is the deviation set mimics an extremal tropical curve depending on the domain on the plane and the positions of the perturbation points, but not on the mesh of the lattice.

In this paper, we rigorously formulate these two facts in the form of a scaling limit theorem and prove it. We rely on the theory of tropical analytic series, which is used to describe the global features of the sandpile dynamic, and on the theory of smoothings of discrete superharmonic functions, which handles local questions.

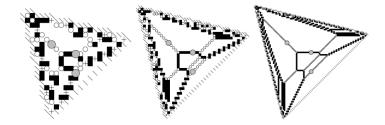


FIGURE 1. A thin balanced graph appears as a deviation set of a sandpile. See Example 2.11 for details. White corresponds to three grains, black to one, circles to two, crosses to zero, and skew lines are the boundary vertices (sinks). Grey rounds represent the positions of added grains.

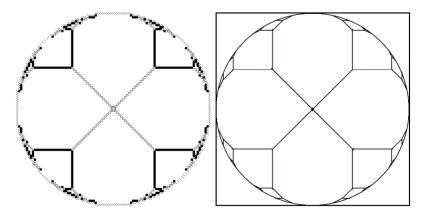
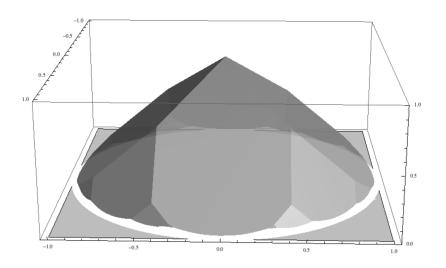


FIGURE 9. Left: the result of adding a single grain at the center of a disk to the maximal stable state and relaxing. Right: tropical caustic of the disk.

Tropical distance series of a disk

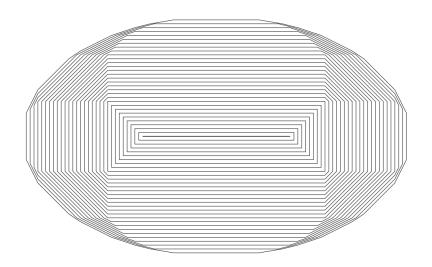


$$\mathcal{F}_{\textit{Disk}}\big(x,y\big) = \inf\nolimits_{(p,q) \in \mathbb{Z}^2 \backslash \{(0,0)\}} \big(\sqrt{p^2 + q^2} + px + qy\big)$$

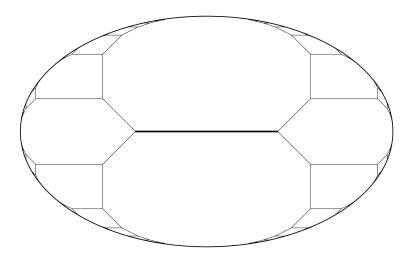
Chapter 3

Tropical optics

Tropical wave front of an ellipse



Tropical caustic of an ellipse



The weight of the horizontal edge in the middle is 2, all other weights are 1. All vertices are trivalent – i.e. the caustic is an infinite binary tree inscribed in the ellipse.

Let $\Omega \subset \mathbb{R}^n$ be a convex domain. For $\lambda \in \mathbb{R}^n$ define $\sigma_{\lambda}(\Omega)$ as $-\inf_{p \in \Omega}(\lambda, p)$. The tropical distance series of Ω is given by

$$\mathcal{F}_{\Omega}(p) = \inf_{\lambda \in \mathbb{Z}^n \setminus \{0\}} (\sigma_{\lambda}(\Omega) + (\lambda, p)).$$

Let $\Omega \subset \mathbb{R}^n$ be a convex domain. For $\lambda \in \mathbb{R}^n$ define $\sigma_{\lambda}(\Omega)$ as $-\inf_{p \in \Omega}(\lambda, p)$. The tropical distance series of Ω is given by

$$\mathcal{F}_{\Omega}(p) = \inf_{\lambda \in \mathbb{Z}^n \setminus \{0\}} (\sigma_{\lambda}(\Omega) + (\lambda, p)).$$

The tropical caustic \mathcal{K}_{Ω} of Ω is a tropical analytic curve defined by \mathcal{F}_{Ω} , i.e. its corner locus, the set of points where the series is not smooth. It is the set of *special* points of the tropical wave front.

Let $\Omega \subset \mathbb{R}^n$ be a convex domain. For $\lambda \in \mathbb{R}^n$ define $\sigma_{\lambda}(\Omega)$ as $-\inf_{p \in \Omega}(\lambda, p)$. The tropical distance series of Ω is given by

$$\mathcal{F}_{\Omega}(p) = \inf_{\lambda \in \mathbb{Z}^n \setminus \{0\}} (\sigma_{\lambda}(\Omega) + (\lambda, p)).$$

The tropical caustic \mathcal{K}_{Ω} of Ω is a tropical analytic curve defined by \mathcal{F}_{Ω} , i.e. its corner locus, the set of points where the series is not smooth. It is the set of *special* points of the tropical wave front. The tropical wave front $\Omega(t)$ at time t>0 of Ω is $\mathcal{F}_{\Omega}^{-1}[t,+\infty)$.

