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Chapter 1
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Complex algebraic geometry

(1971: G. Bergman — “tropicalization of constant family")
Real algebraic geometry

(1981: O. Viro's patchworking for Hilbert's 16th problem)
Valuation theory

(1984: R. Bieri, J.R.J. Groves — first appearance of
non-Archimedean “tropicalization”)

Optimization problems and (quantum) mechanics

(1980's, V. Maslov and G. Litvinov, in particular
“dequantization” and “idempotent mathematics”)
Computer science and cellular automata

(works of I. Simon, term “tropical semiring” appears in 1988)
High energy physics

(first pictures of tropical curves emerge in 1997)



arXiv:hep-th/9611230v3 11 Dec 1996

Type IIB Superstrings, BPS Monopoles, And
Three-Dimensional Gauge Dynamics

Amihay Hanany and Edward Witten *

hanany; witten@ias.edu
School of Natural Sciences
Institute for Advanced Study
Olden Lane, Princeton. NJ 08540. USA

Abstract

We propose an explanation via string theory of the correspondence between
the Coulomb branch of certain three-dimensional supersymmetric gauge theo-
ries and certain moduli spaces of magnetic monopoles. The same construction
also gives an explanation, via SL(2, Z) duality of Type IIB superstrings, of
the recently discovered “mirror symmetry” in three dimensions. New phase
transitions in three dimensions as well as new infrared fixed points and even
new coupling constants not present in the known Lagrangians are predicted
from the string theory construction. An important role in the construction is
played by a novel aspect of brane dynamics in which a third brane is created

when two branes cross.
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Figure 1: Here and in subsequent figures, vertical solid lines represent NS fivebranes in
the 012345 directions, and horizontal lines represent (0126 threebranes. In the example
depicted here, the threebranes come from left or right, and a massless hypermultiplet

appears whenever a “left” and “right” threebrane meet.
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Branes, Superpotentials and Superconformal Fixed Points

Ofer Aharony! and Amihay Hanany?

!Department of Physics and Astronomy,
Rutgers University
Piscataway, NJ 08855-0849, USA
oferah@physics.rutgers.edu

*School of Natural Sciences
Institute for Advanced Study
Princeton, N.J 08540, USA
hanany@ias.edu

We analyze various brane configurations corresponding to field theories in three, four
and five dimensions. We find brane configurations which correspond to three dimensional
N = 2 and four dimensional N = 1 supersymmetric QCD theories with quartic super-
potentials, in which what appear to be “hidden parameters” play an important role. We
discuss the construction of five dimensional N = 1 supersymmetric gange theories and
superconformal fixed points using branes, which leads to new five dimensional ¥ = 1
superconformal field theories. The same five dimensional theories are also nsed, in a sur-
prising way, to describe new superconformal fixed points of three dimensional N = 2

supersymmetric theories, which have both “electric” and “magnetic” Coulomb branches.
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Figure 1: Three dimensional N = 2 supersymmetric gauge theories with
gauge group U(N,.) and Ny quarks. There are N, D3-branes (horizontal
lines), which are stretched in between two NS 5-branes (vertical lines). The
figure is depicted in the 36 plane as indicated by the arrows in the npper right
of the figure. The left 5-brane stretches along the 012345 directions and is
denoted NS and the right 5-brane stretches along the 012389 directions and is
denoted NS'. The “X"s denote D5-branes, and the “4"s denote D' 5-branes,
both of which give rise to quarks.
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Figure 4: A Di-brane which ends on a NS 5-brane. The left side describes
the naive configuration, and the right side the correct configuration, which
implements conservation of charge at the vertex.



(a) (b) (c)

Figure 5: Pure SU(2) gauge theory in five dimensions. Horizontal lines
represent Di-branes, vertical lines represent NS 5H-branes, and diagonal lines
at an angle # such that tan(#) = p/q represent (p,q) 5-branes. Figure (a)
shows a generic point on the Coulomb branch, figure (b) shows a point near
the origin of moduli space, and figure (¢} corresponds to the strong coupling
fixed point.



