Set-indexed random fields and Euclidean quantum field theory

Svetoslav Zahariev

City University of New York

July 21, 2022

INRNE, BAS Sofia, Bulgaria

(日)、(型)、(目)、(目)、(目)、(の)へ()

- 1. Basic notions of axiomatic QFT
- 2. Algebraic Euclidean QFT
- 3. Background from probability theory
- 4. Non-Gaussian examples of Algebraic Euclidean QFT models

5. Current research and perspectives

- In Wightman's axioms quantum fields are represented by point-like localized objects, namely, operator-valued distributions on Minkowski space.
- In the axioms of Glimm and Jaffe of Euclidean QFT quantum fields are represented by probability measures on distributions on Euclidean space.
- In the Haag-Kastler axioms of Algebraic QFT quantum fields are represented by <u>open</u> set indexed objects, namely nets (flabby pre-cosheaves) of operator algebras.
- Is there Euclidean analogue of Algebraic QFT? Yes, it is developed by D. Schlingemann, in 1999.

Reflection positive representations

Consider the data:

- A Hilbert space \mathcal{H}_E ,
- A strongly continuous unitary representation on *H_E* of the *d*-dimensional Euclidean group *E*(*d*),
- A fixed reflection θ in \mathbb{R}^d along a "time axis" t,
- A family of E(d)-covariant closed subspaces $\{\mathcal{H}_V\}$ of \mathcal{H}_E indexed by open sets $V \subset \mathbb{R}^d$.

We say that the above defines a reflection positive representation of E(d) if $R := \Pi_+ \theta \Pi_+ \ge 0$, where Π_+ is the orthogonal projection on $\mathcal{H}_{t>0}$.

Theorem

(Klein-Landau, 1983) Every reflection positive representation of E(d) on \mathcal{H}_E gives rise to a strongly continuous unitary representation of the d-dimensional orthochronous Poincaré group P(d) on a Hilbert space \mathcal{H}_M satisfying the spectrum condition.

Consider the data:

- A Hilbert space \mathcal{H}_E ,
- A strongly continuous unitary representation on *H_E* of the *d*-dimensional Euclidean group *E*(*d*),
- A fixed reflection θ in \mathbb{R}^d
- A fixed E(d)-invariant vector $h_0 \in \mathcal{H}_E$,
- A net of E(d)-covariant unital <u>commutative</u> *-algebras $\{\mathcal{A}_V\}$ of bounded operators on \mathcal{H}_E indexed by open sets $V \subset \mathbb{R}^d$.

We say that the above defines a <u>a</u> d-dimensional Euclidean Algebraic QFT if the subspaces $\overline{\mathcal{A}_V h_0}$ define a reflection positive representation of E(d).

Theorem

(Schlingemann, 1999) (1) Every d-dimensional Euclidean Algebraic QFT gives rise to: (1) strongly continuous unitary representation of P(d) on a Hilbert space \mathcal{H}_M satisfying the spectrum condition;

(2) A net of Banach algebras \mathcal{B}_V of bounded operators on \mathcal{H}_M indexed by doubles cones V in d-dimensional Minkowski space satisfying:

(a) P(d)-covariance
(b) locality/causality: [\$\mathcal{B}_{V_1}\$, \$\mathcal{B}_{V_2}\$] = 0 for space-like separated V₁ and V₂.

Notes:

1. The net \mathcal{B}_V is obtained from $\mathcal{A}_{t>0}$ via the action of P(d).

2. The locality property is proved by a Bargmann-Hall-Wightman type of theorem, using the commutativity of $\mathcal{A}_{t>0}$.

3. The original theorem of Schlingemann assumes the existence of sharp time localized operators and produces a net of C^* -algebras, i.e. the original Haag-Kastler axioms.

Constructing Gaussian measures and random fields

Some terminology:

- Fix a probability space $(\Omega, \mathcal{F}, \mu)$.
- Given a set *T*, by a <u>random field</u> indexed by *T* we mean a map $X : T \to L^2(\Omega, \mu)$.
- We write $X_t(\omega) = X(t, \omega)$ for the function on $T \times \Omega$ given by *X*. The functions $\{X(\cdot, \omega)\}_{\omega \in \Omega}$ are called the <u>sample paths</u> of *X*.
- The covariance of a random field X defined via

$$\operatorname{Cov}(X)(t_1,t_2) = \langle X_{t_1}, X_{t_2} \rangle_{L^2}, \quad t_1,t_2 \in \mathcal{T},$$

(日)、(型)、(目)、(目)、(目)、(の)へ()

- A random field X is called <u>Gaussian</u> if all the random variables X_t are centered Gaussian.
- \mathbb{R}^T stands for the set of all maps from T to \mathbb{R} .

Let \mathcal{T} be the smallest σ -algebra on \mathbb{R}^T with respect to which the canonical projections from \mathbb{R}^T to \mathbb{R} are measurable.

Theorem

Let $C: T \times T \to \mathbb{R}$ be positive definite and symmetric. Then there exists a centered Gaussian probability measure μ_C on $(\mathbb{R}^T, \mathcal{T})$ and a Gaussian random field X^C on $(\mathbb{R}^T, \mathcal{T}, \mu_C)$ indexed by T whose covariance is C.

