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Basic notions of axiomatic QFT

@ In Wightman’s axioms quantum fields are represented by point-like localized objects,
namely, operator-valued distributions on Minkowski space.

@ In the axioms of Glimm and Jaffe of Euclidean QFT quantum fields are represented by
probability measures on distributions on Euclidean space.

@ In the Haag-Kastler axioms of Algebraic QFT quantum fields are represented by open
set indexed objects, namely nets (flabby pre-cosheaves) of operator algebras.

@ Is there Euclidean analogue of Algebraic QFT? Yes, it is developed by D.
Schlingemann, in 1999.



Reflection positive representations

Consider the data:
@ A Hilbert space HE,
@ A strongly continuous unitary representation on #g of the d-dimensional Euclidean
group E(d),
@ A fixed reflection 8 in R? along a “time axis” t,
@ A family of E(d)-covariant closed subspaces {4y} of #g indexed by open sets
VCRY.
We say that the above defines a reflection positive representation of E(d) if
R:=T,60, >0, where I, is the orthogonal projection on #;-o.

(Klein-Landau, 1983) Every reflection positive representation of E(d) on Hg gives rise to a
strongly continuous unitary representation of the d-dimensional orthochronous Poincaré
group P(d) on a Hilbert space Hy satisfying the spectrum condition.
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Euclidean Algebraic QFT

Consider the data:
@ A Hilbert space Hg,
@ A strongly continuous unitary representation on #g of the d-dimensional Euclidean
group E(d),
@ A fixed reflection 0 in RY
o A fixed E(d)-invariant vector hy € Hg,

@ A net of E(d)-covariant unital commutative *-algebras {4y} of bounded operators on
He indexed by open sets V C RY.

We say that the above defines a a d-dimensional Euclidean Algebraic QFT if the subspaces
Ay hy define a reflection positive representation of £(d).




Euclidean Algebraic QFT

(Schlingemann, 1999) (1) Every d-dimensional Euclidean Algebraic QFT gives rise to:

(1) strongly continuous unitary representation of P(d) on a Hilbert space Hy, satisfying the
spectrum condition;

(2) A net of Banach algebras ‘B, of bounded operators on Hy, indexed by doubles cones V
in d-dimensional Minkowski space satisfying:

(a) P(d)-covariance

(b) locality/causality: [By,, By,| = 0 for space-like separated V; and V.

Notes:

1. The net By is obtained from 4~ via the action of P(d).

2. The locality property is proved by a Bargmann-Hall-Wightman type of theorem, using the
commutativity of A;~q.

3. The original theorem of Schlingemann assumes the existence of sharp time localized
operators and produces a net of C*-algebras, i.e. the original Haag-Kastler axioms.



Constructing Gaussian measures and random fields

Some terminology:
@ Fix a probability space (2, ¥, u).
@ Given a set T, by a random field indexed by T we mean a map X : T — L2(Q,u).
@ We write X;(®) = X(t, ®) for the function on T x Q given by X. The functions

{X(-,)}weq are called the sample paths of X.
@ The covariance of a random field X defined via

COV(X)(t1,t2) = <Xt17Xt2>L27 h,beT,

@ A random field X is called Gaussian if all the random variables X; are centered
Gaussian.

e R stands for the set of all maps from T to R.



Constructing Gaussian measures and random fields

Let 7 be the smallest 6-algebra on R with respect to which the canonical projections from
R” to R are measurable.

Let C: T x T — R be positive definite and symmetric. Then there exists a centered
Gaussian probability measure uc on (RT, T) and a Gaussian random field X € on
(RT, T ,uc) indexed by T whose covariance is C.

The existence of uc is proved by the reducing to the finite dimensional case, using the
Kolmogorov extension theorem; X€ is the canonical random field given by evaluation at
points of R .



Continuity of sample paths

@ Let T be a compact space and let X be a Gaussian random field which is continuous
as a map from T to L2(Q, u).

@ Define a pseudo-metric on T:
dx(t, ) = || Xy — X | 2-

@ Let Nx(€) be the minimum number of balls of radius € whose union covers T.

(R. Dudley) If the integral

/0 " (log Nx (€))"/2de

is finite, the Gaussian random field X has a modification with continuous sample paths on
(T,dx).




Constructing non-Gaussian Euclidean Algebraic QFTs

Consider the following input data:

@ The covariance operator Cp, = (—A +m?)~" of the free real scalar Euclidean
quantum field with mass m > 0, where A is the Laplacian on R.

@ A continuous function ¢ : R — R

(S.Z.) The pair (Cm, V) gives rise to (in general non-Gaussian) Euclidean Algebraic QFT.




Constructing non-Gaussian Euclidean Algebraic QFTs
Sketch of proof:

@ Denote the set of all open balls in R? by By; identify By with R? x (0, ) and equip it
with the Euclidean metric on the latter.

@ Set
Cm(X, Yy, S) = <Vf1b(x,r)7 CmVs1b(y,s)>L2(]Rd)7
where v; is the reciprocal of the volume of a d-dimensional ball with radius r, and
1p(x,r) is the indicator function of b(x,r), the ball in RY with center x and radius r.

@ Cn(x,r,y,s) is a symmetric positive definite function on By, hence it defines a
Gaussian probability measure uc,, on RBo.



Constructing non-Gaussian Euclidean Algebraic QFTs
Sketch of proof, cont.

@ Let C(By) be the space of the continuous real-valued functions on B4 equipped with
the topology of uniform convergence on compact sets.

@ By Dudley’s theorem, the canonical random field X" associated to Uc,, has a
modification with continuous paths, thus one obtains a Borel Gaussian probability
measure g, on C(By).

@ Denote by X°¥ the composition of the canonical random field associated to Uc,, with
the self-map of C(By) induced by .



Constructing non-Gaussian Euclidean Algebraic QFTs
Sketch of proof, cont.

@ For every open V C RY define A4y to be the *-algebra generated by the bounded
v Cm,
operators on L2(C(Bg),lic,,) acting as multiplication by e ¥ where the ball b is
contained in V.
@ Set Hg := Ara 1 and define the E(d)-covariant family of subspaces #, := 4y 1of He.
@ The natural representation of E(d) on H is:
- strongly continuous since E(d) acts continuously on C(By),
- unitary since g, is E(d)-invariant,
- reflection positive (with respect to any coordinate reflection 0) since the operator C,
is reflection positive.

@ The net of algebras V +— Ay is clearly commutative and E(d)-covariant.



Current and future research

@ Modify the construction so that one can obtain the full set of Haag-Kastler axioms.

@ Construct the ¢*-model in this setting, utilizing an appropriate stochastic partial
“differential” equation.

@ Develop (a version of) the Haag-Kastler scattering theory for specific examples and
show non-triviality of the S-matrix.
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