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Basic notions of axiomatic QFT

In Wightman’s axioms quantum fields are represented by point-like localized objects,
namely, operator-valued distributions on Minkowski space.

In the axioms of Glimm and Jaffe of Euclidean QFT quantum fields are represented by
probability measures on distributions on Euclidean space.

In the Haag-Kastler axioms of Algebraic QFT quantum fields are represented by open
set indexed objects, namely nets (flabby pre-cosheaves) of operator algebras.

Is there Euclidean analogue of Algebraic QFT? Yes, it is developed by D.
Schlingemann, in 1999.



Reflection positive representations

Consider the data:

A Hilbert space HE ,

A strongly continuous unitary representation on HE of the d-dimensional Euclidean
group E(d),

A fixed reflection θ in Rd along a “time axis” t ,

A family of E(d)-covariant closed subspaces {HV} of HE indexed by open sets
V ⊂ Rd .

We say that the above defines a reflection positive representation of E(d) if
R := Π+θΠ+ ≥ 0, where Π+ is the orthogonal projection on H t>0.

Theorem

(Klein-Landau, 1983) Every reflection positive representation of E(d) on HE gives rise to a
strongly continuous unitary representation of the d-dimensional orthochronous Poincaré
group P(d) on a Hilbert space HM satisfying the spectrum condition.



Euclidean Algebraic QFT

Consider the data:

A Hilbert space HE ,

A strongly continuous unitary representation on HE of the d-dimensional Euclidean
group E(d),

A fixed reflection θ in Rd

A fixed E(d)-invariant vector h0 ∈HE ,

A net of E(d)-covariant unital commutative ∗-algebras {AV} of bounded operators on
HE indexed by open sets V ⊂ Rd .

We say that the above defines a a d-dimensional Euclidean Algebraic QFT if the subspaces
AV h0 define a reflection positive representation of E(d).



Euclidean Algebraic QFT

Theorem
(Schlingemann, 1999) (1) Every d-dimensional Euclidean Algebraic QFT gives rise to:
(1) strongly continuous unitary representation of P(d) on a Hilbert space HM satisfying the
spectrum condition;
(2) A net of Banach algebras BV of bounded operators on HM indexed by doubles cones V
in d-dimensional Minkowski space satisfying:
(a) P(d)-covariance
(b) locality/causality: [BV1 ,BV2 ] = 0 for space-like separated V1 and V2.

Notes:
1. The net BV is obtained from At>0 via the action of P(d).
2. The locality property is proved by a Bargmann-Hall-Wightman type of theorem, using the
commutativity of At>0.
3. The original theorem of Schlingemann assumes the existence of sharp time localized
operators and produces a net of C∗-algebras, i.e. the original Haag-Kastler axioms.



Constructing Gaussian measures and random fields

Some terminology:

Fix a probability space (Ω,F ,µ).

Given a set T , by a random field indexed by T we mean a map X : T → L2(Ω,µ).

We write Xt(ω) = X(t,ω) for the function on T ×Ω given by X . The functions
{X(·,ω)}ω∈Ω are called the sample paths of X .

The covariance of a random field X defined via

Cov(X)(t1, t2) = 〈Xt1 ,Xt2〉L2 , t1, t2 ∈ T ,

A random field X is called Gaussian if all the random variables Xt are centered
Gaussian.

RT stands for the set of all maps from T to R.



Constructing Gaussian measures and random fields

Let T be the smallest σ-algebra on RT with respect to which the canonical projections from
RT to R are measurable.

Theorem

Let C : T ×T → R be positive definite and symmetric. Then there exists a centered
Gaussian probability measure µC on (RT ,T ) and a Gaussian random field X C on
(RT ,T ,µC) indexed by T whose covariance is C.

The existence of µC is proved by the reducing to the finite dimensional case, using the
Kolmogorov extension theorem; X C is the canonical random field given by evaluation at
points of RT .



Continuity of sample paths

Let T be a compact space and let X be a Gaussian random field which is continuous
as a map from T to L2(Ω,µ).

Define a pseudo-metric on T:

dX (t1, t2) = ‖Xt1−Xt2‖L2 .

Let NX (ε) be the minimum number of balls of radius ε whose union covers T .

Theorem
(R. Dudley) If the integral ∫

∞

0
(log NX (ε))1/2dε

is finite, the Gaussian random field X has a modification with continuous sample paths on
(T ,dX ).



Constructing non-Gaussian Euclidean Algebraic QFTs

Consider the following input data:

The covariance operator Cm = (−∆ + m2)−1 of the free real scalar Euclidean
quantum field with mass m > 0, where ∆ is the Laplacian on Rd .

A continuous function φ : R→ R

Theorem

(S.Z.) The pair (Cm,ψ) gives rise to (in general non-Gaussian) Euclidean Algebraic QFT.



Constructing non-Gaussian Euclidean Algebraic QFTs
Sketch of proof:

Denote the set of all open balls in Rd by Bd ; identify Bd with Rd × (0,∞) and equip it
with the Euclidean metric on the latter.

Set
Cm(x , r ,y ,s) := 〈vr 1b(x ,r),Cmvs1b(y ,s)〉L2(Rd ),

where vr is the reciprocal of the volume of a d-dimensional ball with radius r , and
1b(x ,r) is the indicator function of b(x , r), the ball in Rd with center x and radius r .

Cm(x , r ,y ,s) is a symmetric positive definite function on Bd , hence it defines a
Gaussian probability measure µCm on RBd .



Constructing non-Gaussian Euclidean Algebraic QFTs
Sketch of proof, cont.

Let C(Bd ) be the space of the continuous real-valued functions on Bd equipped with
the topology of uniform convergence on compact sets.

By Dudley’s theorem, the canonical random field X Cm associated to µCm has a
modification with continuous paths, thus one obtains a Borel Gaussian probability
measure µ̃Cm on C(Bd ).

Denote by X Cm,ψ the composition of the canonical random field associated to µ̃Cm with
the self-map of C(Bd ) induced by ψ.



Constructing non-Gaussian Euclidean Algebraic QFTs
Sketch of proof, cont.

For every open V ⊂ Rd define AV to be the ∗-algebra generated by the bounded

operators on L2
C(C(Bd ), µ̃Cm ) acting as multiplication by eiX Cm ,ψ

b , where the ball b is
contained in V .

Set HE := ARd 1 and define the E(d)-covariant family of subspaces HV := AV 1of HE .

The natural representation of E(d) on HE is:
- strongly continuous since E(d) acts continuously on C(Bd ),
- unitary since µ̃Cm is E(d)-invariant,
- reflection positive (with respect to any coordinate reflection θ) since the operator Cm

is reflection positive.

The net of algebras V 7→ AV is clearly commutative and E(d)-covariant.



Current and future research

Modify the construction so that one can obtain the full set of Haag-Kastler axioms.

Construct the φ4-model in this setting, utilizing an appropriate stochastic partial
“differential” equation.

Develop (a version of) the Haag-Kastler scattering theory for specific examples and
show non-triviality of the S-matrix.
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