On (some of) the uses of random unitary matrices

Yacine Barhoumi-Andréani

University of Bochum

February 16, 2023

INRNE, Sofia

Outline

(1) Generalities

(2) The Toeplitz connection

- The Andréieff-Heine-Szegö/Cauchy-Binet formula
- Orthogonal polynomials on the unit circle
- The Schur measure and the Borodin-Okounkov formula
- Application : the Ising model
(3) Characters of \mathfrak{S}_{n} and $\mathcal{H}_{n}(q)$
- Schur-Weyl dualities
- The Hecke algebra
(4) Conclusion

Outline

(1) Generalities

(2) The Toeplitz connection

- The Andréieff-Heine-Szegö/Cauchy-Binet formula
- Orthogonal polynomials on the unit circle
- The Schur measure and the Borodin-Okounkov formula
- Application : the Ising model
(3) Characters of \mathfrak{S}_{n} and $\mathcal{H}_{n}(q)$
- Schur-Weyl dualities
- The Hecke algebra

4 Conclusion

General definitions

- For $N \in \mathbb{N}$, let $\mathcal{U}(N)$ be the space of unitary matrices

$$
\mathcal{U}(N):=\left\{M \in \mathcal{M}(N) / M^{*} M=M M^{*}=I_{N}\right\}
$$

- Let $U=\left(U_{k, l}\right)_{k, l \leqslant N}$ be a $N \times N$ unitary matrix with randomly distributed elements. This is a random variable $U: \Omega \longrightarrow \mathcal{U}(N)$ (with $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space) and the randomness is measured with respect to a certain probability measure \mathbb{P}.
- The most natural probability is the (normalised) Haar measure \mathbb{P}_{N} of the group $\mathcal{U}(N)$.
- Vocabulary : if we endow $\mathcal{U}(N)$ with its normalised (probability) Haar measure \mathbb{P}_{N}, the probability space $\left(\mathcal{U}(N), \mathbb{P}_{N}\right)$ is called the Circular Unitary Ensemble, in short $\operatorname{CUE}(N)$.

Probability on $\mathcal{U}(N)$

- A left Haar measure μ on a group G is a measure that is left invariant by elements of G :

$$
\mu(g E)=\mu(E) \quad \forall g \in G, \quad \forall E \in \mathcal{F}
$$

A Haar measure is a left Haar measure and a right Haar measure. On a compact group, we can turn it into a probability measure by rescaling it with the total mass.

- A class function f on $\mathcal{U}(N)$ is invariant by conjugacy by an element of $\mathcal{U}(N)$, hence, only depends on the eigenvalues/eigenangles of the matrix. By abuse of notations, we write :

$$
f(U)=f\left(V^{-1} U V\right) \equiv f\left(\theta_{1}, \ldots, \theta_{N}\right) \quad \text { with } \operatorname{Sp}(U)=\left\{e^{\mathrm{i} \theta_{1}}, \ldots, e^{\mathrm{i} \theta_{N}}\right\}
$$

The Haar measure on $\mathcal{U}(N)$

- One of the main tool to compute integrals on $\mathcal{U}(N)$ is the following :

Theorem (Weyl, 30)

Let f be a bounded class function (i.e. $\left.f\left(V^{-1} U V\right)=f(U)\right)$. Then, with an abuse of notation :

$$
\begin{aligned}
\mathbb{E}_{N}(f(U)) & :=\int_{\mathcal{U}(N)} f(U) d \mathbb{P}_{N}(U)=\int_{\mathcal{U}(N)} f\left(V^{-1} \Theta V\right) d \mathbb{P}_{N}^{\prime}(V, \Theta) \\
& \equiv \mathbb{E}_{N}\left(f\left(\theta_{1}, \ldots, \theta_{N}\right)\right) \\
& =\frac{1}{N!} \int_{(-\pi, \pi]^{N}} f\left(\theta_{1}, \ldots, \theta_{N}\right) \prod_{1 \leqslant k<\ell \leqslant N}\left|e^{\mathrm{i} \theta_{\ell}}-e^{\mathrm{i} \theta_{k}}\right|^{2} \frac{d \theta_{1} \cdots d \theta_{N}}{(2 \pi)^{N}} \\
& =: \frac{1}{N!} \int_{(-\pi, \pi]^{N}} f\left(\theta_{1}, \ldots, \theta_{N}\right)\left|\Delta\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{N}}\right)\right|^{2} \frac{d \theta_{1} \cdots d \theta_{N}}{(2 \pi)^{N}}
\end{aligned}
$$

Statistical mechanics intuition of the eigenangles

- The weight in Weyl's integration reads

$$
\prod_{1 \leqslant k<\ell \leqslant N}\left|e^{\mathrm{i} \theta_{\ell}}-e^{\mathrm{i} \theta_{k}}\right|^{2}=\left|\Delta\left(e^{\mathrm{i} \theta_{1}}, \ldots, e^{\mathrm{i} \theta_{N}}\right)\right|^{2}
$$

with Δ the Vandermonde determinant. It can be rewritten into

$$
\exp \left(-2 \sum_{1 \leqslant k<\ell \leqslant N}-\log \left|1-e^{\mathrm{i}\left(\theta_{k}-\theta_{\ell}\right)}\right|\right)=\exp \left(-2 \sum_{1 \leqslant k<\ell \leqslant N} H\left(\theta_{k}-\theta_{\ell}\right)\right)
$$

- This is the interaction potential of a Coulomb gaz of N repelling particules confined on a circle at "inverse temperature" 2. The electrostatic potential prevents the particles from clustering (they "repell" from each other like fermions).

