Baryon Acoustic Oscillations datasets in cosmology

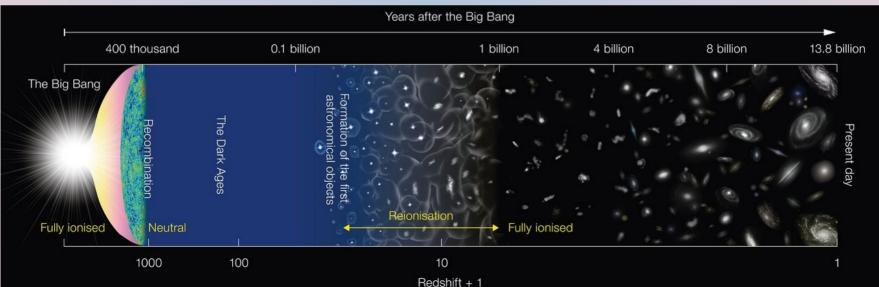
Denitsa Staicova

Based on works with D. Benisty, J. Mifsud, J. Levi Said

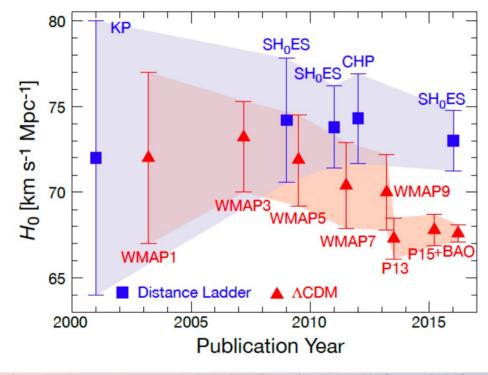
INRNE, Sofia, 23.02.2023

How it all began?

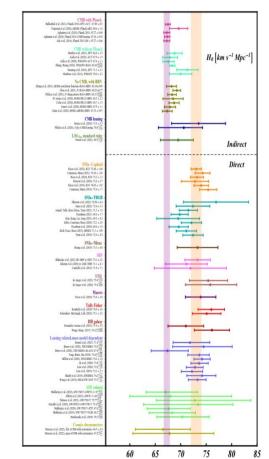
- Current paradigm the LCDM model
- Different energy components depend differently on the redshift
- Composition DE (~73%), DM (~23%), baryons, neutrinos, photons (~4%)
- From the local universe we observe accelerated expansion measured by H₀
- Known epochs inflation, radiation domination, dark matter domination, dark energy domination



The tensions in cosmology



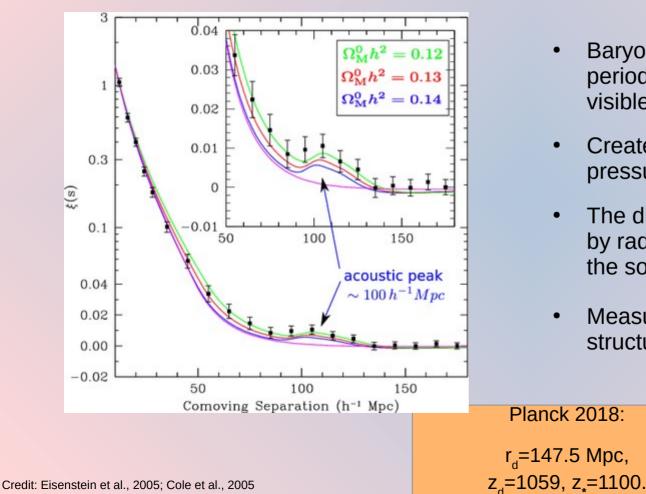
Freedman W., Nature Astronomy, 1, 0169 (2017), arXiv:1706.02739 [astro-ph.CO]



