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The main goal

The main goal

This project is part of a series of books/papers serving a wider research plan that
attempts to develop a consistent formulation of elementary systems in the global
structure of dS and AdS spacetimes, in the Wigner sense [Ann, Math., 40, 149 (1939);
Rev. Mod. Phys., 21, 400 (1949).], as associated with UIRs of the dS and AdS relativity
groups, respectively.

It rests upon three basic observations:

the (A)dS group representation theory (in the sense given by Wigner);

the Wightman-Gärding axioms;

analyticity prerequisites in the complexified pseudo-Riemanian manifold.

✓ (A)dS (Anti-)de Sitter
✓ UIR Unitary irreducible representation
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Motivations

Motivations

The motivation for this attempt is rooted:

in part in the key role that is played by the dS geometry in the inflationary
cosmological scenarii;

in part in the desire to establish possible mechanisms for late-time cosmology;

in part in the need for a dS analogue of the so-called AdS/CFT correspondence
(the dS/CFT correspondence).

✓ Yet, the underlying motivation behind this attempt stems from a more fundamental
consideration/concern that we now elaborate on.
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Motivations

One notices that:

(i) Both field theoretical formulation and phenomenological treatment of an elementary
system, on the level of interpretation in particular, rest on the concepts of energy,
momentum, mass, and spin, whose existence is due to the principle of invariance under
the Poincaré group (the relativity group of flat Minkowski spacetime).

✓ The rest mass m and the spin s of an (Einsteinian) elementary system living in
flat Minkowski spacetime are the two invariants that specify the respective UIR of
the Poincaré group.

(ii) In a curved spacetime, however, any interpretation with reference to the relativity
group of flat Minkowski spacetime is physically irrelevant.

(iii) In curved spacetimes generally (with the exception of dS and AdS spacetimes), no
non-trivial groups of motion, and consequently, no literal or unique extension of the
aforementioned physical concepts exists.
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Motivations

dS and AdS spacetimes are the maximally symmetric solution to the vacuum Einstein’s
equations with respectively a positive and negative cosmological constant.

As Minkowski spacetime is the null-curvature limit of the ordinary dS and AdS
spacetimes, the Poincaré group can be obtained as a contraction of either dS or AdS
relativity groups.

✓ UIRs of the dS and AdS groups, analogous to their shared Poincaré contraction
limit, are characterized by two invariant parameters of the spin and energy scales
(note that, in the AdS case, the latter should be read as the rest energy). These
remarkable features, as already pointed out, allow the Wigner definition of
elementary systems to be extended to dS and AdS relativities.
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dS geometry and its relativity group

dS geometry and its relativity group

dS manifold can be conveniently visualized as a one-sheeted hyperboloid embedded in a
1 + 4-dimensional Minkowski spacetime R1+4 (by abuse of notation, let us say R5):

MR ≡
{
x = (x0, ... , x4) ∈ R5 ; (x)2 ≡ x · x = ηαβx

αxβ = −R2
}
, (1)

where xα (with α = 0, 1, 2, 3, 4) stands for the corresponding Cartesian coordinates and
ηαβ = diag(1,−1,−1,−1,−1) for the ambient Minkowski metric. From a cosmological
viewpoint: R = cH−1, where c is the speed of light and H is the Hubble constant.
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dS geometry and its relativity group

dS geometry and its relativity group

(i) The relativity group of dS spacetime, SO0(1, 4), is the ten-parameter group of all
linear transformations in R5 which leave invariant the quadratic form (x)2 = ηαβx

αxβ ,
have determinant 1, and do not reverse the direction of the “time” variable x0.

(ii) The universal covering of the dS relativity group is the symplectic Sp(2, 2) group. It
is the group of all 2× 2-matrices g, with quaternionic components:

Sp(2, 2) =

{
g =

(
a b
c d

)
; a, b, c, d ∈ H, det(g) = 1, g†γ0g = γ0

}
, (2)

where g† is the transpose, quaternionic conjugate of g and γ0 =

(
1 0
0 -1

)
, and 1 and 0

being, respectively, the unit and zero 2× 2 matrices.

(iii) A familiar realization of the corresponding Lie algebra is achieved by the linear span
of the ten Killing vectors:

Kαβ = xα∂β − xβ∂α , Kαβ = −Kβα . (3)
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dS geometry and its relativity group

A discrete symmetry!
(i) Considering the following one-to-one mapping:

R5 ∋ x ⇐⇒
1−1

/x = xAγA =

(
1x0 −x
x⋆ −1x0

)
, x = (x4, x⃗) ∈ H , x⋆ ≡ (x4,−x⃗) , (4)

the action of the dS group on R5, for each element g ∈ Sp(2, 2), is given by:

/x
′ = g/xg

−1 =

(
1x′0 −x′
x′⋆ −1x′0

)
. (5)

(ii) The group action of γ0 (as a particular member of the dS group) on x ∈ R5:

/x
′ = γ0

/x
(
γ0)−1

=

(
1x0 x
−x⋆ −1x0

)
, (6)

corresponds to the discrete symmetry:

x = (x0, x) 7→ x′ = (x0,−x) . (7)

✓ The existence of this discrete symmetry in the dS group sending any point
(x0, x) ∈MR to its mirror image with respect to the x0-axis, that is, (x0,−x) ∈MR, is
indeed the origin of the well-known energy ambiguity in dS relativity.
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dS geometry and its relativity group

A discrete symmetry!
Considering this discrete symmetry, the dS infinitesimal generators:

LA0 = −i
(
xA

∂

∂x0
− x0

∂

∂xA

)
, A = 1, 2, 3, 4 , (8)

transform into their respective opposites with possibly different signs of the
corresponding conserved charges, depending on the sign of x.

