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1 Statement of the AdS/CFT conjecture
The AdS/CFT conjecture proposes a duality between a quantum gravity theory on asymptotically AdSd spacetime
times a compact space and a (d − 1)-dimensional conformal field theory on. Here we focus on an AdS5/CFT4,
example coming from M-theory. Practically, AdS/CFT is the statement that the M-theory and the CFT partition
functions are the same

ZM[φ = ϕ(r →∞)] on AdS5 ×M6 = ZCFT[φ] on R× S3 , (1)

whereM6 is a compact manifold and φ is a set of refinement fugacities for the CFT partition function, that can be
seen as boundary conditions for the bulk fields ϕ as they approach the AdS boundary (at radial coordinate r →∞).

Summary 1

(1) A theory without gravity in 4 dimensions is equivalent to a theory with gravity in 11 dimensions: holo-
graphic principle

(2) The partition function carries all the dynamical information of the two theories (can compute all corre-
lation functions)

(3) In M-theory there is one parameter N — the “number” of M-branes. On the gravity side the branes
backreacts to form the AdS5 ×M6 geometry. The dual field theory lives on the worldvolume of the
branes.

(4) At arbitrary N both ZCFT and ZM are very hard to compute (computing the path integral is generically
hard)

(5) At N →∞ the field theory is strongly coupled but there are tricks to obtain the large-N scaling of ZCFT.
At N →∞, the gravity side is easy to compute: ZM ≈ e−Ion-shell , where Ion-shell is the Euclidean on-shell
action of the dominant saddle

(6) Our aim: match ZM and ZCFT beyond leading order in large-N

2 M5-brane holography
The concrete setup is N M5-branes, wrapping a Riemann surface Σg, which resides in a Calabi-Yau three fold
(M6 = CY3). Locally one can view CY3 as a fibration of two line bundles over Σg

L1 ⊕ L2 → Σg . (2)

Aside from N in the UV there are two other dimensionless parameters: the first Chern numbers of the two line
bundles. We package this data in terms of the genus g and a rational number z

c1(L1) + c1(L2) = 2g− 2 ,
c1(L1)− c1(L2)

2g− 2
= z . (3)

We have an infinite collection of AdS/CFT duals for every value of (g, z) [1, 2]. Concretely

M-theory on AdS5 × Σg × S4 ⇐⇒ N = 1 SCFT of class S on R× S3 (4)

1



3 Partition function of a 4d N = 1 SCFT
Consider a generic 4d N = 1 SCFT with U(1)R R-symmetry. We put the theory on the following R×S3 background

ds2 = − dt2 + dθ2 + sin2 θ(dϕ1 +Ω1 dt)
2
+ cos2 θ(dϕ2 +Ω2 dt)

2
,

A = −Φdt ,
(5)

where A is the background U(1)R field, and (Ω1,Ω2,Φ) are a set of fixed background chemical potentials. Initially,
consider the theory at temperature T = 1/β. The partition function is

Z = Tr e−βH+βΩ1J1+βΩ2J2+βΦR , (6)

where H is the Hamiltonian, J1,2 are a set of charges associated with the S3 and R is the U(1)R charge, considered
as operators on the Hilbert space. There is a complex supercharge satisfying{

Q,Q†} = H − J1 − J2 −
3

2
R . (7)

It is well known that

QFT at finite temperature T ←→ QFT on a thermal circle S1
β , β = 1/T , (8)

thus we Wick rotate the background

ds2 = dτ2 + dθ2 + sin2 θ(dϕ1 − iΩ1 dτ)
2
+ cos2 θ(dϕ2 − iΩ2 dτ)

2
,

A = iΦdτ ,
(9)

where the background is now S1
β × S3 with thermal boundary conditions

(τ, ϕ1, ϕ2) ∼ (τ + β, ϕ1, ϕ2) . (10)

Supersymmetry (or the existence of a Killing spinor on this background) dictates [7]

β(1 + Ω1 +Ω2 − 2Φ) = 2πin , n ∈ Z . (11)

Re-defining the chemical potentials as

ω1 = β(Ω1 − 1) , ω2 = β(Ω2 − 1) , φ = β

(
Φ− 3

2

)
, (12)

and using (7) and (11) we rewrite the partition function as

Z = Tr e−β{Q,Q†}+ω1(J1+
R
2 )+ω2(J2+

R
2 )e−πinR . (13)