21

Abdalla et all. J. High En. Astrophys. 2204, 002 (2022) , arXiv: 2203.06142

BAO – "standard ruler" in cosmology

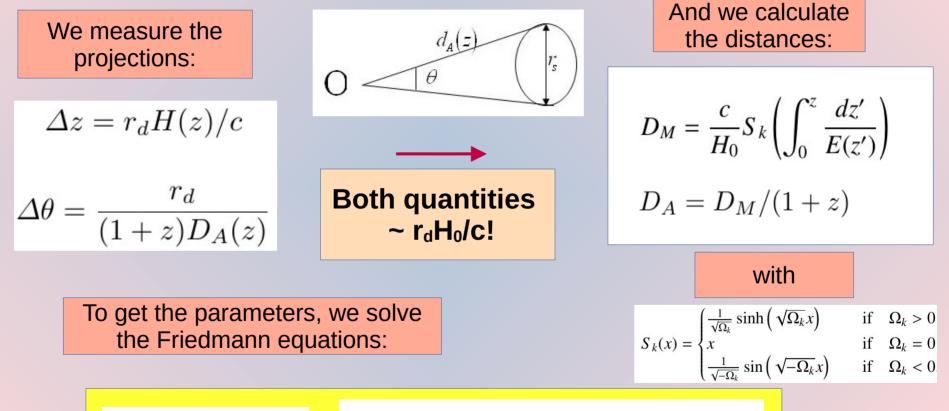


- Baryonic acoustic oscilations are regular, periodic fluctuations in the density of the visible baryonic matter of the universe.
- Created by the intrerplay of gravity, radiative pressure and the expansion of the universe
- The distance at which plasma waves induced by radiation pressure froze at recombination the sound horizon, r_d
- Measured by looking at the large scale structure of matter

$$r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz$$

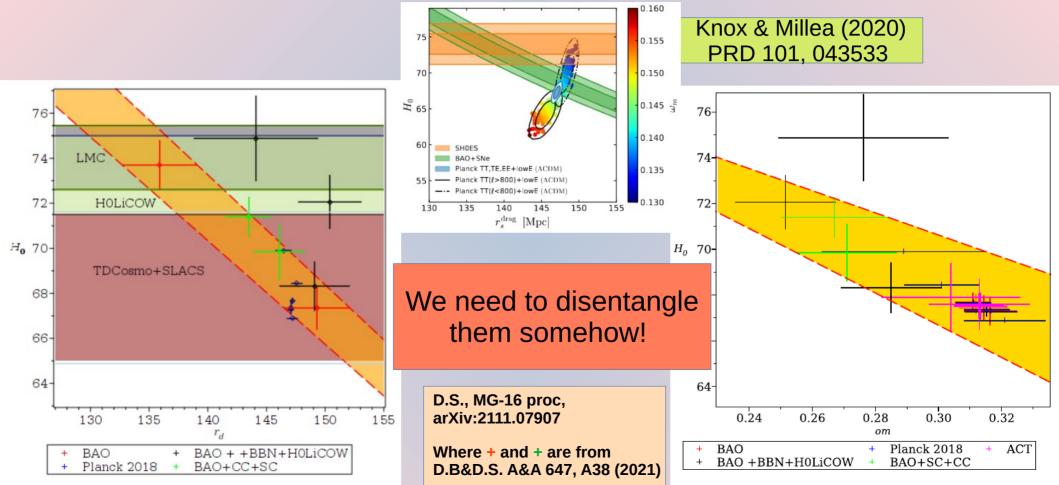
$$c_s(z) = \frac{c}{\sqrt{3\left(1 + \frac{3\Omega_b}{4\Omega_\gamma}\frac{1}{1+z}\right)}}$$

Inferring cosmological parameters from BAO:



$$H(z)/H_0 = E(z) \qquad E(z)^2 = \Omega_r (1+z)^4 + \Omega_m (1+z)^3 + \Omega_k (1+z)^2 + \Omega_\Lambda$$

The problem: r_d , H_0 and Ω_m are coupled!



So we marginalise over H₀r_d

 $\tilde{\chi}^2$

- We redefine the χ^2 to integrate over H₀r_d
- We take two BAO datasets:
 - uncorrelated angular BAO
 - a mix of radial + angular BAO + covariances
- To which we add the Pantheon binned SN with the covariances $\tilde{\chi}^2 = \tilde{\chi}^2_{BAO} + \tilde{\chi}^2_{SN}$.
- We use them to constrain DE models (CPL, pEDE, gEDE)