Let $\Omega \subset \mathbb{R}^n$ be a convex domain. For $\lambda \in \mathbb{R}^n$ define $\sigma_{\lambda}(\Omega)$ as $-\inf_{p \in \Omega}(\lambda, p)$. The tropical distance series of Ω is given by

$$\mathcal{F}_{\Omega}(p) = \inf_{\lambda \in \mathbb{Z}^n \setminus \{0\}} (\sigma_{\lambda}(\Omega) + (\lambda, p)).$$

The tropical caustic \mathcal{K}_{Ω} of Ω is a tropical analytic curve defined by \mathcal{F}_{Ω} , i.e. its corner locus, the set of points where the series is not smooth. It is the set of *special* points of the tropical wave front. The tropical wave front $\Omega(t)$ at time t>0 of Ω is $\mathcal{F}_{\Omega}^{-1}[t,+\infty)$.

Tropical Huygens' principle: $(\Omega(t))(s) = \Omega(t+s)$.

A place to read about tropical wave fronts and caustics

Proceedings of 28^{th} Gökova Geometry-Topology Conference pp. 11-48

Wave fronts and caustics in the tropical plane

Grigory Mikhalkin, Mikhail Shkolnikov

ABSTRACT. The paper studies intrinsic geometry in the tropical plane. Tropical structure in the real affine n-space is determined by the integer tangent vectors. Tropical isomorphisms are affine transformations preserving the integer lattice of the tangent space, they may be identified with the group $\mathrm{GL_n}(\mathbb{Z})$ extended by arbitrary real translations. This geometric structure allows one to define wave front propagation for boundaries of convex domains. Interestingly enough, an arbitrary compact convex domain in the tropical plane evolves to a finite polygon after an arbitrarily small time. The caustic of a wave front evolution is a tropical analytic curve. The paper studies geometry of the tropical wave fronts and caustics. In particular, we relate the caustic of a tropical angle to the continued fraction expression of its slope, and treat it as a tropical trigonometry notion.

C. Leung's suggestion after N. Kalinin's talk: average the tropical distance series over the space of tropical structures of a fixed covolume.

C. Leung's suggestion after N. Kalinin's talk: average the tropical distance series over the space of tropical structures of a fixed covolume. A tropical structure on \mathbb{R}^n is a rank n lattice $L \subset \mathbb{R}^n$, its covolume is the volume of the quotient torus \mathbb{R}^n/L .

C. Leung's suggestion after N. Kalinin's talk: average the tropical distance series over the space of tropical structures of a fixed covolume. A tropical structure on \mathbb{R}^n is a rank n lattice $L \subset \mathbb{R}^n$, its covolume is the volume of the quotient torus \mathbb{R}^n/L . A technical realization: for a matrix $A \in Sl_n(\mathbb{R})$ and a convex domain $\Omega \subset \mathbb{R}^n$ define an A-transformed tropical series \mathcal{F}_{Ω}^A as $\mathcal{F}_{\Omega}^A(p) = \mathcal{F}_{A(\Omega)}(A(p))$.

C. Leung's suggestion after N. Kalinin's talk: average the tropical distance series over the space of tropical structures of a fixed covolume. A tropical structure on \mathbb{R}^n is a rank n lattice $L \subset \mathbb{R}^n$, its covolume is the volume of the quotient torus \mathbb{R}^n/L . A technical realization: for a matrix $A \in Sl_n(\mathbb{R})$ and a convex domain $\Omega \subset \mathbb{R}^n$ define an A-transformed tropical series \mathcal{F}_{Ω}^A as $\mathcal{F}_{\Omega}^A(p) = \mathcal{F}_{A(\Omega)}(A(p))$. Note that if $B \in Sl_n(\mathbb{Z})$, then $\mathcal{F}_{\Omega}^{BA} = \mathcal{F}_{\Omega}^A$.