✓ This, for instance, implies that whether the generator L40, which contracts to the
Poincaré energy operator, moves us forwards or backward in time (towards increasing or
decreasing x0) depends on the sign of x, and hence, cannot be precisely determined. In
this sense, this is the best we can do:

There is no positive conserved energy in dS spacetime (!?).
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UIRs of the dS group and quantum version of dS motions

UIRs of the dS group and quantum version of dS motions

First ambient space notations:
According to ambient space notations, dS fields are identified with symmetric
(spinor-)tensor fields Ψ

(r)
α1 ... αn(x) on the dS manifold (x ∈MR), such that the indices

α1, ... , αn take the values 0, 1, 2, 3, 4 and r the values n+1/2, n being the tensorial rank.

(i) These fields as functions of R5 are assumed to be homogeneous with some arbitrarily
given degree of homogeneity ℓ:

x · ∂Ψ(r)
α1 ... αn

(x)
(
≡ xα ∂

∂xα

)
= ℓΨ(r)

α1 ... αn
(x) , (9)

where, for the sake of simplicity, the degree of homogeneity ℓ is usually set to 0.
(ii) The fields are also assumed to be transitive with respect to all indices α1, ... , αn:

xαiΨ(r)
α1 ... αi ... αn

(x) = (x ·Ψ)
(r−1)
α1 ... ᾰi ... αn

(x) = 0 , (10)

where by ᾰi we mean this index is omitted. Clearly, the transversality requirement
assures that the field Ψ

(r)
α1 ... αn(x) lies in the dS tangent spacetime.
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UIRs of the dS group and quantum version of dS motions

Here, in view of the importance of the transversality requirement, the following
symmetric, “transverse projector” is put forward:

θαβ = ηαβ +R−2xαxβ , θαβx
α = 0 = θαβx

β . (11)

This operator is in fact the transverse form of the dS metric in ambient space formalism.
Technically, θαβ is used to construct transverse entities, like the transverse derivative:

∂α = θαβ∂
β = ∂α +R−2xαx · ∂ , (12)

for which:

∂αxβ = θαβ , ∂α(x)
2 = 0 . (13)

The latter reveals that ∂ commutates with (x)2, and hence, is intrinsically defined on the
dS manifold (x)2 = −R2.
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UIRs of the dS group and quantum version of dS motions

On the representation (quantum) level, in the Hilbert space of the symmetric, square
integrable (with respect to some invariant inner product of Klein-Gordon type or else),

(spinor-)tensors Ψ
(r)
α1 ... αn(x) on MR, the Killing vectors Kαβ are represented by

(essentially) self-adjoint operators L
(r)
αβ =Mαβ + S

(n)
αβ + S

( 1
2
)

αβ , where the orbital part
reads as:

Mαβ = −i(xα∂β − xβ∂α) = −i(xα∂β − xβ∂α) , (14)

the action of the spinorial part S
(n)
αβ on the tensorial indices is:

S
(n)
αβ Ψ(r)

α1 ... αn
= −i

n∑
i=1

(
ηααi

Ψ
(r)

α1 ... (αi 7→β) ... αn
− (α⇌ β)

)
, (15)

and finally the spinorial part S
( 1
2
)

αβ acts on the spinorial indices by S
( 1
2
)

αβ = − i
4
[γα, γβ ],

where γαs stand for the five 4× 4-matrices generating the Clifford algebra. The
self-adjoint operators L

(r)
αβ obey the standard commutation relations of the dS Lie

algebra: [
L

(r)
αβ , L

(r)
γδ

]
= −i

(
ηαγL

(r)
βδ + ηβδL

(r)
αγ − ηαδL

(r)
βγ − ηβγL

(r)
αδ

)
. (16)

Note that the operators L
(r)
αβ are intrinsically defined on the dS4 hyperboloid

(x)2 = −R2, since we have [L
(r)
αβ , (x)

2] = 0.
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UIRs of the dS group and quantum version of dS motions

In this group theoretical construction, there are two Casimir operators:

quadratic ; Q(1)
r = −1

2
L

(r)
αβL

(r)αβ ,

quartic ; Q(2)
r = −W (r)

α W (r)α , (17)

where the dS counterpart of the Pauli-Lubanski operator
W

(r)
α = − 1

8
EαβδρσL

(r)βδL(r)ρσ, in which Eαβδρσ refers to the five-dimensional totally
antisymmetric Levi-Civita symbol. These two Casimir operators are also intrinsically
defined on the dS4 hyperboloid (x)2 = −R2 as L

(r)
αβs do, since [Q

(1,2)
r , (x)2] = 0.

Moreover, they commute with all generator representatives L
(r)
αβ , and hence, act like

constants on all states in a certain dS UIR:

Q(1,2)
r Ψ(r) = ⟨Q(1,2)

r ⟩Ψ(r), (18)

where the respective eigenvalues ⟨Q(1,2)
r ⟩, in the Dixmier notations, are determined in

terms of a pair of parameters ∆(p, q), with p ∈ N/2 and q ∈ C, as:

⟨Q(1)
r ⟩ =

(
− p(p+ 1)− (q + 1)(q − 2)

)
, (19)

⟨Q(2)
r ⟩ =

(
− p(p+ 1)q(q − 1)

)
. (20)

Therefore, the spectral values assumed by the Casimir operators (say, the allowed values
of p and q) can be utilized to classify UIRs of the dS group. These UIRs fall basically
into three distinguished series as we explain below.
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UIRs of the dS group and quantum version of dS motions

Principal series representations U
ps
s,ν are characterized by ∆(p = s, q = 1

2
+ iν). Two

different cases must be distinguished:

The integer spin representations, with ν ∈ R and s = 0, 1, 2, ... .

The half-integer spin representations, with ν ∈ R− {0} and s = 1
2
, 3
2
, 5
2
, ... .