 $w(z) = \begin{cases} w_0 + w_a z & \text{Linear} \\ w_0 + w_a \frac{z}{z+1} & \text{CPL} \\ w_0 - w_a \log (z+1) & \text{Log} \end{cases}$

$$\Omega_{DE}(z) = \Omega_{\Lambda} \frac{1 - \tanh(\Delta \log_{10}(\frac{1+z}{1+z_t}))}{1 + \tanh(\Delta \log_{10}(1+z_t))}$$

$$= C - \frac{B^2}{A} + \log\left(\frac{A}{2\pi}\right),$$

where
$$A = f^j(z_i)C_{ij}f^i(z_i),$$

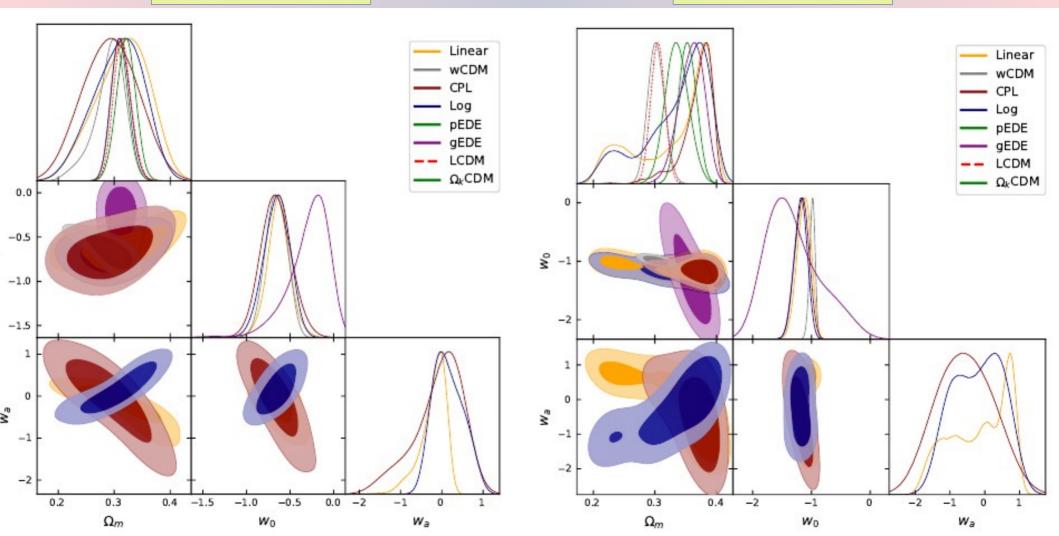
$$B = \frac{f^j(z_i)C_{ij}v_{model}^i(z_i) + v_{model}^j(z_i)C_{ij}f^i(z_i)}{2},$$

$$C = v_j^{model}C_{ij}v_i^{model}.$$

and
$$f(z) = \frac{1}{(1+z)\sqrt{|\Omega_K|}} \sin\left[|\Omega_K|^{1/2}\int \frac{dz'}{E(z')}\right].$$