Orthogonal polynomials for $L^{2}\left(\mathbb{P}_{N}\right)$

- The orthogonal polynomials for the Haar measure of \mathcal{U}_{N} are the Schur polynomials defined by

$$
s_{\lambda}\left(z_{1}, \ldots, z_{N}\right):=\frac{\operatorname{det}\left(z_{i}^{\lambda_{j}+N-j}\right)_{1 \leqslant i, j \leqslant N}}{\Delta\left(z_{1}, \ldots, z_{N}\right)}, \quad \lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{L} \geqslant 0
$$

- These polynomials are symmetric (as $Z \mapsto|\Delta(Z)|^{2}$ is symmetric). Here, λ is a partition with length $L:=\ell(\lambda) \leqslant N$. One completes the partition with 0 's to have a length N.
- The orthogonality relation reads $\left(\boldsymbol{u}:=\left(u_{1}, \ldots, u_{N}\right), d^{*} x:=\frac{d x}{2 \mathbf{i} \pi}\right)$

$$
\int_{\mathcal{U}_{N}} s_{\lambda}(U) s_{\mu}\left(U^{-1}\right) d U=\frac{1}{N!} \oint_{\mathbb{U}^{N}} s_{\lambda}(\boldsymbol{u}) s_{\mu}\left(\boldsymbol{u}^{-1}\right)|\Delta(\boldsymbol{u})|^{2} \frac{d^{*} \boldsymbol{u}}{\boldsymbol{u}}=\delta_{\lambda, \mu} \mathbb{1}_{\{\ell(\lambda) \leqslant N\}}
$$

How to compute on $\left(\mathcal{U}(N), \mathbb{P}_{N}\right)$?

(1) analysis of Toeplitz and Fredholm determinants (Onsager, Szegö, Johansson, Deift-Its-Krasovsky, Borodin-Okounkov),
(2) Orthogonal Polynomials on the Unit Circle (Killip-Nenciu, Najnudel),
(3) mathematical physics (Kostov) and supersymmetry (Conrey-FarmerZirnbauer, Fyodorov),
(1) integrable systems (Adler-Van Moerbeke, Forrester),
(algebraic combinatorics (Biane, Dehaye, Féray),
(6) representation theory and symmetric functions (Bump-Gamburd, Diaconis-Shahshahani, Dehaye, B.-A.),
(1) probability theory (Bourgade-Hughes-Nikeghbali-Yor, B.-A.),
(8) Integrable/determinantal probability (Borodin-Strahov),
(0) Weingarten calculus (Collins, Weingarten, Matsumoto-Novak),
(0) Itô calculus (Bru, Katori-Tanemura), etc.

Outline

(1) Generalities
(2) The Toeplitz connection

- The Andréieff-Heine-Szegö/Cauchy-Binet formula
- Orthogonal polynomials on the unit circle
- The Schur measure and the Borodin-Okounkov formula
- Application : the Ising model
(3) Characters of \mathfrak{S}_{n} and $\mathcal{H}_{n}(q)$
- Schur-Weyl dualities
- The Hecke algebra
(4) Conclusion

Andréieff-Heine-Szegö and/or Cauchy-Binet formula

Theorem

- Cauchy-Binet formula (1815) : if $A, B \in \mathcal{M}_{k \times N}$

$$
\begin{aligned}
\operatorname{det}\left(A B^{T}\right)_{k \times k} & =\operatorname{det}\left(\sum_{\ell=1}^{N} A_{i, \ell} B_{j, \ell}\right)_{1 \leqslant i, j \leqslant k} \\
& =\sum_{1 \leqslant \ell_{1}<\cdots<\ell_{k} \leqslant N} \operatorname{det}\left(A_{i, \ell_{j}}\right)_{1 \leqslant i, j \leqslant k} \operatorname{det}\left(B_{i, \ell_{j}}\right)_{1 \leqslant i, j \leqslant k} \\
& =\frac{1}{k!} \sum_{1 \leqslant \ell_{1}, \ldots, \ell_{k} \leqslant N} \operatorname{det}\left(A_{i, \ell_{j}}\right)_{1 \leqslant i, j \leqslant k} \operatorname{det}\left(B_{i, \ell_{j}}\right)_{1 \leqslant i, j \leqslant k}
\end{aligned}
$$

- Andréieff/Heine-Szegö identity (1886) : if $f_{i}, g_{i} \in L^{2}(\mathfrak{X}, \mu)$

$$
\begin{aligned}
\operatorname{det}\left(\int_{\mathfrak{X}} f_{i}(x)\right. & \left.g_{j}(x) d \mu(x)\right)_{1 \leqslant i, j \leqslant k} \\
& =\frac{1}{k!} \int_{\mathfrak{X}^{k}} \operatorname{det}\left(f_{i}\left(x_{j}\right)\right)_{1 \leqslant i, j \leqslant k} \operatorname{det}\left(g_{i}\left(x_{j}\right)\right)_{1 \leqslant i, j \leqslant k} d \mu^{\otimes k}(\boldsymbol{x})
\end{aligned}
$$

- Specialising the AHS formula with the discrete measure $\mu=\sum_{\ell=1}^{N} \delta_{\ell}$ gives the Cauchy-Binet formula.
- Taking a Riemann sum approximation in the Cauchy-Binet formula gives the AHS formula. The two formuli are thus equivalent.
- The proof is very simple :

$$
\begin{aligned}
& \frac{1}{k!} \int_{\mathfrak{X}} \operatorname{det}\left(f_{i}\left(x_{j}\right)\right)_{1 \leqslant i, j \leqslant k} \operatorname{det}\left(g_{i}\left(x_{j}\right)\right)_{1 \leqslant i, j \leqslant k} d \mu^{\otimes k}(\boldsymbol{x}) \\
& =\frac{1}{k!} \sum_{\sigma, \tau \in \mathfrak{S}_{k}} \varepsilon(\sigma) \varepsilon(\tau) \int_{\mathfrak{X}^{k}} \prod_{i=1}^{k} f_{\sigma(i)}\left(x_{i}\right) g_{\tau(i)}\left(x_{i}\right) d \mu\left(x_{i}\right) \\
& \quad=\frac{1}{k!} \sum_{\sigma, \tau \in \mathfrak{S}_{k}} \varepsilon\left(\sigma \tau^{-1}\right) \prod_{j=1}^{k} \int_{\mathfrak{X}} f_{\sigma \tau^{-1}(j)}(x) g_{j}(x) d \mu(x) \\
& =\operatorname{det}\left(\int_{\mathfrak{X}} f_{i}(x) g_{j}(x) d \mu(x)\right)_{1 \leqslant i, j \leqslant k}
\end{aligned}
$$