Figure 8: SU(4) gauge theory with two (massive) flavors in five dimensions.
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‘Webs of (p,q) 5-branes, Five Dimensional Field Theories and

Grid Diagrams

Ofer Aharony Amihay Hanany Barak Kol

Department of Physics and Astronomy  School of Natural Sciences  Department of Physics

Rutgers University Institute for Advanced Study Stanford University
Piscataway, NJ 08855-0849, USA Princeton, NJ 08540, USA  Stanford, CA 94305, USA
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Abstract

‘We continue to siudy 5d N = 1 supersymmetric field theories and their com-
pactifications on a circle through brane configurations. We develop a model,
which we call (p,q) Webs, which enables simple geometrical computations
1o reproduce the known results, and facilitates further study. The physical
concepts of field theory are transparent in this picture, offering an interpreta-
tion for global symmetries, local symmetries, the effective (running) coupling,
the Coulomb and Higgs branches, the monopole tensions, and the mass of
BPS particles. A rule for the dimension of the Coulomb branch is found by
introducing Grid Diagrams. Some known classifications of field theories are
reproduced. In addition to the study of the vacuum manifold we develop
methods to determine the BPS spectrum. Some states, such as quarks, corre-
spond to instantons inside the 5-brane which we call strips. In general, these
may not be identified with (p,g) strings. We describe how a strip ean bend
out of a 5-brane, becoming a string. A general BPS state corresponds to a
Web of strings and strips. For special values of the string coupling a few strips

can combine and leave the 5-brane as a string.




Instanton

FIG. 2. The basic BPS states in the pure SU(2) gauge theory — the W boson and the instanton.
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FIG. 4. A “hidden” face in the Ey Web, realizing the 1d Coulomb branch.



corresponding points are marked 1,2,3,...

(o]
FIG. 5. The Grid diagram for the simple vertex of figure la. Vertices and corresponding
polygons are marked ab.c...., edges and corresponding lines are marked A B.C..... and faces and
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FIG. 6. The Grid diagram for the pure SU(2) gauge theory of figure 1h.
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FIG. 7. Grid diagrams for (a) the SU(3). Ny = 2 SQCD theory (figure 1c), and (b) the Ep
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FIG. 7. Grid diagrams for (a) the SU(3), Ny = 2 SQCD theory (figure 1c}, and (b) the Ey

All these, mathematically, are examples of “dual subdivisions” of
“Newton polygons” (appearing already in Viro's work)



FIG. 8. A projection of the smooth curve for the simple vertex (figure la).

As we take the 5d limit L, — oo, the curve approaches the Web up to small corrections.
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FIG. 8. A projection of the smooth curve for the simple vertex (figure la).

As we take the 5d limit L, — oo, the curve approaches the Web up to small corrections.

In mathematical terms, this is an “amoeba of a complex line”.
Amoebas were introduced in 1994 by Gelfand, Kapranov and
Zelevinsky. The limit is a “tropicalization” (early 2000's).
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When did tropical geometry emerge in mathematics?

» M. Kontsevich, Ya. Soibelman, Homological mirror symmetry
and torus fibrations, Preprint 2000
(“large complex structure limit")

> M. Kapranov, Amoebas over non-Archimedian fields, Preprint
2000 (deleted, impossible to find in the internet)

» G. Mikhalkin, Amoebas of algebraic varieties, Preprint 2001
(tropical pictures, but no use of word “tropical”)

» B. Sturmfels, Solving systems of polynomial equations. No.
97. American Mathematical Soc., 2002.
(A very influential book on computational methods, the
appearance of term “tropical algebraic geometry”)



[math.AG] 31 Aug 2001

AMOEBAS OF ALGEBRAIC VARIETIES

GRIGORY MIKHALKIN

The notion of amoebas for algebraic varieties was introduced in 1994 by
Gelfand, Kapranov and Zelevinski [7]. Some traces of amoebas were ap-
pearing from time to time, even before the formal introduction, as auxiliary
tools in several problems (see e.g. [3]). After 1994 amoebas have been seen
and studied in several areas of mathematics, from algebraic geometry and
topology to complex analysis and combinatorics.