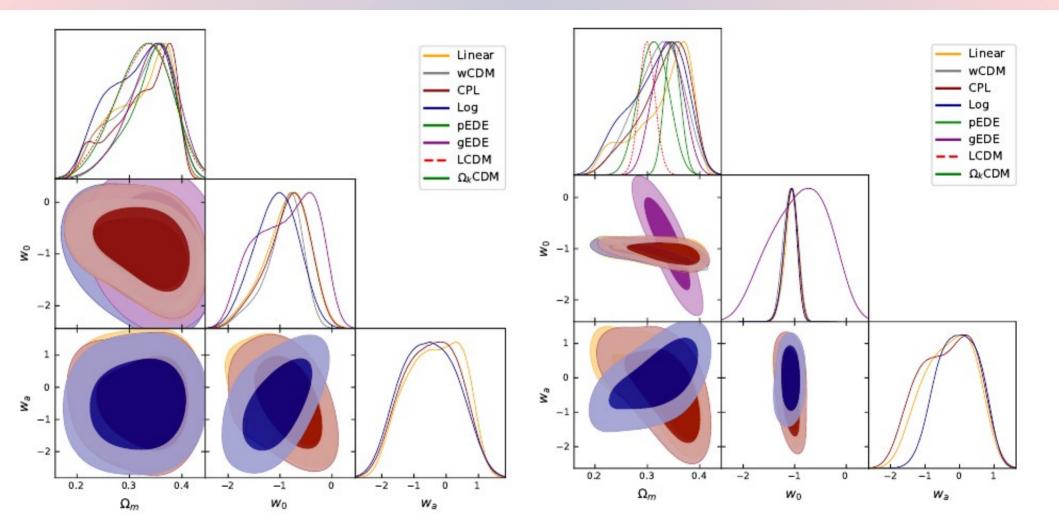
Angular BAO

Angular BAO+SN

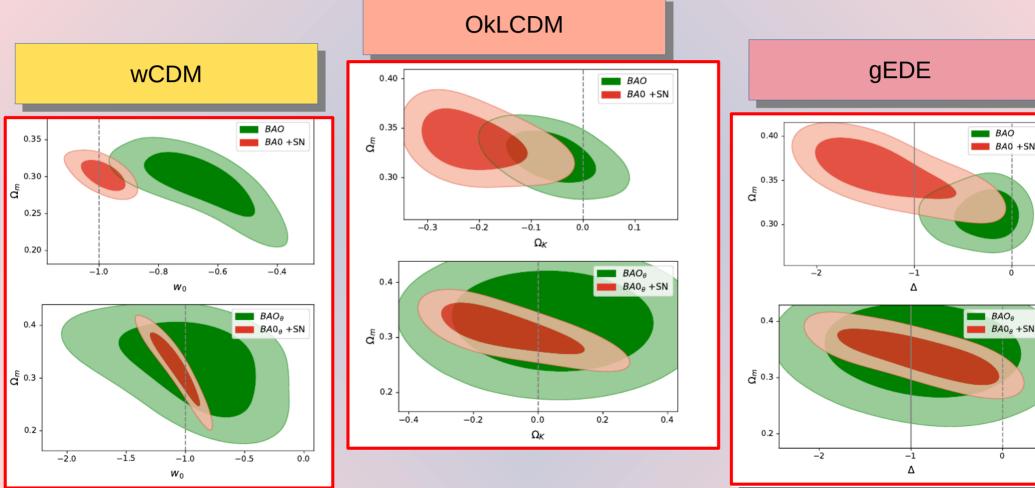


BAO

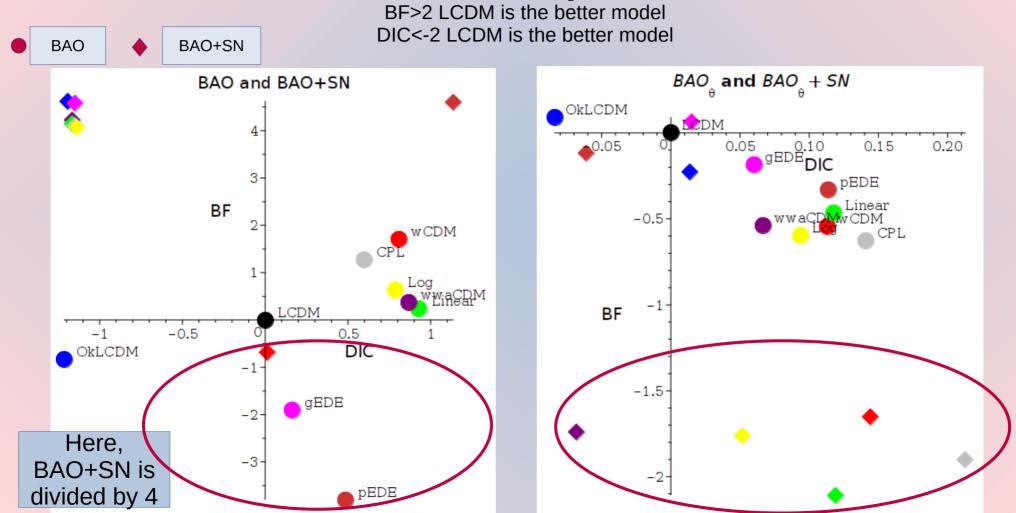
BAO+SN



Different datasets, different models



Model comparison:



Conclusions:

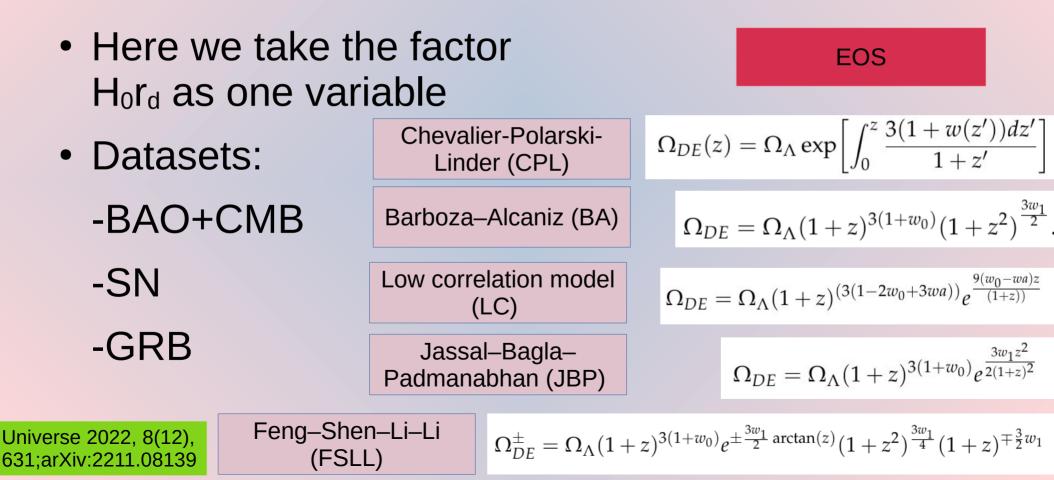
- BAO alone are not able to constrain DE models
- Adding SN decreases the errors significantly
- The **angular** BAO dataset and the **mixed one** do not favor the same models (wCDM vs LCDM)
- The marginalization is able to produce interesting results on the cost of bigger error

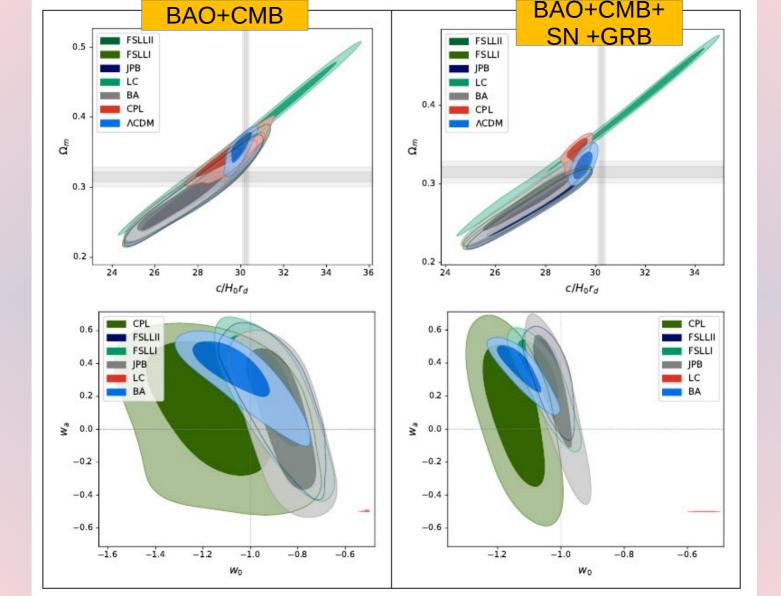
Numbers are compatible with earlier results:

- BAO + SN:
- w=-0.986 ± 0.045
- w_0 =-1.18±0.139, w_a =-0.367± 0.672
- $BAO_{\theta}+SN$
- w=-1.08 ±0.14
- w₀=-1.09±0.09, w_a=-0.31±0.74
- BAO + SN prefers a closed universe (Ω_k=-0.21±0.07)
- BAO_θ+SN prefers a flat one (Ω_k=-0.09±0.15)

Constraining the dark energy models using the BAO data: An approach independent of H₀·r_d Staicova, Benisty A&A 668, A135 (2022), arXiv:2107.14129 [astro-ph.CO]

More DE models:





Or in terms of the Hubble tension:

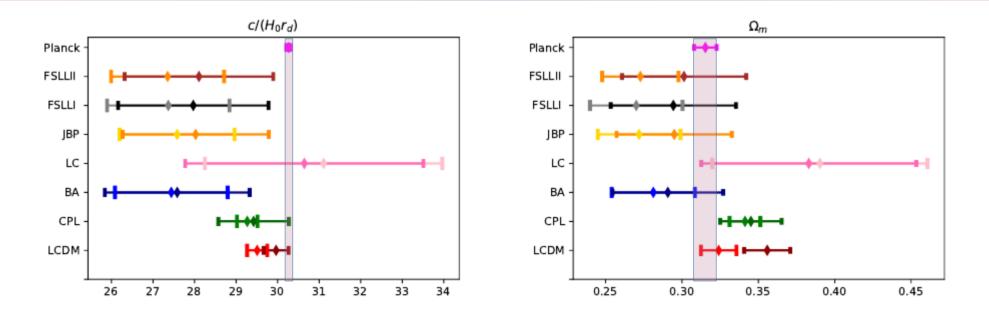
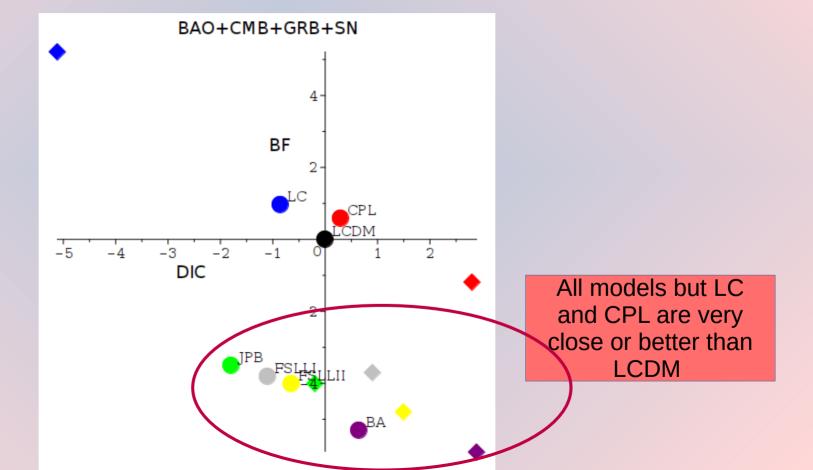


Figure 2. The final values of the $c/(H_0r_d)$ from different DE models, compared to the values from Planck for the BAO+CMB+SN+GRB dataset. The smaller, darker, errorbox are for BAO+CMB, the lighter, bigger errorbox–for SN+GRB.

Comparison of the models

Here, LC is divided by 40 to fit the plot.



On the Robustness of the Constancy of the Supernova Absolute Magnitude: Non-parametric Reconstruction & Bayesian approaches D. Benisty, J. Mifsud, J. Levi Said, D. Staicova arXiv:2202.04677

- M_B from SN is considered a constant
- What will happen if we callibrate it with BAO measurements?
- Datasets: BAO + SN
- Methods: ANN, GP, MCMC

Phys.Dark Univ. 39 (2023) 101160, arXiv:2202.04677

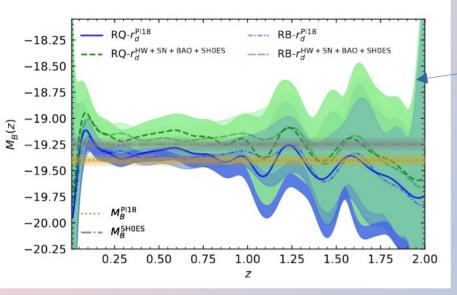
$$d_L(z) = (1+z) \int_0^z \frac{c \, dz'}{H(z')},$$

$$\mu_{Ia}(z) = 5 \log_{10} \left[d_L(z) \right] + 25 + M_B(z) \,,$$

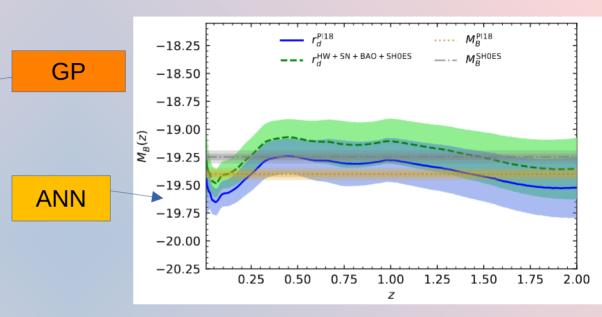
$$\begin{split} M_B &= \mu_{Ia} - 5 \log_{10} \left[(1+z)^2 \left(\frac{D_A}{r_d} \right)_{\text{BAO}} \cdot r_d \right] - 25 \,, \ (3a) \\ \Delta M_B &= \Delta \mu_{Ia} + \frac{5}{\ln 10} \left[\frac{\Delta r_d}{r_d} + \frac{\Delta (D_A/r_d)_{BAO}}{(D_A/r_d)_{BAO}} \right] \,. \ (3b) \end{split}$$