Applications (1/2)

- Recall that

$$
\Delta\left(z_{1}, \ldots, z_{N}\right)=\operatorname{det}\left(z_{i}^{j-1}\right)_{1 \leqslant i, j \leqslant N}=: \operatorname{det}\left(f_{j}\left(z_{i}\right)\right)_{i, j}
$$

- Proof of the orthogonality of Schur functions, with $\ell(\lambda), \ell(\mu) \leqslant N$:

$$
\begin{aligned}
&\left\langle s_{\lambda}, s_{\mu}\right\rangle_{L^{2}\left(\mathcal{U}_{N}\right)}=\frac{1}{N!} \oint_{\mathbb{U}^{N}} s_{\lambda}(\boldsymbol{z}) s_{\mu}\left(\boldsymbol{z}^{-1}\right)|\Delta(\boldsymbol{z})|^{2} \frac{d^{*} \boldsymbol{z}}{\boldsymbol{z}} \\
&=\frac{1}{N!} \oint_{\mathbb{U}^{N}} \operatorname{det}\left(z_{i}^{\lambda_{j}+N-j}\right)_{1 \leqslant i, j \leqslant N} \operatorname{det}\left(z_{i}^{-\left(\mu_{j}+N-j\right)}\right)_{1 \leqslant i, j \leqslant N} \frac{d^{*} \boldsymbol{z}}{\boldsymbol{z}} \\
& \stackrel{(A H S)}{=} \operatorname{det}\left(\oint_{\mathbb{U}} z^{\lambda_{i}+N-i-\left(\mu_{j}+N-j\right)} \frac{d^{*} z}{z}\right)_{1 \leqslant i, j \leqslant N} \\
&=\operatorname{det}\left(\delta_{\lambda_{i}+N-i, \mu_{j}+N-j}\right)_{1 \leqslant i, j \leqslant N}=(\lambda, \mu) \text {-minor of } I_{N+|\lambda|} \\
&=\prod_{k=1}^{N} \delta_{\lambda_{i}-i, \mu_{i}-i} \\
&=: \delta_{\lambda, \mu}
\end{aligned}
$$

Applications (2/2), the Toeplitz connection

- Setting $f=g^{\otimes N}$ in the Weyl formula gives

$$
\begin{aligned}
& \int_{\mathcal{U}_{N}} \operatorname{det}(g(U)) d U=\frac{1}{N!} \oint_{\mathbb{U}^{N}}|\Delta(Z)|^{2} \prod_{k=1}^{N} g\left(z_{k}\right) \frac{d z_{k}}{2 \mathbf{i} \pi z_{k}} \\
&=\frac{1}{N!} \oint_{\mathbb{U}^{N}} \Delta(Z) \Delta\left(Z^{-1}\right) \prod_{k=1}^{N} g\left(z_{k}\right) \frac{d z_{k}}{2 \mathbf{i} \pi z_{k}} \\
&=\frac{1}{N!} \oint_{\mathbb{U}^{N}} \operatorname{det}\left(z_{i}^{j-1}\right)_{i, j \leqslant N} \operatorname{det}\left(z_{i}^{-(j-1)}\right)_{i, j \leqslant N} \prod_{k=1}^{N} g\left(z_{k}\right) \frac{d^{*} z_{k}}{z_{k}} \\
& \stackrel{(A H S)}{=} \operatorname{det}\left(\oint_{\mathbb{U}} z^{i-j} g(z) \frac{d^{*} z}{z}\right)_{1 \leqslant i, j \leqslant N} \\
&=: \operatorname{det}\left(\boldsymbol{T}_{N}(g)\right)=: \boldsymbol{D}_{N}(g)
\end{aligned}
$$

- $\boldsymbol{T}_{N}(g)$ is a Toeplitz matrix and $\boldsymbol{D}_{N}(g)$ is a Toeplitz determinant with symbol g.

Applications (2/2), the Toeplitz connection, example

- For $g(z)=e^{x\left(z+z^{-1}\right)}$, one has $\operatorname{det}(g(U))=e^{x \operatorname{tr}\left(U+U^{-1}\right)}$ hence

$$
\begin{aligned}
\mathbb{E}\left(e^{x \operatorname{tr}\left(U_{N}+U_{N}^{-1}\right)}\right) & :=\int_{\mathcal{U}_{N}} e^{x\left(\operatorname{tr}(U)+\operatorname{tr}\left(U^{-1}\right)\right)} d U \\
& =\operatorname{det}\left(\oint_{\mathbb{U}} z^{i-j} e^{x\left(z+z^{-1}\right)} \frac{d z}{2 \mathbf{i} \pi z}\right)_{1 \leqslant i, j \leqslant N} \\
& =: \operatorname{det}\left(J_{i-j}(2 x)\right)_{1 \leqslant i, j \leqslant N}
\end{aligned}
$$

where $J_{x}(z)$ is the Bessel function of first kind.

- The Strong Szegö Theorem gives for $f(z)=\sum_{k \in \mathbb{Z}} f_{k} z^{k}$

$$
\boldsymbol{D}_{n}\left(e^{f}\right)=e^{n f_{0}+V(f)+o(1)}, \quad V(f)=\sum_{k \geqslant 1} k f_{k} f_{-k} \quad \text { if } \quad \sum_{k}\left|\sqrt{k} f_{k}\right|^{2}<\infty
$$

- This translates into a probabilistic result, a Central Limit Theorem for the real part of the trace of $U_{N} \sim \operatorname{CUE}(N)$:

$$
\mathbb{E}\left(e^{\frac{x}{2} \operatorname{tr}\left(U_{N}+U_{N}^{-1}\right)}\right):=\mathbb{E}\left(e^{x \mathfrak{M c}\left(\operatorname{tr}\left(U_{N}\right)\right)}\right)=e^{\frac{x^{2}}{2}+o(1)}
$$