In particular, amoebas provided a very powerful tool for studying topology
of algebraic varieties. The purpose of this survey is to summarize our current
state of knowledge about amoebas and to outline their applications to real
algebraic geometry and adjacent areas. Most proofs are omitted here. An
expanded version of this survey is currently under preparation jointly with
Oleg Viro [19].



Remark 4 (Non-Archimedian amoebas and Enumerative Geometry). In a
seminar talk in Paris, November 2000, Kontsevich noted a possibility of
using non-Archimedian amoebas in enumerative geometry. As an example
consider the problem of counting the number ny of rational curves of degree
d in CP? which pass through 3d — 1 fixed generic points. A generic complex
polynomial defines a curve of genus (d—1)(d—2)/2. The polynomials defining
rational curves form a subset of codimension (d — 1)(d — 2)/2 and thus
the rational curves form a (3d — 1)-dimensional space (the space of curves
has dimension one less than the dimension of the space of corresponding
polynomials).

nl -

FIGURE 5. A smooth “non-Archimedian cubic amoeba” and
a rational “non-Archimedian cubic amoeba”.



My favorite introduction

For Proceedings of 21°" Gokova
Geometry-Topology Conference

Brief introduction to tropical geometry

Erwan Brugallé, Ilia Itenberg, Grigory Mikhalkin, and Kristin Shaw

ABSTRACT. The paper consists of lecture notes for a mini-course given by the authors
at the Gokova Geometry & Topology conference in May 2014. We start the exposi-
tion with tropical curves in the plane and their applications to problems in classical
enumerative geometry, and continue with a look at more general tropical varieties and
their homology theories.



Tropicalization=Dequantization
Let C denote the field of complex numbers and C* = C\{0}. Let
Log : (C*)? — R? be given by Log(x, y) = (log ||, log |y]|). Let
L ={(x,y) € (C*)?|x +y = 1}, then Log(£) C R? is its amoeba.

a) Log(£) b) Log,, (£)

c) Log,, (L) d) limy—.q Log, (L)

FiGuRE 6. Dequantization of a line (e < t; < {2)



Tropicalization of planar curves

More generally, consider a family of complex curves C; C (C*)?
given by f; = 0, where f; is a Laurent polynomial in two variables
with coefficients analytically depending on t. Its tropicalization is
the Hausdorff limit

Trop(C:) = t|l>moo Log,(C:) C R?.

Such images are “planar tropical curves”, i.e. graphs with straight
edges of rational slope enhanced with weights satisfying the
balancing condition at every vertex.



Balancing condition

a) b)

FIGURE 4. Balancing condition.

For every vertex, the weighted sum of outward primitive (with
integer coprime coordinates) directions of adjacent edges is zero.



How to recover weights?

Let the defining Laurent polynomial f; be written as a finite sum
S~ am.n(t)xMy", where am n(t) = cmat?mn + o(tPmn) as t — +oo.
Denote by Trop(f;) : R — R a function given by

(X, Y) = max(Bm,n + mX + nY).

Then, the set of points on R? where Trop(f;) breaks (i.e. is not
linear) is precisely Trop(C:). Every edge E of Trop(C;) separates to
regions of linearity of Trop(f;) on which the gradients are integer
vectors (my, n1) and (my, n2). Then, the weight of E is the
greatest common divisor of my — my and ny — no.
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Let the defining Laurent polynomial f; be written as a finite sum
S~ am.n(t)xMy", where am n(t) = cmat?mn + o(tPmn) as t — +oo.
Denote by Trop(f;) : R — R a function given by

(X, Y) = max(Bm,n + mX + nY).

Then, the set of points on R? where Trop(f;) breaks (i.e. is not
linear) is precisely Trop(C:). Every edge E of Trop(C;) separates to
regions of linearity of Trop(f;) on which the gradients are integer
vectors (my, n1) and (my, n2). Then, the weight of E is the
greatest common divisor of my — my and ny — no.