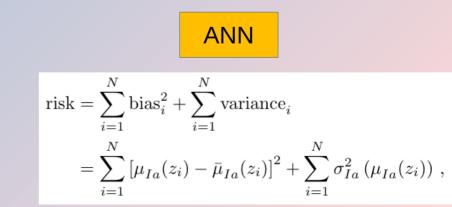
Distance Duality Relation?

$$d_L(z) = (1+z)^2 d_A(z))$$

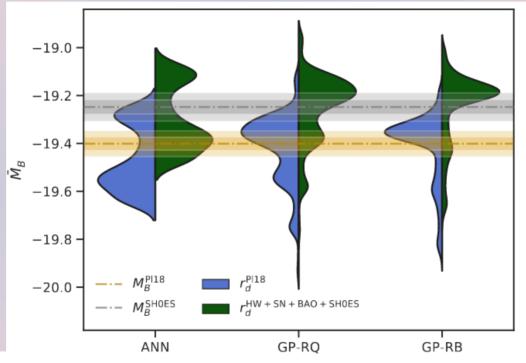


 $\begin{tabular}{|c|c|c|c|} \hline {\sf Radial Basis (RB)} \\ \hline {\sf K}(z,\tilde{z}) = \sigma_f^2 \exp\left(-\frac{(z-\tilde{z})^2}{2l^2}\right) \ , \\ \hline {\sf Rational Quadratic (RQ)} \\ \hline {\sf k}(z,\tilde{z}) = \frac{\sigma_f^2}{(1+|z-z'|^2/2\alpha l^2)^\alpha} \ . \end{tabular}$





Is it constant? Not 1 Gaussian!



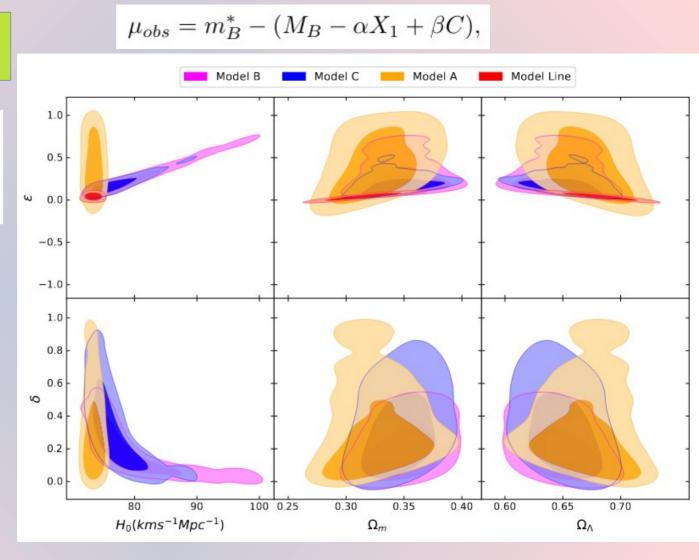
Technique	$r_{d,fit}^{ m Pl18}$	$r_{d,fit}^{\rm HW+SN+BAO+SH0ES}$	$r_{d,full}^{\mathrm{Pl18}}$	$r_{d,full}^{\rm HW+SN+BAO+SH0ES}$
ANN	-19.58 ± 0.11 and -19.26 ± 0.04	-19.1 ± 0.04 and -19.42 ± 0.11	-19.38 ± 0.20	-19.22 ± 0.20
GP-RQ	-19.35 ± 0.03	-19.18 ± 0.03	-19.42 ± 0.35	-19.25 ± 0.39
GP-RB	-19.35 ± 0.07	-19.18 ± 0.07	-19.42 ± 0.29	-19.25 ± 0.33

We tested known models for the nuissance parameter

$$\delta M_B(z) = \begin{cases} \epsilon z & \text{Model Line} \\ \epsilon \left[(1+z)^{\delta} - 1 \right] & \text{Model A} \\ \epsilon z^{\delta} & \text{Model B} \\ \epsilon \left[\ln(1+z) \right]^{\delta} & \text{Model C} \end{cases}$$

Conclusions:

- The constancy of M_B is at level of 1σ .
- The MCMC do not prefer any of the tested non-constant model significantly.
- We exchange the tension in H_0 - r_d with a tension in the M_B - r_d plane



Thank you for your attention!