Outline

(1) Generalities
(2) The Toeplitz connection

- The Andréieff-Heine-Szegö/Cauchy-Binet formula
- Orthogonal polynomials on the unit circle
- The Schur measure and the Borodin-Okounkov formula
- Application : the Ising model
(3) Characters of \mathfrak{S}_{n} and $\mathcal{H}_{n}(q)$
- Schur-Weyl dualities
- The Hecke algebra
(4) Conclusion

OPUCs

- The AHS formula allows one more description of a Toeplitz determinant. Taking linear combinations of lines and/or columns in the Vandermonde determinant gives

$$
\int_{\mathcal{U}_{N}} \operatorname{det}(g(U)) d U=\frac{1}{N!} \oint_{\mathbb{U}^{N}}|\Delta(Z)|^{2} \prod_{k=1}^{N} g\left(z_{k}\right) \frac{d z_{k}}{2 \mathbf{i} \pi z_{k}}
$$

$$
=\frac{1}{N!} \oint_{\mathbb{U}^{N}} \operatorname{det}\left(z_{i}^{j-1}\right)_{i, j \leqslant N} \operatorname{det}\left(z_{i}^{-(j-1)}\right)_{i, j \leqslant N} \prod_{k=1}^{N} g\left(z_{k}\right) \frac{d^{*} z_{k}}{z_{k}}
$$

$$
=\frac{1}{N!} \oint_{\mathbb{U}^{N}} \operatorname{det}\left(P_{j-1}\left(z_{i}\right)\right)_{i, j \leqslant N} \operatorname{det}\left(\overline{Q_{j-1}\left(z_{i}\right)}\right)_{i, j \leqslant N} g^{\otimes N}(\boldsymbol{z}) \frac{d^{*} \boldsymbol{z}}{\boldsymbol{z}}
$$

$$
\stackrel{(A H S)}{=} \operatorname{det}\left(\oint_{\mathbb{U}} P_{i-1}(z) \overline{Q_{j-1}(z)} g(z) \frac{d^{*} z}{z}\right)_{1 \leqslant i, j \leqslant N}
$$

$$
\left.=\operatorname{det}\left(\left\langle P_{i-1}, Q_{j-1}\right\rangle_{L^{2}(g \bullet \text { Leb })}\right)_{1 \leqslant i, j \leqslant N} \quad \text { (Gram matrix }\right)
$$

- P_{j} and Q_{j} are monic and of degree j.
- One can choose $P_{j}=Q_{j}$ to be orthogonal in $L^{2}\left(g\left(e^{i \theta}\right) d \theta\right)$ if g is an acceptable function (non negative integrable on \mathbb{U}). The Gram matrix then becomes diagonal :

$$
\int_{\mathcal{U}_{N}} \operatorname{det}(g(U)) d U=\operatorname{det}\left(\left\langle P_{i-1}, P_{j-1}\right\rangle_{L^{2}(g \bullet L e b)}\right)_{1 \leqslant i, j \leqslant N}=\prod_{k=0}^{N-1}\left\|P_{k}\right\|_{L^{2}\left(g\left(e^{i \theta}\right) d \theta\right)}^{2}
$$

- The theory of Orthogonal Polynomials on the Unit Circle (OPUC) mimics the theory of Orthogonal Polynomials on the Real Line (OPRL) with a few differences.
- Such computations were used e.g. in the study of partition functions in 2D Yang-Mills theory :
- D. J. Gross, A. Matytsin, Instanton induced large N phase transitions in two and four dimensional $Q C D$, Nucl. Phys. B 429(1):50-74 (1994).
國 D. J. Gross, E. Witten, Possible third-order phase transition in the large- N lattice gauge theory, Phys. Rev. D 21(2):446-453 (1980).

Outline

(1) Generalities
(2) The Toeplitz connection

- The Andréieff-Heine-Szegö/Cauchy-Binet formula
- Orthogonal polynomials on the unit circle
- The Schur measure and the Borodin-Okounkov formula
- Application : the Ising model
(3) Characters of \mathfrak{S}_{n} and $\mathcal{H}_{n}(q)$
- Schur-Weyl dualities
- The Hecke algebra
(4) Conclusion

Cauchy identities and specialisations

- The Cauchy identity (Cauchy-Binet formula for the Cauchy determinant) reads

$$
H[X Y]:=\prod_{i, j} \frac{1}{1-x_{i} y_{j}}=\sum_{\lambda} s_{\lambda}(X) s_{\lambda}(Y)
$$

- By taking logarithms and supposing $\left|x_{i} y_{j}\right|<1$, one also has

$$
H[X Y]=\exp \left(\sum_{k \geqslant 1} \frac{1}{k} p_{k}(X) p_{k}(Y)\right), \quad p_{k}(X)=\sum_{j} x_{j}^{k}
$$

- Taking this last expansion as a definition of $H[X Y]$, one can specialise the $p_{k}(X)$ in any possible way to get an identity involving Schur functions (there is an exact formula involving the s_{λ} 's and the p_{k} 's).

Character expansion

- We now define

$$
H[X \mathcal{A}]=\exp \left(\sum_{k \geqslant 1} \frac{1}{k} p_{k}(X) p_{k}[\mathcal{A}]\right)=\sum_{\lambda} s_{\lambda}(X) s_{\lambda}[\mathcal{A}]
$$

and consider

$$
\int_{\mathcal{U}_{N}} H[\mathcal{A} U] H\left[\mathcal{B} U^{-1}\right] d U=\frac{1}{N!} \oint_{\mathbb{U}^{N}} H[\mathcal{A} \boldsymbol{u}] H\left[\mathcal{B} \boldsymbol{u}^{-1}\right]|\Delta(\boldsymbol{u})|^{2} \frac{d^{*} \boldsymbol{u}}{\boldsymbol{u}}
$$

- The character expansion formula is

$$
\int_{\mathcal{U}_{N}} H[\mathcal{A} U] H\left[\mathcal{B} U^{-1}\right] d U=\sum_{\ell(\lambda) \leqslant N} s_{\lambda}[\mathcal{A}] s_{\lambda}[\mathcal{B}]
$$

- It is obtained using the Cauchy formula and the orthogonality of the Schur functions (characters of \mathcal{U}_{N}).