Let us incorporate the parameters c (the speed of light) and ℏ (the Planck constant)
without setting them to unity. Let ν = mcR/ℏ define the relation between the
representation parameter ν and the Poincaré-Minkowski mass m. Then, the Poincaré
contraction limit of the representations yields:

Ups
s,ν −→

R→∞, ν→∞
ℏν/cR=m

P>
s,m ⊕ P<

s,m

?

, (21)

where P≷
s,m respectively refer to the positive/negative energy Wigner UIRs of the

Poincaré group, with spin s and mass m.

✓ The dS principal UIRs are recognized as dS massive representations, in the above
sense.
✓ Note that the spin-s fields associated with the dS (strictly) massive UIRs, admitting
no gauge invariance, possess 2s+ 1 degrees of freedom.
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UIRs of the dS group and quantum version of dS motions

Complementary series representations Ucs
s,ν are characterized by ∆(p = s, q = 1

2
+ ν).

Two distinguished cases come to the fore:

The scalar representation Ucs
0,ν , with ν ∈ R and 0 < |ν| < 3

2
.

The spinorial representation Ucs
s,ν , with ν ∈ R and 0 < |ν| < 1

2
, while s = 1, 2, 3, ... .

The only meaningful representation of the complementary series UIRs from the point of
view of a Minkowskian observer is the scalar representation Ucs

s=0,ν= 1
2
(∆(p = 0, q = 1)):1

C>1,0,0 C>1,0,0 ←↩ P>
0,0

Ucs
0, 1

2

↪→ ⊕ −→
R→∞

⊕ ⊕
C<−1,0,0 C<−1,0,0 ←↩ P<

0,0 .

(22)

✓ In the above sense, the scalar representation Ucs
0, 1

2
is called massless.

1Note that conformal invariance technically entails the discrete series representations (and
their lower end) of the (universal covering of the) conformal group or its double covering group
SO0(2, 4) or its fourth covering group SU(2, 2). Here, the respective conformal UIRs are

characterized by C≷E0,jl,jr
, with the parameter E0 denoting the positive/negative conformal

energy and (jl, jr) ∈ N/2× N/2 labeling the UIRs of SU(2)× SU(2).
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UIRs of the dS group and quantum version of dS motions

Discrete series representations Π±
p,q are characterized by ∆(p, q). For the symmetric

cases Π±
p=s,q=s, the parameter p = s (with s > 0) has a spin (helicity) meaning; the

superscript ‘±’ stands for the helicities ±s. We have to distinguish between:

The nonsquare-integrable scalar case Πp,0, with p = 1, 2, ... .

The spinorial cases Π±
p,q, with p = 1

2
, 1, 3

2
, ... and q = p, p− 1, ..., 1 or 1

2
(q > 0);

the representations characterized by q = 1
2
, namely, Π±

p, 1
2

, are not square integrable.

The Minkowskian meaningful representations are Π±
p=s,q=s (with s > 0):

C>s+1,0,s C>s+1,0,s ←↩ P>
−s,0

Π+
s,s ↪→ ⊕ −→

R→∞
⊕ ⊕

C<−s−1,0,s C<−s−1,0,s ←↩ P<
−s,0 ,

(23)

C>s+1,s,0 C>s+1,s,0 ←↩ P>
s,0

Π−
s,s ↪→ ⊕ −→

R→∞
⊕ ⊕

C<−s−1,s,0 C<−s−1,s,0 ←↩ P<
s,0 .

(24)

✓ In the above sense, the discrete series UIRs Π±
s,s (with s > 0) are called massless

representations.
✓ For the spin-s (> 0) fields associated with the dS (strictly) massless UIRs, due to the
gauge-invariant properties, the degrees of freedom reduce to 2, namely, the 2 modes of
helicities ±s, while the propagation of these modes is confined to the light cone.
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dS field equations

dS field equations

(Projective) Hilbert spaces carrying the dS UIRs (in some restricted sense) identify the
quantum (“one-particle”) state spaces of the respective elementary systems living in dS
spacetime. Such (projective) Hilbert spaces are densely generated by the square

integrable2, (spinor-)tensors Ψ
(r)
α1 ... αn(x) on MR. In practice, for a given dS UIR, the

common dense subspace (of the respective Hilbert space) carrying the UIR is generated

by the eigenfunctions of the dS Casimir operators Q
(1,2)
r for the assumed eigenvalues

⟨Q(1,2)
r ⟩, namely: (

Q(1,2)
r − ⟨Q(1,2)

r ⟩
)
Ψ(r)

α1 ... αn
(x) = 0 . (25)

The corresponding “wave (field) equation” is then identified with that of the quadratic

Casimir operator Q
(1)
r : (

Q(1)
r − ⟨Q(1)

r ⟩
)
Ψ(r)

α1 ... αn
(x) = 0 . (26)

✓ The equation involving the quartic Casimir operator Q
(2)
r , possessing higher

derivatives, naturally entails “ghost” solutions.

2Again, with respect to some invariant inner product of Klein-Gordon type or else.
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dS field equations

Let us now give the explicit form of the field equation associated with a rank-2 tensor
field, say, Ψ

(2)
αβ ≡ Kαβ , in terms of the ambient space notations. The explicit form of the

quadratic Casimir operator Q
(1)
2 , acting on the space generated by the rank-2 tensors

Kαβ , reads as:

Q
(1)
2 Kαβ =

(
Q

(1)
0 − 6

)
Kαβ − 2S∂x · Kαβ + 2Sx∂ · Kαβ + 2ηαβK′ , (27)

where Q
(1)
0 = − 1

2
MαβM

αβ = −R2∂
2
= −R2□R, the symmetrizer operator S acts as

S(ζαωβ) = ζαωβ + ζβωα, and finally K′ ≡ ηαβKαβ denotes the trace of the field.