We use the charge assignment of the operators to see that for odd n: eπinR = (−1)F , where F = ±1 is the fermion
number of the state. Thus, for odd n, the partition function is

Z = Tr (−1)F e−β(Q,Q†)+ω1(J1+
R
2 )+ω2(J2+

R
2 ) . (14)

The Hilbert space is naturally split into

BPS states: Q |ψ⟩ = 0, with energy E0 ,

excited states: Q |χ⟩ ≠ 0, boson-fermion paired states with the same energy E > E0 .
(15)

Due to the factor (−1)F the excited states cancel each other out and the above partition function only counts the
degeneracy of the ground state, for which Q = 0. Thus, the partition function can be written as [4, 3, 7]

Z = e−FI , I = Tr|Q=0 (−1)F eω1(J1+
R
2 )+ω2(J2+

R
2 ) , (16)

where F is related to the so called supersymmetric Casimir energy (essentially captures the energy of the ground
state) and I is the so called superconformal index. The point of this rewriting is that in the Cardy limit (β ≪ l3,
where l3 is the size of the S3) F and I are entirely controlled by anomalies (symmetries) and can be deduced for
any 4d N = 1 SCFT [8]

− logZ = F − log I =
φ3

6ω1ω2
TrR3 − φ(ω2

1 + ω2
2 − 4π2)

24ω1ω2
TrR+O

(
e−l3/β

)
, (17)
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where TrR3 and TrR are the cubic and linear ’t Hooft anomalies which are related to the a and c conformal anomalies
as

TrR3 =
16

9
(5a− 3c) , TrR = 16(a− c) . (18)

For the concrete SU(N) class S 4d N = 1 theory arising from N M5-banes wrapping a Riemann surface of genus g
inside a Calabi-Yau one has [2]

TrR3 =
2(g− 1)

27z2

[
9z2 − 1 +

(
3z2 + 1

)3/2]
N3

− g− 1

9z2

[(√
3z2 + 1− 1

)
(2 + 3z2)− 3z2

]
N + . . . ,

TrR =
g− 1

3

[
4−

√
3z2 + 1

]
N + . . . .

(19)

Summary 2

(1) Overall for the theory labelled by (g, z) the logarithm of the partition function at large-N scales as

Zg,z = f(ω1, ω2, φ; g, z)N
3 + g(ω1, ω2, φ; g, z)N + . . . , (20)

where f and g are known function of the chemical potentials (ω1, ω2, φ) given for chosen values of (g, z)

(2) The chemical potentials (ω1, ω2, φ) are defined such that they remain finite in the simultaneous limit to
zero temperature: β →∞, and supersymmetry: Ω1,2 → 1, Φ→ 3/2

(3) The supersymmetry condition (11) written in terms of (ω1, ω2, φ)

ω1 + ω2 − 2φ = 2πin (21)

dictates that for any n ̸= 0 the chemical potentials are complex

(4) The real and imaginary parts of ω1,2 have the following interpretation

ω1 =
β

l3
b+ i Imω1 , ω2 =

β

l3
b−1 + i Imω2 , (22)

where b is the squashing of the S3 and the imaginary parts encode rotation parameters due to twisting
S3 over S1

β

(5) In the supersymmetric limit the partition function is explicitly independent of β and is written entirely
in terms of the suitable chemical potentials (ω1, ω2, φ). This makes the β →∞ limit trivial to take

(6) The final scaling of the partition function with N is obtained in the Cardy limit where size(S1
β)≪ size(S3)

or β/l3 → 0. Apriory this is distinct from evaluating logZ in the explicit large-N limit

(7) The benefit of the Cardy limit is that the final N3 and N terms are entirely controlled by anomalies and
hold for any 4d N = 1 SCFT, even for non-Lagrangian theories such as class S, where explicit localization
calculations are not possible

4 Higher derivative corrections and the gravity partition function
Unfortunately, we lack fundamental understanding of the M-theory partition function. However, it is known that in
the low-energy limit, M-theory reduces to the unique 11d supergravity. Compactified on M6 this gives an effective
5d supergravity theory with Euclidean Lagrangian schematically given by

e−1L(0)(gµν , ϕ) =
1

16πG5

(
R+

12

L2

)
+ e−1L(0)

matter(ϕ) , (23)

where G5 is the 5d Newton constant and L is the AdS5 scale (and, since we are dealing with gauged supergravity,
thus no scale separation) also the M6 scale. In particular ϕ collectively denotes the massless matter fields and the