The Schur measure

- Suppose that $s_{\lambda}[\mathcal{A}] s_{\lambda}[\mathcal{B}] \geqslant 0$. One can define the following measure on partitions of an integer $\mathbb{Y}:=\uplus_{n \geqslant 0}\{\lambda:|\lambda|=n\}\left(|\lambda|:=\sum_{k} \lambda_{k}\right)$

$$
\mathbb{P}_{\operatorname{Schur}(\mathcal{A}, \mathcal{B})}(\{\lambda\}):=\frac{1}{H[\mathcal{A B}]} s_{\lambda}[\mathcal{A}] s_{\lambda}[\mathcal{B}]
$$

- This is the Schur measure introduced in :
(A. Okounkov, Infinite wedge and random partitions, Selecta Math. New Ser. 7(1):57-81 (2001).
- If $\boldsymbol{\lambda}$ is the canonical random variable on $\left(\mathbb{Y}, \mathcal{F}, \mathbb{P}_{\text {Schur }(\mathcal{A}, \mathcal{B})}\right)$, one has

$$
\int_{\mathcal{U}_{N}} H[\mathcal{A} U] H\left[\mathcal{B} U^{-1}\right] d U=H[\mathcal{A B}] \mathbb{P}_{\operatorname{Schur}(\mathcal{A}, \mathcal{B})}(\ell(\boldsymbol{\lambda}) \leqslant N)
$$

- If $f_{\mathcal{A}, \mathcal{B}}(z)=\sum_{k \geqslant 1}\left(\frac{p_{k}[\mathcal{A}]}{k} z^{k}+\frac{p_{k}[\mathcal{B}]}{k} z^{-k}\right)$ the Strong Szegö Theorem reads

$$
\boldsymbol{D}_{N}\left(e^{f_{\mathcal{A}, \mathcal{B}}}\right)=H[\mathcal{A B}] \mathbb{P}_{\operatorname{Schur}(\mathcal{A}, \mathcal{B})}(\ell(\boldsymbol{\lambda}) \leqslant N) \underset{N \rightarrow+\infty}{ } H[\mathcal{A B}]
$$

The Borodin-Okounkov formula

- This is the fundamental link Toeplitz-Fredholm :

$$
\begin{array}{ll}
& \boldsymbol{D}_{N}\left(e^{f_{\mathcal{A}, \mathcal{B}}}\right)=H[\mathcal{A B}] \operatorname{det}\left(I-\mathcal{K}_{\mathcal{A}, \mathcal{B}}\right)_{\ell^{2}\left(N+\mathbb{N}^{*}\right)} \\
\prime \prime \Longleftrightarrow & \mathbb{P}_{\operatorname{Schur}(\mathcal{A}, \mathcal{B})}(\ell(\boldsymbol{\lambda}) \leqslant N)=\operatorname{det}\left(I-\mathcal{K}_{\mathcal{A}, \mathcal{B}}\right)_{\ell^{2}\left(N+\mathbb{N}^{*}\right)}
\end{array}
$$

where $N+\mathbb{N}^{*}=\{N, N+1, N+2, \ldots\}, \mathcal{K}_{\mathcal{A}, \mathcal{B}}$ is an operator acting on $\ell^{2}\left(N+\mathbb{N}^{*}\right)$ with explicit (half-)infinite matrix $\mathcal{K}_{\mathcal{A}, \mathcal{B}}[i, j]$.

- The Fredholm determinant is defined with $\operatorname{tr}(A)=\sum_{m} A[m, m]$ and

$$
\begin{aligned}
\operatorname{det}(I+x \mathcal{K})_{\ell^{2}(\mathfrak{X})} & :=\sum_{k \geqslant 0} x^{k} \operatorname{tr}\left(\wedge^{k} \mathcal{K}\right)_{\wedge^{k} \ell^{2}(\mathfrak{X})} \\
& =\sum_{k \geqslant 0} \frac{x^{k}}{k!} \sum_{m_{1}, \ldots, m_{k} \in \mathfrak{X}} \operatorname{det}\left(\mathcal{K}\left[m_{i}, m_{j}\right]\right)_{1 \leqslant i, j \leqslant k}
\end{aligned}
$$

A. Borodin, A. Okounkov, A Fredholm determinant formula for Toeplitz determinants, Integral Equations Operator Theory 37(4):386-396 (2000).

A quick overview of the proof $(1 / 3)$

- With the ω involution of symmetric functions (replacing the alphabets \mathcal{A}, \mathcal{B} with their supersymmetric counterparts), one has to prove

$$
\mathbb{P}_{\operatorname{Schur}(\mathcal{A}, \mathcal{B})}\left(\boldsymbol{\lambda}_{1} \leqslant N\right)=\operatorname{det}\left(I-\mathcal{K}_{\mathcal{A}, \mathcal{B}}\right)_{\ell^{2}\left(N+\mathbb{N}^{*}\right)}
$$

- The inclusion-Exclusion formula reads

$$
\begin{aligned}
\mathbb{P}_{\operatorname{Schur}(\mathcal{A}, \mathcal{B})}\left(\boldsymbol{\lambda}_{1} \leqslant N\right) & =\mathbb{P}\left(\forall k \geqslant 1, \boldsymbol{\lambda}_{k} \leqslant N\right) \\
& =\sum_{k \geqslant 0}(-1)^{k} \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k}} \mathbb{P}\left(\boldsymbol{\lambda}_{i_{1}}>N, \ldots, \boldsymbol{\lambda}_{i_{k}}>N\right) \\
& =\sum_{k \geqslant 0} \frac{(-1)^{k}}{k!} \sum_{1 \leqslant i_{1} \neq i_{2} \neq \cdots \neq i_{k}} \mathbb{P}\left(\boldsymbol{\lambda}_{i_{1}}>N, \ldots, \boldsymbol{\lambda}_{i_{k}}>N\right) \\
& =\sum_{k \geqslant 0} \frac{(-1)^{k}}{k!} \sum_{m_{1}, \ldots, m_{k}>N} \sum_{1 \leqslant i_{1} \neq i_{2} \neq \cdots \neq i_{k}} \mathbb{P}\left(\boldsymbol{\lambda}_{i_{1}}=m_{1}, \ldots, \boldsymbol{\lambda}_{i_{k}}=m_{k}\right) \\
&
\end{aligned}
$$

