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Chapter 1

Tropical geometry



Origins of tropical geometry

▶ Complex algebraic geometry
(1971: G. Bergman – “tropicalization of constant family”)

▶ Real algebraic geometry
(1981: O. Viro’s patchworking for Hilbert’s 16th problem)

▶ Valuation theory
(1984: R. Bieri, J.R.J. Groves – first appearance of
non-Archimedean “tropicalization”)

▶ Optimization problems and (quantum) mechanics
(1980’s, V. Maslov and G. Litvinov, in particular
“dequantization” and “idempotent mathematics”)

▶ Computer science and cellular automata
(works of I. Simon, term“tropical semiring” appears in 1988)

▶ High energy physics
(first pictures of tropical curves emerge in 1997)
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All these, mathematically, are examples of “dual subdivisions” of
“Newton polygons” (appearing already in Viro’s work)
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In mathematical terms, this is an “amoeba of a complex line”.
Amoebas were introduced in 1994 by Gelfand, Kapranov and
Zelevinsky. The limit is a “tropicalization” (early 2000’s).
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When did tropical geometry emerge in mathematics?

▶ M. Kontsevich, Ya. Soibelman, Homological mirror symmetry
and torus fibrations, Preprint 2000
(“large complex structure limit”)

▶ M. Kapranov, Amoebas over non-Archimedian fields, Preprint
2000

(deleted, impossible to find in the internet)

▶ G. Mikhalkin, Amoebas of algebraic varieties, Preprint 2001
(tropical pictures, but no use of word “tropical”)

▶ B. Sturmfels, Solving systems of polynomial equations. No.
97. American Mathematical Soc., 2002.
(A very influential book on computational methods, the
appearance of term “tropical algebraic geometry”)
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My favorite introduction



Tropicalization=Dequantization
Let C denote the field of complex numbers and C∗ = C\{0}. Let
Log : (C∗)2 → R2 be given by Log(x , y) = (log |x |, log |y |). Let
L = {(x , y) ∈ (C∗)2|x + y = 1}, then Log(L) ⊂ R2 is its amoeba.



Tropicalization of planar curves

More generally, consider a family of complex curves Ct ⊂ (C∗)2

given by ft = 0, where ft is a Laurent polynomial in two variables
with coefficients analytically depending on t. Its tropicalization is
the Hausdorff limit

Trop(Ct) = lim
t→∞

Logt(Ct) ⊂ R2.

Such images are “planar tropical curves”, i.e. graphs with straight
edges of rational slope enhanced with weights satisfying the
balancing condition at every vertex.



Balancing condition

For every vertex, the weighted sum of outward primitive (with
integer coprime coordinates) directions of adjacent edges is zero.



How to recover weights?

Let the defining Laurent polynomial ft be written as a finite sum∑
am,n(t)x

myn, where am,n(t) = cm,nt
βm,n + o(tβm,n) as t → +∞.

Denote by Trop(ft) : R2 → R a function given by

(X ,Y ) 7→ max(βm,n +mX + nY ).

Then, the set of points on R2 where Trop(ft) breaks (i.e. is not
linear) is precisely Trop(Ct). Every edge E of Trop(Ct) separates to
regions of linearity of Trop(ft) on which the gradients are integer
vectors (m1, n1) and (m2, n2). Then, the weight of E is the
greatest common divisor of m1 −m2 and n1 − n2.

Trop(ft) is called the tropical polynomial defining Trop(Ct).



How to recover weights?

Let the defining Laurent polynomial ft be written as a finite sum∑
am,n(t)x

myn, where am,n(t) = cm,nt
βm,n + o(tβm,n) as t → +∞.

Denote by Trop(ft) : R2 → R a function given by

(X ,Y ) 7→ max(βm,n +mX + nY ).

Then, the set of points on R2 where Trop(ft) breaks (i.e. is not
linear) is precisely Trop(Ct). Every edge E of Trop(Ct) separates to
regions of linearity of Trop(ft) on which the gradients are integer
vectors (m1, n1) and (m2, n2). Then, the weight of E is the
greatest common divisor of m1 −m2 and n1 − n2.
Trop(ft) is called the tropical polynomial defining Trop(Ct).





Min or Max?

The expression max(βm,n +mX + nY ) = “(
∑
βm,nX

mY n)” is
indeed a two-variable tropical polynomial in X and Y : in tropical
arithmetic one replaces the addition with taking the maximum and
multiplication with the usual addition. If one takes the limit t → 0,
instead of t → ∞, then, instead of the maximum, the minimum
serves as an operation of tropical addition.

The Min-convention will be adapted later on since it is
slightly more convenient while working with self-organized
criticality and tropical optics.
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Chapter 2

Self-organized criticality



SOC started with...



Bak-Tang-Wiesenfeld model: topplings and relaxation

Consider a relatively large region of the square lattice Γ ⊂ Z2 (for
example, take Γ = {1, 2, . . . , 50}2). A state of the system is a
function ϕ from Γ to non-negative integers. The state ϕ is called
stable if all of its values are in {0, 1, 2, 3}.