✓ Trivially, if one desires to be left with the space that merely carries the respective dS
UIR, the requirements of homogeneity (reading here as x · ∂K = 0) and transversality
(x · K = 0) intrinsic to a field in the ambient space notations must be supplemented by
the divergenceless requirement (∂ · K = 0); note that the transversality and
divergenceless requirements together entail K′ = 0.
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dS field equations

For scalar fields Ψ(0) ≡ ϕ, the field equation is given by:(
Q

(1)
0 + τ(τ + 3)

)
ϕ(x) = 0 , Q0 = −R2□R , (28)

(i) τ = −q − 1 = −3/2− iν with ν ∈ R, for the scalar principal series;

(ii) τ = −q − 1 = −3/2− ν with 0 < |ν| < 3/2, for the scalar complementary series;

(iii) τ = −p− 2, with p = 1, 2, ..., for the scalar discrete series.

✓ From now on, we simplify our notations by dropping the superscript ‘(1)’ from Q
(1)
r

(Qr ≡ Q
(1)
r ).
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Partially massless graviton field equation

Partially massless graviton field equation

The partially massless spin-2 (say partially massless graviton) field is associated with the
discrete series UIR Π±

2,1, characterized by ∆(p = 2, q = 1), for which we have
⟨Q2⟩ = −4. Therefore, the corresponding field equation should be as follows:

(Q2 + 4)K = 0 , (29)

while x · ∂K = 0, x · K = 0, and ∂ · K = 0 (consequently, K′ = 0).

Generally, a symmetric transverse rank-2 tensor field K can be expressed in a dS-invariant
way in terms of vector fields K̃ and K (x · K̃ = 0 = x ·K), and the scalar field ϕ as:

K = SZK̃ +D2K + θϕ , (30)

where the three independent elements SZK̃, D2K, and θϕ form a closed family under
the action of Q2, D2 = S(D1 − x), D1 = R2∂, and:

K′ = 2
(
Z · K̃ +D1 ·K + 2ϕ

)
= 0 . (31)

✓ Note that the constant polarization five-vector Z = Zα (Zα ≡ θαβZ
β) carries the

five-dimensional (nonunitary!) representation (n1 = 0, n2 = 1) of the dS group.
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Partially massless graviton field equation

On the other hand, the tensor field (30) has to verify the field equation (29), which

implies that its ingredients K̃, K, and ϕ have to respectively verify:

Q1K̃ = 0 , (32)

(Q1 + 4)K = 2R−2(Z · x)K̃ , (33)

(Q0 + 4)ϕ = −4(Z · K̃) . (34)

(i) The crucial observation to make in this context is that the recurrence formula (30)
must have a group-theoretical interpretation.

(ii) Technically, it displays the reduction, through the leading term SZK̃, of the tensor
product (n1 = 0, n2 = 1)⊗∆(p = 2− 1, q = 1) which contains the UIR Π±

2,1.

(iii) Accordingly, K̃, verfying Q1K̃ = 0, has to obey the divergenceless condition

∂ · K̃ = 0 to be a carrier state for the UIR Π±
1,1, characterized by ∆(p = 1, q = 1).

Covariant Quantization of the Partially Massless Graviton Field in de Sitter SpacetimeAugust 2, 2023 21 / 46



Partially massless graviton field equation

(i) But, once one imposes such a condition on K̃, the solution to Q1K̃ = 0 leads to a
singularity of the type 1/⟨Q1⟩, where ⟨Q1⟩, being the quadratic Casimir eigenvalue
associated with the UIR Π±

1,1, is equal to zero.

(ii) To get rid of this singularity, the divergenceless condition on K̃ (∂ · K̃ = 0), must be

relaxed. In other words, one must solve the field equation Q1K̃ = 0 in a larger space
which includes one more degree of freedom due to the ∂ · K̃ ̸= 0 types of solutions.

(iii) Consequently, the equation Q1K̃ = 0 turns into a gauge-invariant one

Q1K̃ +D1∂ · K̃ = 0 in such a way that K̃ 7→ K̃ +D1ϕ̃g is a solution to the field

equation for any scalar field ϕ̃g as far as K̃ is.

(iv) Then, there are three main types of solutions for K̃, namely, gauge solutions,
physical solutions which are divergenceless, and solutions that are not
divergenceless.

Covariant Quantization of the Partially Massless Graviton Field in de Sitter SpacetimeAugust 2, 2023 22 / 46



Partially massless graviton field equation

After the gauge-fixing procedure, the explicit form of the solution reads as:

K̃ = Z̃ϕ̃− λ̃

2(1− λ̃)
D1

(
R−2(Z̃ · x)ϕ̃+ Z̃ · ∂ϕ̃

)
+

2− 3λ̃

1− λ̃
R−2D1Q

−1
0 (Z̃ · x)ϕ̃+D1ϕ̃g ,

(35)

where Z̃ denotes another constant polarization five-vector, λ̃
(
̸= 1
)
the gauge-fixing

parameter, ϕ̃ the dS massless conformally coupled scalar field obeying the equation:

(Q0 − 2)ϕ̃ = 0 , (36)

and corresponding to the scalar complementary (massless) UIR Ucs
0, 1

2
.

✓ A possible (scalar plane wave) solution to the latter equation is:

ϕ̃(x) =

(
x · ξ
R

)τ

, τ = −1,−2 , (37)

where x and ξ respectively live in MR and in the null-cone C in R5:

C =
{
ξ ∈ R5 ; (ξ)2 ≡ ξ · ξ = ηαβξ

αξβ = 0
}
. (38)
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Partially massless graviton field equation

Note that:

(i) After the gauge fixing procedure (for λ̃ ̸= 1), the gauge field ϕ̃g is determined by the

equation Q0ϕ̃g = 0, which means that ϕ̃g is the minimally coupled scalar field
corresponding to the scalar discrete UIR Π1,0.