A quick overview of the proof $(2 / 3)$

- The correlation functions are defined by

$$
\begin{aligned}
\rho_{k}\left(m_{1}, \ldots, m_{k}\right) & :=\sum_{1 \leqslant i_{1} \neq i_{2} \neq \cdots \neq i_{k}} \mathbb{P}_{\operatorname{Schur}(\mathcal{A}, \mathcal{B})}\left(\boldsymbol{\lambda}_{i_{1}}=m_{1}, \ldots, \boldsymbol{\lambda}_{i_{k}}=m_{k}\right) \\
& =\mathbb{P}_{\operatorname{Schur}(\mathcal{A}, \mathcal{B})}\left(\boldsymbol{\lambda} \supset\left\{m_{1}, \ldots, m_{k}\right\}\right)
\end{aligned}
$$

and one wants to write them as a determinant.

- The Schur functions are also given by the Jacobi-Trudi formula in vertex form as scalar products on the fermionic Fock space $\oplus_{\lambda} \mathbb{C}|\lambda\rangle$:

$$
s_{\lambda}[\mathcal{A}]=\langle\lambda| \mathcal{T}_{\mathcal{A}}|\varnothing\rangle, \quad \mathcal{T}_{\mathcal{A}}:=e^{\sum_{k \geqslant 1} \frac{p_{k}[\mathcal{A}]}{k} \alpha_{k}}
$$

- The bosons $\left(\alpha_{k}\right)$ satisfy $\left[\alpha_{k}, \alpha_{\ell}\right]=k \delta_{k,-\ell}$ and are quadratic forms in the fermions $\left(\psi_{k}\right)_{k}$ (Boson-Fermion correspondance) :

$$
\alpha_{n}=\sum_{k \in \mathbb{Z}} \psi_{k-n} \psi_{k}^{*}
$$

A quick overview of the proof $(3 / 3)$

- The 1-dimensional projection $\psi_{k} \psi_{k}^{*}$ acts on $|\lambda\rangle$ with eigenvalue

$$
\psi_{k} \psi_{k}^{*}|\lambda\rangle=\mathbb{1}_{\{k \in \lambda\}}|\lambda\rangle
$$

- The correlation functions $\mathbb{P}_{\text {Schur }(\mathcal{A}, \mathcal{B})}\left(\boldsymbol{\lambda} \supset\left\{m_{1}, \ldots, m_{k}\right\}\right)$ thus read $\rho_{k}\left(m_{1}, \ldots, m_{k}\right)=\frac{1}{H[\mathcal{A B}]} \sum_{\lambda \supset M}\langle\lambda| \mathcal{T}_{\mathcal{A}}|\varnothing\rangle\langle\varnothing| \mathcal{T}_{\mathcal{B}}^{*}|\lambda\rangle$

$$
=\frac{\langle\varnothing| \mathcal{T}_{\mathcal{B}}^{*} \sum_{\lambda \supset M}\langle\lambda| \mathcal{T}_{\mathcal{A}}|\varnothing\rangle|\lambda\rangle}{H[\mathcal{A B}]}
$$

$$
=\frac{\langle\varnothing| \mathcal{T}_{\mathcal{B}}^{*} \sum_{\lambda}\langle\lambda| \mathcal{T}_{\mathcal{A}}|\varnothing\rangle \prod_{k \in M} \psi_{k} \psi_{k}^{*}|\lambda\rangle}{H[\mathcal{A B}]}
$$

$$
=\frac{\langle\varnothing| \mathcal{T}_{\mathcal{B}}^{*} \sum_{\lambda}\langle\lambda| \mathcal{T}_{\mathcal{A}}|\varnothing\rangle \prod_{k \in M} \psi_{k} \psi_{k}^{*}|\lambda\rangle}{H[\mathcal{A B}]}
$$

$$
=\frac{\langle\varnothing| \mathcal{T}_{\mathcal{B}}^{*} \prod_{k \in M} \psi_{k} \psi_{k}^{*} \mathcal{T}_{\mathcal{A}}|\varnothing\rangle}{H[\mathcal{A B}]}, \quad \mathcal{T}_{\mathcal{A}}=e^{\sum_{k} \frac{p_{k}[\mathcal{A}]}{k} \alpha_{k}\left(\psi, \psi^{*}\right)}
$$

- One concludes with the (fermionic) Wick formula.

Outline

(1) Generalities
(2) The Toeplitz connection

- The Andréieff-Heine-Szegö/Cauchy-Binet formula
- Orthogonal polynomials on the unit circle
- The Schur measure and the Borodin-Okounkov formula
- Application : the Ising model
(3) Characters of \mathfrak{S}_{n} and $\mathcal{H}_{n}(q)$
- Schur-Weyl dualities
- The Hecke algebra
(4) Conclusion

Definition

- The Ising model we consider is the scalar one defined by 2-dimensional "spins" $\sigma_{i, j} \in\{ \pm 1\}$ with $1 \leqslant i, j \leqslant N$. One can consider Pauli matrices instead (Ising Spin chain) but we keep the analysis simple (historically, this is the model first considered by Ising and Lenz).
- The model is defined by a probability measure on the set of configurations $\boldsymbol{\sigma}=\left(\sigma_{i, j}\right)_{i, j \in[N]^{2}} \in\{ \pm 1\}^{[N]^{2}}$ given by

$$
\mathbb{P}_{\beta}(\boldsymbol{\sigma}):=\frac{1}{\mathcal{Z}_{N}(\beta)} e^{-\beta \mathcal{H}(\boldsymbol{\sigma})}, \quad \mathcal{Z}_{N}(\beta):=\sum_{\boldsymbol{\sigma} \in\{ \pm 1\}^{[N]^{2}}} e^{-\beta \mathcal{H}(\boldsymbol{\sigma})}
$$

- $\beta=\left(k_{B} T\right)^{-1}$ is the inverse temperature and

$$
\mathcal{H}(\boldsymbol{\sigma}):=-\sum_{a, b \in[N]^{2}} J_{a, b} \sigma_{a} \sigma_{b}, \quad J_{a, b}:=\mathbb{1}_{\{a \sim b\}}=\mathbb{1}_{\{|a-b|=1\}}
$$

- One can take periodic boundary conditions (replacing $[N]^{2}$ by the torus $\left.(\mathbb{Z} / N \mathbb{Z})^{2}\right)$ or 0 , etc. There is no external field.