3



infinite tower of massive KK modes. The full partition function is given by

ZM[φ] =

∫
[DgµνDϕ]e

−
∫
d5xL(gµν ,ϕ) , (24)

where φ collectively denotes a set of fixed boundary conditions for the bulk fields and L above includes an infinite
series of higher derivative corrections to L(0). Using the saddle point approximation we write the above path integral
as

ZM[φ] =
∑

α∈ saddles

e−Iα[φ]Zα
loops[φ] , (25)

where Iα[φ] is the collection of Euclidean on-shell actions of all the gravitational saddles (solutions to the Euclidean
equations of motion) that have fixed boundary conditions φ for the bulk fields and Zα

loops is the contribution from
all loops of all fields around the classical saddles. Keeping track of the contributions from

(i) all higher derivative corrections

(ii) all loops

(iii) all KK modes

(iv) all saddles

is a tall order. However, at large-N it turns out that the leading behavior is controlled by the dominant saddle (the
Wick rotation of a large AdS5 black hole) at 2∂ level and the subleading behavior is controlled by 4∂ corrections on
top of this saddle. To obtain the 2∂ one needs to find the supergravity on-shell action I(0)dominant. Generically

− logZ(0)
M [φ] = f(φ)

L3

G5
+ . . . , (26)

where L3/G5 is a dimensionless combination of the two scales in the problem and f(φ) is a calculable function of the
thermodynamic black hole potentials. Here the . . . denote subleading contributions coming from loops, KK modes
and subdominant saddles. We include 4∂ corrections to the theory (think Wilsonian effective theory) as

e−1L(1)(gµν , ϕ) =
1

16πG
(1)
5

(
R+

12

L2
(1)

)
+ c

(1)
1 R2 + c

(2)
2 R2

µν + c
(1)
3 R2

µνρσ + e−1Lrest(gµν , ϕ) , (27)

where the coefficients c(1)i are small in the sense

Lc
(1)
i ≪ L3

G5
, (28)

the bare couplings G5 and L get renormalized to G(1)
5 and L(1) with corrections of order Lc(1)i and Lrest includes all

other non-pure-gravity 4∂ terms made up from the fields in the theory (possibly introducing more couplings to the
list c(1)i ). Evaluating the on-shell action of the dominant saddle in the 4∂ theory one obtains (schematically)

− logZ(1)
M [φ] = f(φ)

L3
(1)

G
(1)
5

+ hi(φ)Lc
(1)
i + · · · = f(φ)

L3

G5
+ h̃i(φ)Lc

(1)
i + . . . , (29)

where we have expanded the combination L3
(1)/G

(1)
5 to order Lc(1)i and we have assumed that the Lc(1)i effects are

parametrically larger than the KK modes, the loops and the contributions form the other saddles. As the M5-brane
setup discussed above contains a single large dimensionless parameter N (for fixed g and z) we expect that

L3

G5
= u(g, z)N3 , Lc

(1)
i = vi(g, z)N . (30)

Below we show that this is indeed the case and that the functions u(g, z) and vi(g, z) together with the functions
f(φ) and h̃i(φ) precisely agree with the field theory prediction (think of φ collectively denoting (ω1, ω2, φ) from the
previous section).

4



5 The CCLP saddle and matching the leading terms
5d N = 2 minimal supergravity with 2∂ action

I =
1

16πG5

∫ [
⋆

(
R+

12

L2

)
− 1

2
F ∧ ⋆F +

1

3
√
3
A ∧ F ∧ F

]
(31)

contains a universal black hole solution that is U(1) × U(1) × R isometric and is specified by four real parameters
(a, b,m, q) [11]. Wick rotating the solution as t = −iτ and demanding regularity in the deep IR (when the r → r+,
with r+ being the outer horizon) we see that

(τ, ξ1, ξ2) ∼ (τ + β, ξ1 − iβΩ1, ξ2 − iβΩ2) , (32)

which determines the inverse temperature β and the two angular velocities (Ω1,Ω2) in terms of the metric parameters
(a, b,m, q). The final thermodynamic potential is given by