If it is not stable, i.e.
ϕ(v) ≥ 4 for some v ∈ Γ, one performs a toppling at v , i.e.
removes 4 at v and increases by 1 the value at the neighbors of v
(one above, one below, one to the left and one to the right).
Performing topplings untill the state is stable is called a
relaxation. Its result ϕ◦ doesn’t depend on the order of topplings.
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Bak-Tang-Wiesenfeld model: the process

Start with some stable state ϕ1, for example ϕ ≡ 0.

Take uniformly
at random a point v1 in Γ and consider a new state
ϕ2 = (ϕ1 + δv1)

◦, where δv1 denotes a function on Γ taking 1 at v ,
and 0 otherwise. Take again a random point v2 in Γ. Construct
another state ϕ3 = (ϕ2 + δv2)

◦. Repeat...
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Observation 1.

Performing measurements at each step, one observes power laws,
similar to the behavior near a phase-transition but without the
fine-tuning. This suggests a possibility for scaling limits.



Observation 2.

In the BTW process, some states stop appearing after a sufficient
number of iterations – these are called transient states. Other
states keep appearing with equal non-zero probability – these are
called recurrent states.

As was shown by Deepak Dhar in 1990, the set of recurrent states
G (Γ) forms an Abelian group. The operation is (ϕ, ψ) 7→ (ϕ+ ψ)◦.
He also suggested a new name for the model “Abelian Sandpile”.
The number of elements in G (Γ) is equal to the number of
spanning trees on Γ (a consequence of Kirchhoff’s theorem) –
which is astronomically large even for moderately big Γ. (For
example, for a 30× 30 square it is approximately 3.3414 · 10462)
The neutral element of G (Γ) is very beatiful and mysterious...
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Identity element on 1000x1000 square



Strings in sandpiles – where our journey begins!







Strings/solitons exist and are unique!



Tropical scaling limit for sandpiles







Tropical distance series of a disk

FDisk(x , y) = inf(p,q)∈Z2\{(0,0)}(
√

p2 + q2 + px + qy)



Chapter 3

Tropical optics



Tropical wave front of an ellipse



Tropical caustic of an ellipse

The weight of the horizontal edge in the middle is 2, all other
weights are 1. All vertices are trivalent – i.e. the caustic is an
infinite binary tree inscribed in the ellipse.



Formal definitions

Let Ω ⊂ Rn be a convex domain. For λ ∈ Rn define σλ(Ω) as
− infp∈Ω(λ, p). The tropical distance series of Ω is given by

FΩ(p) = inf
λ∈Zn\{0}

(σλ(Ω) + (λ, p)).

The tropical caustic KΩ of Ω is a tropical analytic curve defined by
FΩ, i.e. its corner locus, the set of points where the series is not
smooth. It is the set of special points of the tropical wave front.
The tropical wave front Ω(t) at time t > 0 of Ω is F−1

Ω [t,+∞).

Tropical Huygens’ principle: (Ω(t))(s) = Ω(t + s).
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A place to read about tropical wave fronts and caustics



Affine distance function

C. Leung’s suggestion after N. Kalinin’s talk: average the tropical
distance series over the space of tropical structures of a fixed
covolume.

A tropical structure on Rn is a rank n lattice L ⊂ Rn,
its covolume is the volume of the quotient torus Rn/L.
A technical realization: for a matrix A ∈ Sln(R) and a convex
domain Ω ⊂ Rn define an A-transformed tropical series FA

Ω as
FA
Ω(p) = FA(Ω)(A(p)). Note that if B ∈ Sln(Z), then FBA

Ω = FA
Ω .

Define the affine distance function of Ω as

Faff
Ω (p) = (Vol(Sln(Z)\Sln(R)))−1

∫
[A]∈Sln(Z)\Sln(R)

FA
Ω(p)d [A].

This new function is automatically affine invariant:
Faff
Ω (p) = Faff

A(Ω)(A(p)) for any A ∈ Sln(R).
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3d plot of affine distance for a square (E. Lupercio)



3d plot of affine distance for a square



Contour plot of affine distance for a square (E. Lupercio)



Some conjectures for convex domains

Conjecture 1a:
The maximal value of Faff

Ω is attained at a single point.

Conjecture 1b:
The maximal value of Faff

Ω is attained at the center of mass of Ω.



Some conjectures for convex domains

Conjecture 2:
Assume that the maximal value MΩ of Faff

Ω is attained at the
origin. Then the following limit exists and is equal to an ellipsoid:

lim
t→−MΩ

(Vol((Faff
Ω )−1[t,MΩ]))

−(dimΩ)−1
((Faff

Ω )−1(t)).



Some conjectures for convex domains

Recall that a polar set of a domain Ω ⊂ Rn is
Ω• = {y ∈ Rn : (y , x) ≤ 1, ∀x ∈ Ω}.

The Mahler volume of Ω is Vol(Ω)Vol(Ω•).

Conjecture 3:
The Mahler volume of (Faff

Ω )−1[t,MΩ] is increasing with t.
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Thank you for your attention!