The Onsager formula

- One is interested in computing the Spin-Spin diagonal and horizontal correlation

$$
\begin{aligned}
& \mathbb{E}_{\beta}\left(\boldsymbol{\sigma}_{1,1} \boldsymbol{\sigma}_{N, N}\right) \equiv\left\langle\boldsymbol{\sigma}_{1,1} \boldsymbol{\sigma}_{N, N}\right\rangle_{\beta}=\frac{1}{\mathcal{Z}_{N}(\beta)} \sum_{\boldsymbol{\sigma} \in\{ \pm 1\}^{[N]^{2}}} \boldsymbol{\sigma}_{1,1} \boldsymbol{\sigma}_{N, N} e^{-\beta \mathcal{H}(\boldsymbol{\sigma})} \\
& \mathbb{E}_{\beta}\left(\boldsymbol{\sigma}_{1,1} \boldsymbol{\sigma}_{1, N}\right) \equiv\left\langle\boldsymbol{\sigma}_{1,1} \boldsymbol{\sigma}_{1, N}\right\rangle_{\beta}
\end{aligned}
$$

- The link with Random Unitary Matrices is provided by the

Theorem (Onsager (1942), Onsager-Kauffman (1948))

For $\kappa=\sinh (\beta)^{-2}$ and $\gamma_{1}=\tanh (\beta), \gamma_{2}$ explicit,
$\left\langle\boldsymbol{\sigma}_{1,1} \boldsymbol{\sigma}_{N, N}\right\rangle_{\beta}=\int_{\mathcal{U}_{N-1}} \operatorname{det}\left(\varphi_{\operatorname{diag}}(U)\right) d U, \quad \varphi_{\text {diag }}(z)=\left(\frac{1-\kappa z^{-1}}{1-\kappa z}\right)^{1 / 2}$
$\left\langle\boldsymbol{\sigma}_{1,1} \boldsymbol{\sigma}_{1, N}\right\rangle_{\beta}=\int_{\mathcal{U}_{N-1}} \operatorname{det}\left(\varphi_{\mathrm{Ons}}(U)\right) d U, \quad \varphi_{\mathrm{Ons}}(z)=\left(\frac{1-\gamma_{1} z}{1-\frac{\gamma_{1}}{z}} \frac{1-\frac{\gamma_{2}}{z}}{1-\gamma_{2} z}\right)^{1 / 2}$

- This is equivalent to a Toeplitz determinant identity (original formula).
- Proven with numerous methods (transfer matrix, mapping to a polygon problem, mapping to a dimer covering problem, Kac-Ward identities, etc.). A good survey is given by :

目 P. Deift, A. Its, I. Krasovsky, Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results, CMP 66(9):1360-1438 (2013).

- One wants to compute the limiting correlation (when $N \rightarrow+\infty$) to see if a phase transition happens in β (difference of behaviour depending on the value of β, e.g. a break in analyticity). This is done by using the Strong Szegö theorem if the conditions on the symbol are fullfilled (this is the case if $\kappa, \gamma<1$).
- The Borodin-Okounkov formula is the "best" way to prove the result.

Citation from Deift-Its-Krasovskv :

The mathematical challenge that is posed by SSLT can be viewed as follows. In functional analysis one commonly considers continuous maps F, say, from one fixed topological space X to another fixed topological space Y. Then in order to verify that $\lim _{n \rightarrow \infty} F\left(x_{n}\right)=F(x)$ all one has to do is verify that $x_{n} \rightarrow x$ as $n \rightarrow \infty$ in the topology of X. In particular, if X is the space of trace class operators on a separable Hilbert space \mathcal{H}, and $F(x)=\operatorname{det}(1+x)$, then $F: X \rightarrow Y=\mathbb{C}$ and $\lim _{n \rightarrow \infty} \operatorname{det}\left(1+x_{n}\right)=\operatorname{det}(1+x)$ if $x_{n} \rightarrow x$ in trace norm. But SSLT is not of this standard type. Instead, one has $F: M(n, \mathbb{C}) \rightarrow \mathbb{C}$ taking $A_{n} \in M(n, \mathbb{C})$ to $F\left(A_{n}\right)=\operatorname{det} A_{n}$. So the initial space $X=X_{n}=M(n, \mathbb{C})$ is changing with n and it is not at all clear how to topologize the situation so that " $\lim _{n} F\left(A_{n}\right)=F\left(\lim A_{n}\right)$ ". If, for example, we let $X=M(\infty, \mathbb{C})$ be the inductive limit of the $M(n, \mathbb{C})$'s, then $T_{n}(\varphi)$ converges to the Toeplitz operator $T(\varphi)$ in the associated topology, but $T(\varphi)$ is not of the form $1+$ trace class, and so $F(T(\varphi))=\operatorname{det}(T(\varphi))$ is not defined. In such situations when $X=X_{n}$, or $Y=Y_{n}$, is varying, there is no general procedure to follow and each problem must be addressed on an ad hoc basis. And when there is no preferred path to the solution of a problem, there are many paths, as we see from the six very different methods above.

In this regard, the method of Borodin-Okounkov-Geronimo-Case is singled out: after factoring out $e^{n(\log \varphi)_{0}+E(\varphi)}$, one has

$$
\begin{equation*}
\frac{\operatorname{det}\left(T_{n}(\varphi)\right)}{e^{n(\log \varphi)_{0}+E(\varphi)}}=\operatorname{det}\left(1-B_{n}\right) \tag{72}
\end{equation*}
$$

where $B_{n}=Q_{n} H(b) H(\widetilde{c}) Q_{n}$ is trace class in ℓ_{2}^{+}and $B_{n} \rightarrow 0$ in trace norm as $n \rightarrow \infty$. In other words, one of the paths is to renormalize the problem so that it assumes the standard form.