C. Leung's suggestion after N. Kalinin's talk: average the tropical distance series over the space of tropical structures of a fixed covolume. A tropical structure on \mathbb{R}^n is a rank n lattice $L \subset \mathbb{R}^n$, its covolume is the volume of the quotient torus \mathbb{R}^n/L . A technical realization: for a matrix $A \in Sl_n(\mathbb{R})$ and a convex domain $\Omega \subset \mathbb{R}^n$ define an A-transformed tropical series \mathcal{F}_{Ω}^A as $\mathcal{F}_{\Omega}^A(p) = \mathcal{F}_{A(\Omega)}(A(p))$. Note that if $B \in Sl_n(\mathbb{Z})$, then $\mathcal{F}_{\Omega}^{BA} = \mathcal{F}_{\Omega}^A$. Define the affine distance function of Ω as

$$\mathcal{F}^{aff}_{\Omega}(p) = (Vol(Sl_n(\mathbb{Z}) \setminus Sl_n(\mathbb{R})))^{-1} \int_{[A] \in Sl_n(\mathbb{Z}) \setminus Sl_n(\mathbb{R})} \mathcal{F}^A_{\Omega}(p) d[A].$$

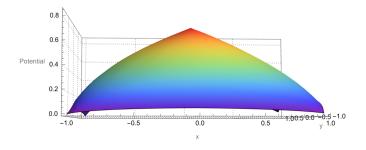
C. Leung's suggestion after N. Kalinin's talk: average the tropical distance series over the space of tropical structures of a fixed covolume. A tropical structure on \mathbb{R}^n is a rank n lattice $L \subset \mathbb{R}^n$, its covolume is the volume of the quotient torus \mathbb{R}^n/L . A technical realization: for a matrix $A \in Sl_n(\mathbb{R})$ and a convex domain $\Omega \subset \mathbb{R}^n$ define an A-transformed tropical series \mathcal{F}_{Ω}^A as $\mathcal{F}_{\Omega}^A(p) = \mathcal{F}_{A(\Omega)}(A(p))$. Note that if $B \in Sl_n(\mathbb{Z})$, then $\mathcal{F}_{\Omega}^{BA} = \mathcal{F}_{\Omega}^A$. Define the affine distance function of Ω as

$$\mathcal{F}^{\mathsf{aff}}_{\Omega}(\rho) = (\mathsf{Vol}(\mathsf{SI}_n(\mathbb{Z}) \backslash \mathsf{SI}_n(\mathbb{R})))^{-1} \int_{[A] \in \mathsf{SI}_n(\mathbb{Z}) \backslash \mathsf{SI}_n(\mathbb{R})} \mathcal{F}^A_{\Omega}(\rho) d[A].$$

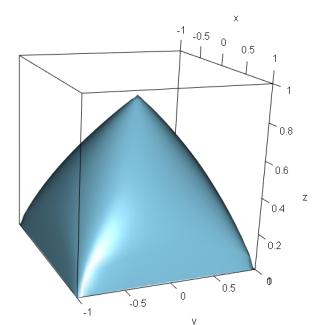
This new function is automatically affine invariant:

$$\mathcal{F}^{aff}_{\Omega}(p) = \mathcal{F}^{aff}_{A(\Omega)}(A(p))$$
 for any $A \in SI_n(\mathbb{R})$.

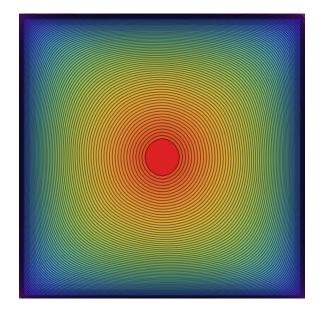
3d plot of affine distance for a square (E. Lupercio)



3d plot of affine distance for a square



Contour plot of affine distance for a square (E. Lupercio)



Conjecture 1a:

The maximal value of $\mathcal{F}^{\mathit{aff}}_{\Omega}$ is attained at a single point.

Conjecture 1b:

The maximal value of $\mathcal{F}_{\Omega}^{aff}$ is attained at the center of mass of Ω .

Conjecture 2:

Assume that the maximal value M_{Ω} of $\mathcal{F}_{\Omega}^{\it aff}$ is attained at the origin. Then the following limit exists and is equal to an ellipsoid:

$$\lim_{t \to_{-} M_{\Omega}} (\textit{Vol}((\mathcal{F}^{\textit{aff}}_{\Omega})^{-1}[t, M_{\Omega}]))^{-(\textit{dim}\Omega)^{-1}} ((\mathcal{F}^{\textit{aff}}_{\Omega})^{-1}(t)).$$

Recall that a polar set of a domain $\Omega \subset R^n$ is $\Omega^{\bullet} = \{ y \in \mathbb{R}^n : (y, x) \leq 1, \forall x \in \Omega \}.$ The Mahler volume of Ω is $Vol(\Omega)Vol(\Omega^{\bullet})$.

Recall that a polar set of a domain $\Omega \subset R^n$ is $\Omega^{\bullet} = \{ y \in \mathbb{R}^n : (y, x) \leq 1, \forall x \in \Omega \}.$ The Mahler volume of Ω is $Vol(\Omega)Vol(\Omega^{\bullet})$.

Conjecture 3:

The Mahler volume of $(\mathcal{F}^{aff}_{\Omega})^{-1}[t,M_{\Omega}]$ is increasing with t.

Thank you for your attention!