(ii) The term distinguished above by drawing a double line below is responsible for the
appearance of logarithmic divergences in the field solutions which implies reverberation
inside the light cone. Accordingly, contrary to the Minkowskian flat case, the “minimal”
(or optimal) choice of λ̃ is not zero. It is clearly λ̃ = 2

3
, which eliminates the logarithmic

divergent term.

(iii) The solution (35), instead of the UIR Π±
1,1, carries an indecomposable representation

of the dS group containing Π±
1,1 as its central (physical) part.

Covariant Quantization of the Partially Massless Graviton Field in de Sitter SpacetimeAugust 2, 2023 24 / 46



Partially massless graviton field equation

(iv) The physical part of the solution (35), carrying the representation Π±
1,1, is obtained

by imposing the divergenceless condition (∂ · K̃ = 0) on (35) and eliminating the gauge

solution D1ϕ̃g:

∂ · K̃ =
1

1− λ̃

(
(2 + τ)R−2(Z̃ · x) + τ

Z̃ · ξ
x · ξ

)
ϕ̃

= 0 if and only if τ = −2 and Z̃ · ξ = 0 . (39)

✓ It is evident that the solutions satisfying the divergencelessness condition are not
determined by a particular choice of λ̃ (for λ̃ ̸= 1). Hence, one has the freedom to select

the specific value λ̃ = 2
3
.

Therefore, the plane-wave reading of the physical part of the solution (∂ · K̃ = 0) is:

K̃ ≡ K̃(x, ξ; Z̃) = 2

(
Z̃ − Z̃ · x

x · ξ ξ

)(
x · ξ
R

)−2

≡ 2 ε(x, ξ; Z̃)

(
x · ξ
R

)−2

. (40)

One notices that ξ · ε(x, ξ; Z̃) = ξ · ε(x, ξ; Z̃) = 0, as ξ · Z̃ = 0.
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Partially massless graviton field equation

Systematically, having the above scenario for the vector field K̃ entails the traceless
(K′ ̸= 0) and the divergenceless (∂ · K ≠ 0) conditions being relaxed from the very
beginning in the case of the tensor field K. Of course, to restrict the relaxed degrees of
freedom to 1, we also impose:

∂2 · K =
1

2
∂K′ , (41)

where ‘∂2·’ is called the generalized divergence on the dS hyperboloid and technically
defined as ∂2 · K = ∂ · K −R−2xK′ − 1

2
∂K′.

The field equation (29) then turns into the following gauge-invariant one:

(Q2 + 4)K+D2∂2 · K − θK′ = 0 , (42)

such that:

K 7→ K+D2D1ϕg − 2R2θϕg , (43)

represents a solution to the field equation as far as K does (ϕg being an arbitrary dS
scalar field). Now, we introduce a gauge fixing parameter λ. The field equation then
reads:

(Q2 + 4)K+ λD2∂2 · K − λθK′ = 0 , (44)

while we have in mind the constraint (41).
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Precision on the field equation:
Substituting the generic solution (30) into (44), we get three counterparts of Eqs.
(32)-(34) respectively:

Q1K̃ + λD1∂ · K̃ = 0 , (45)

(Q1 + 4)K = 2R−2(Z · x)K̃ + λZ(∂ · K̃)− 1

2
λ∂K′ , (46)

(Q0 + 4)ϕ = −4(Z · K̃)− 2λ(Z · x)∂ · K̃ + λK′ , (47)

where TZ · ∂K̃ ≡ Z · ∂K̃ −R−2x(Z · K̃).

✓ Here, we would like to point out that the above equations, as already expected, are
invariant under the transformations K 7→ K +D1ϕg and ϕ 7→ ϕ− 2R2ϕg, issued from
the gauge transformation (43), such that: if λ = 1, the scalar field ϕg remains arbitrary
(except for the restrictions imposed by ordinary differentiability prerequisites); if λ ̸= 1,
ϕg is restricted by (Q0 + 4)ϕg = 0.
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The Gupta-Bleuler triplet

The Gupta-Bleuler triplet

Considering the field equation (44), the corresponding dS-invariant bilinear form (inner
product) on the space of solutions is:

⟨K1,K2⟩ = iR2

∫
S3,ρ=0

[
(K1)

∗ · ·∂ρK2 − 2λ
(
(∂ρx) · (K1)

∗) · (∂ · K2)− (1∗ ⇋ 2)
]
dΩ ,

where K1 and K2 stand for two modes in the space of solutions, and dΩ for the invariant
measure on S3.

✓ Note that, above, we have employed a system of bounded global intrinsic coordinates
(Xµ) well suited for describing a bounded copy of dS spacetime, that is, S3 ×

(
−π

2
, π
2

)
.

This coordinate system, which is known in the literature under the name of conformal
coordinates, is characterized by:

x =
(
x0 = R tan ρ,R(cos ρ)−1u

)
, (48)

where −π
2
< ρ < π

2
and u ∈ S3.
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We now elaborate the Gupta-Bleuler triplet Vg ⊂ V ⊂ Vλ which carries the dS
indecomposable group representation structure corresponding to our problem:

(i) Vλ is the space of all square-integrable (according to (48)) solutions to the field
equation (44). In Vλ, the inner product is indefinite. This means that Vλ includes
negative norm solutions as well.
(ii) V is the space of the divergenceless and/or traceless solutions (recall that the
constraint (41)). It forms a closed subspace of Vλ and, according to the field equation
(44), is clearly λ independent. Of course, one must notice that the invariant subspace V
is not invariantly complemented in Vλ. The inner product in V is semidefinite.
(iii) Vg is the space of the gauge solutions of the form Kg = D2D1ϕg − 2R2θϕg. It
forms a closed, null-norm subspace of V . Of course, again, the invariant subspace Vg is
not invariantly complemented in V .