Trop(f;) is called the tropical polynomial defining Trop(C;).
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FIGURE 5. Some tropical cubics and their dual subdivisions



Min or Max?

The expression max(Bm.n+ mX +nY) = "3 BmaX"Y")" is
indeed a two-variable tropical polynomial in X and Y in tropical
arithmetic one replaces the addition with taking the maximum and
multiplication with the usual addition. If one takes the limit t — 0,
instead of t — o0, then, instead of the maximum, the minimum
serves as an operation of tropical addition.



Min or Max?

The expression max(Bm.n+ mX +nY) = "3 BmaX"Y")" is
indeed a two-variable tropical polynomial in X and Y in tropical
arithmetic one replaces the addition with taking the maximum and
multiplication with the usual addition. If one takes the limit t — 0,
instead of t — o0, then, instead of the maximum, the minimum
serves as an operation of tropical addition.

The Min-convention will be adapted later on since it is
slightly more convenient while working with self-organized
criticality and tropical optics.



Chapter 2

Self-organized criticality



SOC started with...

Self-organized criticality: An explanation of the 1/f noise
P Bak, C Tang, K Wiesenfeld

Physical review letters, 1987 - APS

Abstract

We show that dynamical systems with spatial degrees of freedom naturally evolve into a
self-organized critical point. Flicker noise, or 1/f noise, can be identified with the dynamics
of the critical state. This picture also yields insight into the origin of fractal objects.

American Physical Society

Y 3anassave 99 MososasaHe C nososasaHust B 10669 Cpoauu ctatuu  Bevuku 31 sepenn Web of Science: 5973



Bak-Tang-Wiesenfeld model: topplings and relaxation
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Consider a relatively large region of the square lattice I' C Z?2 (for
example, take I = {1,2,...,50}?). A state of the system is a
function ¢ from I to non-negative integers. The state ¢ is called
stable if all of its values are in {0,1,2,3}. If it is not stable, i.e.
¢(v) > 4 for some v € I, one performs a toppling at v, i.e.
removes 4 at v and increases by 1 the value at the neighbors of v
(one above, one below, one to the left and one to the right).
Performing topplings untill the state is stable is called a
relaxation. Its result ¢° doesn't depend on the order of topplings.
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Bak-Tang-Wiesenfeld model: the process

Start with some stable state ¢1, for example ¢ = 0. Take uniformly
at random a point vy in I and consider a new state

¢2 = (¢1 + dy,)°, where §,, denotes a function on I taking 1 at v,
and 0 otherwise. Take again a random point v, in . Construct
another state ¢3 = (¢2 + d,)°. Repeat...



Observation 1.

Performing measurements at each step, one observes power laws,
similar to the behavior near a phase-transition but without the
fine-tuning. This suggests a possibility for scaling limits.
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FIG. 2. Distribution of eluster sizes at eriticality in two and

three dimensions, computed dynamically as described in the FIG. 3. Distribution of lifetimes corresponding to Fig. 2
text. (a) S0%50 arcay, averaged over 200 samples; (b) (s} For the 5050 array, the slope a = 0.42, yielding a “1// "
20%20%20 array, averaged over 200 samples. The data have  noise spectrum £ '3 (b) 20X 20 20 array, « = 0.90, yiclding
been coarse grained. an £~ spectrum
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Observation 2.

In the BTW process, some states stop appearing after a sufficient
number of iterations — these are called transient states. Other
states keep appearing with equal non-zero probability — these are
called recurrent states.

As was shown by Deepak Dhar in 1990, the set of recurrent states
G(I) forms an Abelian group. The operation is (¢, ¥) — (¢ + ¢)°.
He also suggested a new name for the model “Abelian Sandpile”.
The number of elements in G(I') is equal to the number of
spanning trees on ' (a consequence of Kirchhoff's theorem) —
which is astronomically large even for moderately big I'. (For
example, for a 30 x 30 square it is approximately 3.3414 - 10%62)
The neutral element of G(I') is very beatiful and mysterious...



|dentity element on 1000x1000 square




Strings in sandpiles — where our journey begins!