Φ = V µAµ|r→r+ − V µAµ|r→∞ , (33)

again in terms of (a, b,m, q), where

V =
∂

∂t
+Ω1

∂

∂ξ1
+Ω2

∂

∂x2
(34)

is a linear combination of the Killing vectors of the solution. The Euclidean solution conformally asymptotes to the
S1
β × S3 background discussed above. We calculate the asymptotic charges via Komar integrals

Ji =
1

16πG5

∫
S3
∞

⋆ d

[(
∂

∂ξi

)
µ

dxµ

]
, Q = − 1

16πG5

∫
S3
∞

(
⋆F − 1√

3
F ∧A

)
, (35)

and the entropy as 1/4 the horizon area

S =
1

4G5

∫
S3
r+

vol
(
S3
r+

)
. (36)

The asymptotic mass and the Euclidean on-shell action are trickier due to UV divergences. We follow the holographic
renormalization procedure and supplement the action with boundary terms

Ibdy =
1

8πG5

∫
R×S3

√
−γ
(
K − 3

L
− L

4
R+ ζR2

)
, (37)

where the four terms in the bracket are: the Gibbons-Hawking boundary term, two gravitational counterterms and
a finite counterterm allowed by the symmetries. Then the asymptotic mass is given by

E =

∫
S3
∞

√
−γ Tbdy

t
t , (38)

and the Euclidean on-shell action is the following

IEren = IE + IEbdy , (39)

evaluated on the smooth Euclidean CCLP solution with boundary S1
β × S3. Having obtained everything explicitly

in terms of the black hole parameters (a, b,m, q) we verify the quantum statistical relation and the first law of
thermodynamics

IEren = βE − S − βΩ1J1 − βΩ2J2 − βΦQ ,

dE =
1

β
dS +Ω1 dJ1 +Ω2 dJ2 +ΦdQ .

(40)

Supersymmetry (existence of a Killing spinor with antiperiodic boundary conditions at the horizon) dictates that

β(1 + Ω1 +Ω2 − 2Φ) = 2πi . (41)

Practically, it is implemented by relating the parameters q = q(a, b,m). Further, it constraints the charges as

E = J1 + J2 +
3

2
Q . (42)
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Summary 3

(1) The Lorentzian supersymmetric CCLP has CTCs (no such issue with the Euclidean supersymmetric
CCLP),

(2) The thermodynamic potentials (β,Ω1,Ω2,Φ), the charges (E, J1, J2, Q), the entropy (S) and the on-shell
action (IEren) are all complex in the supersymmetric limit

(3) In particular, the supersymmetric solution has non-zero temperature (supersymmetry in AdS does NOT
imply extremality)

(4) Defining new thermodynamic potentials ωi = β(Ωi − 1) and φ = β(Φ− 3/2) the on-shell action takes a
remarkably simple form

IEren =
16

27

πL3

8G5

φ3

ω1ω2
(43)

(5) From AdS5/CFT4 holography it is well known that at leading order in large-N the a and c conformal
anomalies are given by

a ≈ c ≈ πL3

8G5
, (44)

Then

IEren =
16a

27

φ3

ω1ω2
=

1

6

32a

9

φ3

ω1ω2
=

TrR3

6

φ3

ω1ω2
≈ − logZSCFT . (45)

Holography works as advertized at leading order.

(6) The supersymmetry condition for the SCFT fugacities

ω1 + ω2 − 2φ = 2πin , (46)

is recovered (independently) by supergravity for n = 1.

(7) The non-supersymmetric result for the on-shell action appears to be proportional to β, which naively
indicates an IR divergence for IEren when β →∞. However, first taking the supersymmetric limit, and only
then the limit to extremality, one obtains a perfectly finite on-shell action in the BPS (“= supersymmetry
+ extremality”) limit. In the BPS limit, the thermodynamic potentials (ω1, ω2, φ) and the on-shell action
(IEren) remain complex, but the charges (J1, J2, Q) and the entropy

SBPS = π
√
3Q2 − 8a(J1 + J2) (47)

become real.