Covariant Quantization of the Partially Massless Graviton Field in de Sitter SpacetimeAugust 2, 2023 29 / 46



The Gupta-Bleuler triplet

Gauge states space; Vg

Considering the gauge solutions K = Kg ≡ D2D1ϕg − 2R2θϕg, the field equation (44)
reduces to:

(1− λ)(D2D1 − 2R2θ)(Q0 + 4)ϕg = 0 . (49)

✓ If λ = 1, the scalar field ϕg remains arbitrary.
✓ If λ ̸= 1, the scalar field ϕg is restricted by the equation (Q0 + 4)ϕg = 0 (possibly up
to the addition of a specific solution to the inhomogeneous equation (Q0 + 4)ϕg = ψg,
such that (D2D1 − 2R2θ)ψg = 0).
(i) Since:

L
(2)
αβKg =

(
D2D1 − 2R2θ

)
Mαβϕg , (50)

the gauge solutions Kg do not carry any spin; Kgs are entirely characterized by their
scalar content ϕg corresponding to the scalar discrete UIR Πp=2,q=0 (since, we have
(Q0 + 4)ϕg = 0).
(ii) It is also useful to point out that:

K′
g = −2R2(Q0 + 4)ϕg , ∂2 · Kg = −D1(Q0 + 4)ϕg . (51)

Therefore, as far as λ ̸= 1, and consequently, ϕg is restricted by (Q0 + 4)ϕg = 0, the
gauge solutions are tracelessness/divergencelessness.
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Physical states space (central part); V/Vg

The physical state space is λ independent. It consists of the solutions K = Kphys, which
are defined up to the gauge solutions Kg and obtained by imposing the divergenceless
and/or traceless condition on the field equation (44):

(Q2 + 4)Kphys = 0 . (52)

The dS group acts on physical states space V/Vg by the UIR Π±
2,1. In the sequel, we will

show that these modes propagate on the light cone.

Scalar states space (pure-trace part); Vλ/V
Then, the scalar states (or the pure-trace part)3 obey:

(1− λ)(Q0 + 4)K′ = 0 . (53)

✓ If λ = 1, K′ remains unrestricted. Then, one naturally loses the ability to restrain the
space Vλ.
✓ If λ ̸= 1, K′ is restricted by (Q0 + 4)K′ = 0, which implies that K′ also corresponds
to the scalar discrete UIR Πp=2,q=0.

3Recall that, due to the constraint (41), the relaxed degrees of freedom reduce to 1. This is
the fact that assures us that the exterior part of the Gupta-Bleuler triplet (i.e., Vλ/V ) is merely
characterized by the pure-trace solutions.
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Indecomposable group representation structure
The indecomposable group representation structure, carried by the above Gupta-Bleuler
triplet, associated with the dS partially massless graviton field, then reads:

Π2,0︸︷︷︸
Vλ/V

99K Π±
2,1︸︷︷︸

V/Vg

99K Π2,0︸︷︷︸
Vg

, (54)

where the arrows stand for the leaks under the dS group action. Note that the UIRs Π±
2,1

and Π2,0 share the same Casimir eigenvalue, and hence, they are Weyl equivalent.
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Field equation solutions

Field equation solutions

For the sake of simplicity, we merely restrict our attention to the physical sector of the
vector field K̃ (∂ · K̃ = 0), which is free of singularities. Then, we get the simplest forms
of Eqs. (45)-(47):

Q1K̃ = 0 , (55)

(Q1 + 4)K = 2R−2(Z · x)K̃ − 1

2
λ∂K′ , (56)

(Q0 + 4)ϕ = −4(Z · K̃) + λK′ . (57)

(i) The imposition of ∂ · K̃ = 0 merely confines the nonphysical (dependent on λ)
components of the equations, consequently merely affecting the nonphysical (dependent
on λ) part of the corresponding solution.

(ii) This simplified set of equations, similar to its previous version, remains unchanged
under the transformations K 7→ K +D1ϕg and ϕ 7→ ϕ− 2R2ϕg, issued from the gauge
invariance of the theory.
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Considering the above set of equations, we obtain:

ϕ = −2

3
(Z · K̃) + λ(Q0 + 4)−1K′ . (58)

K =
3

2
R−2(Z · x)K̃ +

1

2
T(Z · ∂)K̃ − 1

6
∂(Z · K̃)−1

2
λ(Q1 + 4)−1∂K′ . (59)

✓ The last term in both cases bears a logarithmic singularity since (Q0 + 4)K′ = 0.

Accordingly, a general solution to the field equation (44) can be expressed as follows:

K = −2

3
θ(Z · K̃) + SZK̃ +

3

2
D2R

−2(Z · x)K̃

+
1

2
D2T(Z · ∂)K̃ −

1

6
D2∂(Z · K̃)

− λ

2
R−2

(
D2(Q1 + 4)−1D1K′ − 2R2θ(Q0 + 4)−1K′

)
. (60)

✓ The gauge solution Kg = D2D1ϕg − 2R2θϕg is coupled to the λ-dependent part of
the solution (given in the last line).
✓ It is evident that the optimal choice for the gauge-fixing parameter is λ = 0, which
effectively removes all singular terms.
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Field equation solutions

Here, it is worth recalling:

K̃(x) = 2 ε(x, ξ; Z̃κ)

(
x · ξ
R

)−2

= 2

(
Z̃

κ

− Z̃κ · x
x · ξ ξ

)(
x · ξ
R

)−2

. (61)

Note that when choosing constant five-vectors, such as Z̃α, they are commonly labeled
with κ = 0, 1, 2, 3. These vectors then can be denoted as Z̃

(κ)
α or, for the sake of

convenience in expressions, as Z̃κ
α. Now, let us impose the following conditions on Z̃κ

α:

Z̃κ · Z̃κ′
= ηκκ

′
,

3∑
κ=1

Z̃κ
αZ̃

κ
β = −ηαβ ,

3∑
κ=1

Z̃κ
4 Z̃

κ
µ = 0 . (62)

It then follows that the characteristics of the dS polarization vector
ε(x, ξ; Z̃κ) ≡ εκ(x, ξ), bear a striking resemblance to the Minkowskian scenario:

3∑
κ=1

εκα(x, ξ) ε
κ
β(x, ξ) = −

(
θαβ −

ξαξβ
(x · ξ/R)2

)
, (63)

εκ(x, ξ) · εκ
′
(x, ξ) = Z̃κ · εκ

′
(x, ξ) = εκ(x, ξ) · εκ

′
(x′, ξ) = Z̃κ · Z̃κ′

= ηκκ
′
. (64)
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It follows from the above equations that the plane-wave reading of the solution to the
field equation (44) is:4

Kαβ(x) = a0 Eαβ(x, ξ;Z, Z̃)

(
x · ξ
R

)−2

, (65)

with a0 = 6 c0, where c0 is a normalization constant, and Eαβ(x, ξ;Z, Z̃) represents the
corresponding polarization tensor. Here, we consider an explicit realization of the latter,
if we select Z to be equal to Z̃ and refer to both as Z hereafter. Then, the polarization
tensor Eαβ(x, ξ;Z, Z̃) ≡ Eαβ(x, ξ;Z) adopts the following straightforward expression:

Eαβ(x, ξ;Z) ≡ Eκκ
′

αβ (x, ξ)

=
1

2

(
S εκα(x, ξ) εκ

′
β (x, ξ)− 2

3

(
θαβ −

ξαξβ
(x · ξ/R)2

)
εκ(x, ξ) · εκ

′
(x, ξ)

)
, (66)

where, again, ε(x, ξ; Z̃κ) ≡ εκ(x, ξ).

4Here, for simplicity, we again exclude the superscript ’κ’.
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(i) Evidently, we have ηαβEαβ(x, ξ;Z) ≡ E ′(x, ξ;Z) = 0. This means that when the
gauge-fixing parameter λ is set to zero, we are effectively constrained to the traceless
and/or divergenceless part of the solution living in the subspace V .

(ii) Moreover, ξ · E = ξ · E = 0. These transversality conditions are valid only for the
physical part of the solution residing in the quotient space V/Vg, rather than the entire
solution belonging to V , which includes both the physical and the gauge parts.

(iii) The dS tensor wave Kαβ(x) exhibits a homogeneity property with the degree of
τ = −2 when considered on both the null-cone C and the dS submanifold MR

(
⊂ R5

)
,

which is defined by the condition x · x = −R2, where R remains constant.

(iv) Within this framework, it becomes feasible to develop the covariant quantization of
the field by virtue of the closure of Kαβ(x) under the dS group action:(

U(g)K
)
αβ

(x) = gγαg
δ
βKγδ(g

−1x) =gγαg
δ
β a0 Eγδ(g−1x, ξ;Z)

(
g−1x · ξ
R

)−2

=a0 Eαβ(x, gξ; gZ)

(
x · gξ
R

)−2

. (67)
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(v) The final point to be discussed here is that the wave Kαβ(x), as a function on MR,
is only locally defined on connected open subsets of MR. To ensure a global definition of
this solution an analytical continuation becomes crucial. Consequently, we define the dS
tensor wave Kαβ(x, ξ) as the boundary value of the analytic continuation of the solution

(65) to the forward-tube T +; for z ∈ T + =
{
R5 + iV̊ +

}
∩M (C)

R and ξ ∈ C+ (where

V̊ + ≡
{
y ∈ R5 ; (y)2 > 0, y0 > 0

}
originate from the causal structure of MR.), the

following holds:

Kαβ(z, ξ) = a0 Eκκ
′

αβ (z, ξ)

(
z · ξ
R

)−2

. (68)

Then, the corresponding boundary value (in the distribution sense) of the
above-complexified waves yields a single-valued global plane-wave reading of the solution
(65) as:

bv Kαβ(z, ξ) ≡ Kαβ(x, ξ) = a0 Eκκ
′

αβ (x, ξ)

(
(x+ iy) · ξ

R

)−2 ∣∣∣∣
ξ∈C+, y∈V̊ +, y→0

. (69)
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Two-point function and quantum field

In this study, our focus lies on the free field part of the theory, where all truncated
correlation functions vanish. Consequently, the complete characterization of the
respective QFT is entirely captured by the corresponding Wightman two-point function
Wαβα′β′(x, x′), where α, β, α′, β′ = 0, 1, ... , 4. The two-point function must meet the
following criteria:

Indefinite sesquilinear form:∫
MR×MR

f∗αβ(x)Wαβα′β′(x, x′)fα′β′
(x′) dµ(x)dµ(x′) , (70)

where fαβ stands for a test function in the space of functions C∞ with compact
support in MR, and dµ(x) for the invariant measure on MR.

Covariance:

(g−1)γα(g
−1)δβWγδγ′δ′(gx, gx

′)gγ′α′g
δ′
β′ =Wαβα′β′(x, x′) , (71)

for all g ∈ SO0(1, 4).