Conservation laws for strings in the Abelian Sandpile Model

Sergio Caracciolo,’ Guglielmo Paoletti,” and Andrea Sporticllo
* Universita degli Studi di Milano - Dipartimento di Fisica and INFN, via G. Celoria 16, 20133 Milano, ITtaly

? Universitd di Pisa — Dipartimento di Fisica and INFN, largo B. Pontecorvo 3, 56127 Pisa, Italy
(Dated: November 7, 2018)

The Abelian Sandpile generates complex and beautiful patterns and seems to display allometry.
On the plane, beyond patches, patterns periodic in both dimensions, we remark the presence of
structures periodic in one dimension, that we call strings. We classify completely their constituents
in terms of their principal periodic vector k., that we call momentumn. We derive a simple relation
between the momentum of a string and its density of particles, E, which is reminiscent of a dispersion
relation, F = |k|?. Strings interact: they can merge and split and within these processes momentum
is conserved, ), k. = 0. We reveal the role of the modular group SL(2,Z) behind these laws.

PACS numbers: 05.65.+b, 45.70.Qj, 89.75.Fb
Keywords: Sandpile Models, Lattice Automata, Pattern formation, Modular Invariance



= 3
ENNEEEEEE
EEEE EEEN

Figure 2. On the left, the configuration obtained after relax-
ation from zmax plus an extra grain of sand exactly at the
vertex where a defect appears. On the right, the result after
removing the defect and the addition of one more grain.
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Figure 3. A scattering involving pseudo-propagators with mo-
menta (4,0), (2,1) and (6,1), on the background pattern of
Fig. 1 (also symbol code is as in Fig. 1).




Strings/solitons exist and are unique!

Sandpile solitons via smoothing of superharmonic functions
N Kalinin, M Shkolnikov
Communications in Mathematical Physics, 2020 - Springer

Abstract

Let F: 72 — 7 be the pointwise minimum of several linear functions. The theory of
smoothing allows us to prove that under certain conditions there exists the pointwise
minimal function among all integer-valued superharmonic functions coinciding with F “at
infinity”. We develop such a theory to prove existence of so-called solitons (or strings) in a
sandpile model, studied by S. Caracciolo, G. Paoletti, and A. Sportiello. Thus we made a
step towards understanding the phenomena of the identity in the sandpile group for planar
domains where solitons appear according to experiments. We prove that sandpile states,
defined using our smoothing procedure, move changeless when we apply the wave
operator (that is why we call them solitons), and can interact, forming triads and hodes.



Tropical scaling limit for sandpiles

[math.CO] 12 Dec 2023

TROPICAL CURVES IN SANDPILE MODELS

NIKITA KALININ, MIKHATL SHKOLNIKOV

ABSTRACT. A sandpile is a cellular automaton on a graph that evolves by
the following toppling rule: if the number of grains at a vertex is at least its
valency, then this vertex sends one grain to each of its neighbors.

In the study of pattern formation in sandpiles on large subgraphs of the
standard square lattice, S. Caracciolo, G. Paoletti, and A. Sportiello experi-
mentally observed that the result of the relaxation of a small perturbation of
the maximal stable state contains a clear visible thin balanced graph formed
by its deviation (less than maximum) set. Such graphs are known as tropical
curves,

During the early stage of our research, we have noticed that these tropi-
cal curves are approximately scale-invariant, that is the deviation set mimics
an extremal tropical curve depending on the domain on the plane and the
positions of the perturbation points, but not on the mesh of the lattice.

In this paper, we rigorously formulate these two facts in the form of a
scaling limit theorem and prove it. We rely on the theory of tropical analytic
series, which is used to describe the global features of the sandpile dynamic,
and on the theory of smoothings of discrete superharmonic functions, which
handles local questions.