(8) The supergravity BPS limit implements a mysterious (from the SCFT point of view) non-linear relation
between the charges

(3Q+ 4a)
[
3Q2 − 2a(J1 + J2)

]
= Q3 + 16aJ1J2 . (48)

6 Matching the subleading term
One can use the formalism of 5d superconformal minimal supergravity to deduce that there are only two supersym-
metric 4∂ invariants: Weyl2 and Ricci2 with coefficients c1 and c2. Gauge fixing to 5d ⊡ minimal supergravity one
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obtains the following mess of a Lagrangian [6]

e−1L4∂ = −
[ 1

κ2
+

(5 c1 + 24 c2)g
2

2
√
3

]
R+

[ 1

4κ2
+

7(5 c1 − 12 c2)g
2

24
√
3

]
F 2
ab

−
[12g2
κ2

+
1√
3
(25 c1 + 156 c2) g

4
]
− i

12
√
3

[ 1

κ2
− 3
√
3(c1 + 6 c2)

2
g2
]
e−1εµνρστAµFνρFστ

− ic1
16
e−1εµνρστAµRνρ

λϵRστλϵ −
(2 c1 − 3 c2)

24
√
3

RF 2
ab +

5c1

4
√
3
RabFacFb

c

−
√
3c1
16

RabcdF
abF cd − (c1 + 6 c2)

8
√
3

R2 +
c1

2
√
3
R2

ab −
√
3c1
8

(Rabcd)
2

− 5
√
3

64
c1 F

abFa
cFb

dFcd +
(61 c1 − 6 c2)

1152
√
3

F 2
ab F

2
cd +

√
3c1
2

(∇aFbc)(∇[aF b]c)

+

√
3c1
2

Fab∇b∇cF
ac − ic1

8
e−1εµνρστFµ

λFστ

(3
2
∇νFλρ −∇λFνρ

)
− 3ic1

32
e−1εµνρστFµνFρσ∇λFλτ +O(c2i ) , (49)

where κ2 = 16πG5 and g = 1/L. Indeed we see that at c1,2 → 0, we recover the 2∂ action and that the presence
of the higher derivative terms renormalizes the effective Newton constant (the piece in front of R) and the effective
AdS scale (the piece in front of g2). In principle, we should find a new saddle (a corrected CCLP) that solves the
equations of motion of the above 4∂ theory. However, it turns out that [9]

I4∂ [CCLP4∂ ] = I4∂ [CCLP2∂ ] +O(c2i ) . (50)

Thus, we proceed and evaluate the Euclidean on shell action and renormalize the result as before. After the dust
settles one obtains (in the supersymmetric limit) [5, 9]

IEren =

[
2π

27

L3

G5
− 16π2

3
√
3
L(c1 + 6c2)

]
φ3

ω1ω2
+

4π2

√
3
Lc1

φ(ω2
1 + ω2

2 − 4π2)

ω1ω2
. (51)

By considering an empty AdS5 background one can deduce the relation between the a and c anomalies and the 4∂
coefficients ci

16

9
(5a− 3c) =

4πL3

9G5
− 32π2

√
3
L(c1 + 6c2) , 16(a− c) = −32

√
3π2Lc1 . (52)

Rewriting the final answer:

IEren =
8(5a− 3c)

27

φ3

ω1ω2
− 2(a− c)

3

φ(ω2
1 + ω2

2 − 4π2)

ω1ω2
, (53)

we observe a precise match with the SCFT answer upon using the relation between the conformal anomalies and the
’t Hooft anomalies

8(5a− 3c)

27
=

1

6
TrR3 ,

2(a− c)

3
=

1

24
TrR . (54)
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Summary 4

(1) The ensemble used in this calculation is the one that keeps the thermodynamic potentials fixed, meaning
that

(ω4∂
1 , ω4∂

2 , φ4∂) = (ω2∂
1 , ω2∂

2 , φ2∂) (55)

(2) The above answer for the 4∂ on-shell action is valid in the supersymmetric limit, and to obtain it one
does NOT need to correct the CCLP solution. However, to obtain the 4∂ corrected charges and entropy,
one DOES need to correct the solution (see [10])

(3) Additionally taking the limit to extremality (β → ∞) works the same as before. The BPS entropy can
be obtained from a (constrained) Legendre transform of IEren and gets corrected as

SBPS = π

√
3Q2 − 8a(J1 + J2)−

16a(a− c)(J1 − J2)2
Q2 − 2a(J1 + J2)

. (56)

(4) Similarly to the 2∂ case, 4∂ supergravity dictates a non-linear constraint between the BPS charges

[3Q+ 4(2a− c)]
[
3Q2 − 8c(J1 + J2)

]
= Q3 + 16(3c− 2a)J1J2 + 64a(a− c)

(Q+ a)(J1 − J2)2

Q2 − 2a(J1 + J2)
. (57)
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