Locality:

Wαβα′β′(x, x′) =Wα′β′αβ(x
′, x) , (72)

if x and x′ are spacelike separated (x · x′ > −R2).
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Index symmetrizer:

Wαβα′β′(x, x′) =Wαββ′α′(x, x′) =Wβαα′β′(x, x′) . (73)

Transversality:

xαWαβα′β′(x, x′) = 0 = x′α
′
Wαβα′β′(x, x′) . (74)

Normal analyticity: The Wightman two-point function Wαβα′β′(x, x′) is the
boundary value (in the sense of distribution) of a function Wαβα′β′(z, z′) that is
analytic in the tuboid domain:

T +(2) =
{
(z, z′) ; z ∈ T −, z′ ∈ T +

}
, (75)

where, again, T ± are respectively the forward and backward tubes of M
(C)
R ,

respectively, defined by:

T ± =
{
R5 + iV̊ ±

}
∩M (C)

R , (76)

and the domains V̊ ± ≡
{
y ∈ R5 ; (y)2 > 0, y0 ≷ 0

}
originate from the causal

structure of MR.
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Based on the previously mentioned condition of normal analyticity, we can derive the
following conclusions:

(i) The function Wαβα′β′(z, z′) exhibits maximal analyticity, allowing for its
analytic continuation to the “cut domain”:

∆ =
{
(z, z′) ∈M (C)

R ×M (C)
R ; (z − z′)2 < 0

}
. (77)

(ii) The “permuted Wightman two-point function” Wα′β′αβ(x
′, x) corresponds to

the boundary value of Wαβα′β′(z, z′) from the domain:

T −(2) =
{
(z, z′) ; z ∈ T +, z′ ∈ T −} , (78)

defined on M
(C)
R ×M (C)

R . Notably, the permuted two-point function fulfills all the
aforementioned requirements, as well.
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The explicit definition of the analytic two-point function Wαβα′β′(z, z′) can be derived
from the provided solution (65), using the following class of integral representations:

Wαβα′β′(z, z′) = a20

∫
γ

(
z · ξ
R

)−2(
z′ · ξ
R

)−2 3∑
κ,κ′=1

Eκκ
′

αβ (z, ξ) E∗κκ
′

α′β′ (z′∗, ξ) dµγ(ξ) ,

where the integration takes place over any orbital basis γ of the future null-cone
C+ ≡

{
ξ ∈ R5 ; (ξ)2 = 0, ξ0 > 0

}
, dµγ denotes the intrinsic C+ invariant measure on

γ and is derived from the Lebesgue measure of R5, and the normalization factor a0 is
determined subsequently by applying the local Hadamard condition. Then:

W (z, z′) = ∆(z, z′)W̃1(z, z
′) + Θ(z, z′)W̃0(z, z

′) ,

∆(z, z′) =− 9

4

(
SS ′ θ · θ′ + S R

−2(θ · z′)D′
2

3
+
S ′R−2(θ′ · z)D2

3
− R−2ZD2D

′
2

9

)
,

(79)

Θ(z, z′) =− 16

3

(
θ − D2D1

8R2

)(
θ′ − D′

2D
′
1

8R2

)
,

in which Z ≡ −z · z′/R2 is a dS-invariant length, AND ...
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Two-point function and quantum field

W̃1(z, z
′) =4c0

∫
γ

3∑
κ=1

εκ(z, ξ) ε∗κ(z′∗, ξ)

(
z · ξ
R

)−2(
z′ · ξ
R

)−2

dµγ(ξ)

=− 4

(
θ · θ′ + R−2(θ · z′)D′

1

2
+
R−2(θ′ · z)D1

2
− R−2ZD1D

′
1

4

)
W̃0(z, z

′) ,

(80)

W̃0(z, z
′) =c0

∫
γ

(
z · ξ
R

)−2(
z′ · ξ
R

)−2

dµγ(ξ) . (81)

Consequently, the analytic tensor two-point function can be expressed in terms of the
scalar analytic two-point function as:

Wαβα′β′(z, z′) = Dαβα′β′(z, z′) W̃0(z, z
′) . (82)

✓ Note that the integral representation (81) of the scalar analytic two-point function, for
well-chosen points z, z′ ∈ T +(2) in the domain determined by (z − z′)2 < 0, yields:

W̃0

(
z, z′

)
=
−1

8π2R2

1

1−Z(z, z′) , (83)

where the Hadamard condition gives a fixed value for the normalization factor c0.
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Eventually, taking the boundary value of the analytic two-point function (82) yields the
corresponding Wightman two-point function:

Wαβα′β′(x, x′) = bvWαβα′β′(z, z′) = Dαβα′β′(x, x′)
(
bv W̃0(z, z

′)
)
, (84)

with:

W̃0(x, x
′) = bv W̃0(z, z

′) =
−1

8π2R2

(
P

1

1−Z(x, x′) − iπ ϵ(x0 − x′0) δ
(
1−Z(x, x′)

))
,

(85)

where P stands for the principal part and ϵ(x0 − x′0) = 1, 0,−1 for (x0 − x′0) >,=, or
< 0, respectively.

✓ Here, it must be underlined that the derived kernel satisfies, through its construction,
the previously mentioned conditions of indefinite sesquilinearity, covariance, locality,
index symmetrization, transversality, and normal analyticity. These conditions are
essential for obtaining a Wightman two-point function. It is also crucial to emphasize
that the existence of a Wightman two-point function is a fundamental requirement in dS
axiomatic QFT.
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Light-cone propagation

Now without going into the technical details, let K̂αβ(x) denote the corresponding
quantum field operator in the introduced context. The field commutation relations are:[

K̂αβ(x), K̂α′β′(x′)
]
= 2i ImWαβα′β′(x, x′) = 2iDαβα′β′ Im W̃0(x, x

′) , (86)

where we have used Eq. (82) while, following the relation (85), we have:

Im W̃0(x, x
′) =

1

8πR2
ϵ(x0 − x′0) δ

(
1−Z(x, x′)

)
. (87)

Finally, we have the commutator:

iGαβα′β′(x, x′) =
[
K̂αβ(x), K̂α′β′(x′)

]
=

i

4πR2
Dαβα′β′ ϵ(x0 − x′0) δ

(
1−Z(x, x′)

)
.

(88)

✓ The right-hand side of the above equation clearly demonstrates the light-cone
propagation of the dS partially massless graviton field.
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