FIGURE 1. A thin balanced graph appears as a deviation set of
a sandpile. See Example 2.11 for details. White corresponds to
three grains, black to one, circles to two, crosses to zero, and skew
lines are the boundary vertices (sinks). Grey rounds represent the
positions of added grains.



F1GURE 9. Left: the result of adding a single grain at the center
of a disk to the maximal stable state and relaxing. Right: tropical
caustic of the disk.



Tropical distance series of a disk
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Chapter 3

Tropical optics



Tropical wave front of an ellipse




Tropical caustic of an ellipse

The weight of the horizontal edge in the middle is 2, all other
weights are 1. All vertices are trivalent — i.e. the caustic is an
infinite binary tree inscribed in the ellipse.
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Formal definitions

Let Q@ C R" be a convex domain. For A € R” define 0,(Q) as
—infpca(A, p). The tropical distance series of 2 is given by

Falp) = inf (@x(D) + (A p).

The tropical caustic Kq of € is a tropical analytic curve defined by
Faq, i.e. its corner locus, the set of points where the series is not
smooth. It is the set of special points of the tropical wave front.
The tropical wave front Q(t) at time t > 0 of Q is }'Sgl[t, +00).

Tropical Huygens' principle: (2(t))(s) = Q(t + s).



A place to read about tropical wave fronts and caustics

Proceedings of 28" Gékova
Geometry-Topology Conference
pp. 11 — 48

Wave fronts and caustics in the tropical plane

Grigory Mikhalkin, Mikhail Shkolnikov

ABSTRACT. The paper studies intrinsic geometry in the tropical plane. Tropical struc-
ture in the real affine n-space is determined by the integer tangent vectors. Tropical
isomorphisms are affine transformations preserving the integer lattice of the tangent
space, they may be identified with the group GLn(Z) extended by arbitrary real
translations. This geometric structure allows one to define wave front propagation
for boundaries of convex domains. Interestingly enough, an arbitrary compact convex
domain in the tropical plane evolves to a finite polygon after an arbitrarily small time.
The caustic of a wave front evolution is a tropical analytic curve. The paper studies
geometry of the tropical wave fronts and caustics. In particular, we relate the caustic
of a tropical angle to the continued fraction expression of its slope, and treat it as a
tropical trigonometry notion.
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Affine distance function

C. Leung's suggestion after N. Kalinin's talk: average the tropical
distance series over the space of tropical structures of a fixed
covolume. A tropical structure on R" is a rank n lattice L C R”,
its covolume is the volume of the quotient torus R"/L.

A technical realization: for a matrix A € SI,(R) and a convex
domain Q C R" define an A-transformed tropical series ]-"é as
F&(P) = Fa)(A(p)). Note that if B € SI,(Z), then F§* = F.
Define the affine distance function of Q as

F& (p) = (VoI(S(Z)\Sh(R)))* /[A]es, oy TR

This new function is automatically affine invariant:
Faff(p) = f"(f';z)(A(p)) for any A € SI,(R).
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3d plot of affine distance for a square




Contour plot of affine distance for a square (E. Lupercio)




Some conjectures for convex domains

Conjecture 1la:

The maximal value of féff is attained at a single point.

Conjecture 1b:
The maximal value of féff is attained at the center of mass of Q.



Some conjectures for convex domains

Conjecture 2:
Assume that the maximal value Mg of .7-"5” is attained at the
origin. Then the following limit exists and is equal to an ellipsoid:

lim (Vo/((f"’ff) [t Ma])) =@M (F3T) A (e)):

t—_



Some conjectures for convex domains

Recall that a polar set of a domain Q C R" is
Q*={yeR":(y,x) <1,Vx e Q}.
The Mahler volume of Q is Vol(2) Vol (Q2°).



Some conjectures for convex domains

Recall that a polar set of a domain Q C R" is
Q*={yeR":(y,x) <1,Vx e Q}.
The Mahler volume of Q is Vol(2) Vol (Q2°).

Conjecture 3:
The Mahler volume of (Faff)~1[t, Mg] is increasing with t.



Thank you for your attention!