The existence of μ_C is proved by the reducing to the finite dimensional case, using the Kolmogorov extension theorem; X^C is the canonical random field given by evaluation at points of \mathbb{R}^T .

Continuity of sample paths

- Let *T* be a compact space and let *X* be a Gaussian random field which is continuous as a map from *T* to L²(Ω, μ).
- Define a pseudo-metric on T:

$$d_X(t_1,t_2) = \|X_{t_1} - X_{t_2}\|_{L^2}.$$

• Let $N_X(\varepsilon)$ be the minimum number of balls of radius ε whose union covers T.

Theorem

(R. Dudley) If the integral

$$\int_{0}^{\infty} (\log N_X(\varepsilon))^{1/2} d\varepsilon$$

is finite, the Gaussian random field X has a modification with continuous sample paths on (T, d_X) .

Consider the following input data:

- The covariance operator $C_m = (-\Delta + m^2)^{-1}$ of the free real scalar Euclidean quantum field with mass m > 0, where Δ is the Laplacian on \mathbb{R}^d .
- A continuous function $\phi : \mathbb{R} \to \mathbb{R}$

Theorem

(S.Z.) The pair (C_m, ψ) gives rise to (in general non-Gaussian) Euclidean Algebraic QFT.

Constructing non-Gaussian Euclidean Algebraic QFTs

- Denote the set of all open balls in ℝ^d by B_d; identify B_d with ℝ^d × (0,∞) and equip it with the Euclidean metric on the latter.
- Set

Sketch of proof:

$$C_m(x,r,y,s) := \langle v_r \mathbf{1}_{b(x,r)}, C_m v_s \mathbf{1}_{b(y,s)} \rangle_{L^2(\mathbb{R}^d)},$$

where v_r is the reciprocal of the volume of a *d*-dimensional ball with radius *r*, and $1_{b(x,r)}$ is the indicator function of b(x,r), the ball in \mathbb{R}^d with center *x* and radius *r*.

• $C_m(x, r, y, s)$ is a symmetric positive definite function on B_d , hence it defines a Gaussian probability measure μ_{C_m} on \mathbb{R}^{B_d} .

Constructing non-Gaussian Euclidean Algebraic QFTs

Sketch of proof, cont.

- Let $C(B_d)$ be the space of the continuous real-valued functions on B_d equipped with the topology of uniform convergence on compact sets.
- By Dudley's theorem, the canonical random field X^{C_m} associated to μ_{C_m} has a modification with continuous paths, thus one obtains a Borel Gaussian probability measure μ̃_{C_m} on C(B_d).
- Denote by $X^{C_m,\Psi}$ the composition of the canonical random field associated to $\tilde{\mu}_{C_m}$ with the self-map of $C(\mathbf{B}_d)$ induced by Ψ .

Constructing non-Gaussian Euclidean Algebraic QFTs

Sketch of proof, cont.

- For every open V ⊂ ℝ^d define A_V to be the *-algebra generated by the bounded operators on L²_ℂ(C(B_d), µ̃_{C_m}) acting as multiplication by e^{iX^{Cm,ψ}_b}, where the ball b is contained in V.
- Set $\mathcal{H}_E := \overline{\mathcal{A}_{\mathbb{R}^d} \mathbf{1}}$ and define the E(d)-covariant family of subspaces $\mathcal{H}_V := \overline{\mathcal{A}_V \mathbf{1}}$ of \mathcal{H}_E .
- The natural representation of E(d) on \mathcal{H}_E is:
 - strongly continuous since E(d) acts continuously on $C(B_d)$,
 - unitary since $\widetilde{\mu}_{C_m}$ is E(d)-invariant,
 - reflection positive (with respect to any coordinate reflection θ) since the operator C_m is reflection positive.
- The net of algebras $V \mapsto \mathcal{A}_V$ is clearly commutative and E(d)-covariant.

- Modify the construction so that one can obtain the full set of Haag-Kastler axioms.
- Construct the ϕ^4 -model in this setting, utilizing an appropriate stochastic partial "differential" equation.
- Develop (a version of) the Haag-Kastler scattering theory for specific examples and show non-triviality of the *S*-matrix.

References

- Adler, R. J., Taylor, J. E.: Random Fields and Geometry, Springer, New York, 2007.
- Araki, H.: <u>Mathematical Theory of Quantum Fields</u>, Oxford University Press, Oxford, 1999.
- Glimm, J., Jaffe, A.: <u>Quantum Physics: A Functional Integral Point of View</u>, second ed., Springer, Berlin–New York, 1987.
- Klein, A., Landau, L.J.: From the Euclidean group to the Poincaré group via Osterwalder-Schrader positivity, <u>Comm. Math. Phys.</u> 87 (1983), 469–484.
- Schlingemann, D.: From Euclidean field theory to quantum field theory, <u>Rev. Math.</u> <u>Phys. 11</u> (1999), 1151–1178.
- Zahariev, S.: Set-indexed random fields and algebraic Euclidean quantum field theory, Preprint, 2021, available at arxiv.org/abs/2108.13443v2.