Outline

(1) Generalities
(2) The Toeplitz connection

- The Andréieff-Heine-Szegö/Cauchy-Binet formula
- Orthogonal polynomials on the unit circle
- The Schur measure and the Borodin-Okounkov formula
- Application : the Ising model
(3) Characters of \mathfrak{S}_{n} and $\mathcal{H}_{n}(q)$
- Schur-Weyl dualities
- The Hecke algebra
(4) Conclusion
- Another important tool that constitutes the main alternative to the Toeplitz-Fredholm analysis concerns representation theory.
- The Strong Szegö Theorem can be probabilistically recast into a convergence in distribution for particular linear statistics, i.e. functionals of the form $\operatorname{tr}\left(f\left(U_{N}\right)\right)=\sum_{k=1}^{n} f\left(e^{i \boldsymbol{\theta}_{k}}\right)$. In particular

$$
\begin{aligned}
\int_{\mathcal{U}_{N}} H[\mathcal{A} U] H\left[\mathcal{B} U^{-1}\right] d U & =\int_{\mathcal{U}_{N}} e^{\sum_{k \geqslant 1} \frac{p_{k}[\mathcal{A}]}{k} \operatorname{tr}\left(U^{k}\right)+\sum_{k \geqslant 1} \frac{p_{k}[\mathcal{B}]}{k} \operatorname{tr}\left(U^{-k}\right)} d U \\
& \xrightarrow[N \rightarrow+\infty]{ } H[\mathcal{A B}]=e^{\sum_{k \geqslant 1} \frac{1}{k} p_{k}[\mathcal{A}] p_{k}[\mathcal{B}]}
\end{aligned}
$$

- If $p_{k}[\mathcal{A}]=p_{k}[\mathcal{B}]=k \frac{x_{k}}{2}$, one has

$$
\int_{\mathcal{U}_{N}} e^{\sum_{k \geqslant 1} x_{k} \Re \mathfrak{e}\left(\operatorname{tr}\left(U^{k}\right)\right)} d U \xrightarrow[N \rightarrow+\infty]{ } e^{\sum_{k \geqslant 1} k \frac{x_{k}^{2}}{2}}=\mathbb{E}\left(e^{\sum_{k \geqslant 1} x_{k} \sqrt{k} G_{k}}\right)
$$

where $\left(G_{k}\right)_{k}$ are independent Gaussians $\mathscr{N}(0,1)$.

Schur-Weyl duality

- One can bypass completely the analysis of Toeplitz-Fredholm with representation theory.
- The link between power functions and Schur functions is given by the following result :

Theorem (Schur-Weyl duality for $\left(\mathfrak{S}_{N}, \mathcal{U}_{N}\right)$)

One has

$$
p_{\mu}=\sum_{\lambda \vdash N} \chi_{\mu}^{\lambda} s_{\lambda}, \quad p_{\mu}:=\prod_{k \geqslant 1} p_{\mu_{k}} \quad \Longrightarrow \quad \chi_{\mu}^{\lambda}=\left\langle s_{\lambda}, p_{\mu}\right\rangle_{L^{2}\left(\mathcal{U}_{N}\right)}
$$

- The χ^{λ} are the irreducible characters of the symmetric group \mathfrak{S}_{N}. They are evaluated in any permutation σ having the cycle type μ.
- This is the character restatement of a more general result on the decomposition of the bimodule $\mathfrak{S}_{k} \curvearrowright\left(\mathbb{C}^{N}\right)^{\otimes k} \curvearrowleft \mathcal{U}_{N}$.

The Diaconis-Shashahani theorem

- Using the orthogonality of characters of \mathfrak{S}_{N}, one has

$$
\int_{\mathcal{U}_{N}} \prod_{k \geqslant 1} \operatorname{tr}\left(U^{\mu_{k}}\right) \operatorname{tr}\left(U^{-\lambda_{k}}\right) d U=\frac{1}{N!} \oint_{\mathbb{U}^{k}} p_{\mu}(\boldsymbol{u}) p_{\lambda}\left(\boldsymbol{u}^{-1}\right)|\Delta(\boldsymbol{u})|^{2} \frac{d^{*} \boldsymbol{u}}{\boldsymbol{u}}
$$

$$
\begin{aligned}
& =\sum_{\nu, \alpha \vdash N} \chi_{\mu}^{\nu} \chi_{\lambda}^{\alpha} \int_{\mathcal{U}_{N}} s_{\nu}(U) s_{\alpha}\left(U^{-1}\right) d U \\
& =\sum_{\nu \vdash N} \chi_{\mu}^{\nu} \chi_{\lambda}^{\nu} \\
& =\delta_{\lambda, \mu} z_{\lambda} \mathbb{1}_{\{\ell(\lambda) \leqslant N\}}, \quad z_{\lambda}:=\prod_{k \geqslant 1} k^{m_{k}(\lambda)} m_{k}(\lambda)!
\end{aligned}
$$

- Write $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)=\left\langle 1^{m_{1}}, 2^{m_{2}}, \ldots\right\rangle$ where $m_{k} \equiv m_{k}(\lambda)$ are the multiplicities of k in λ. Then

$$
p_{\lambda}=\prod_{k} p_{\lambda_{k}}=\prod_{j} p_{j}^{m_{j}(\lambda)}
$$

- One can thus rephrase the last result into

$$
\begin{aligned}
\mathbb{E}\left(\prod_{j \geqslant 1} \operatorname{tr}\left(U_{N}^{j}\right)^{m_{j}} \overline{\operatorname{tr}\left(U_{N}^{j}\right)^{m_{j}^{\prime}}}\right) & =\delta_{\boldsymbol{m}, \boldsymbol{m}^{\prime}} \prod_{j \geqslant 1} j^{m_{j}} m_{j}!\mathbb{1}_{\left\{\sum_{k} m_{k} \leqslant N\right\}} \\
& =\mathbb{E}\left(\prod_{j \geqslant 1}\left(\sqrt{j} Z_{j}\right)^{m_{j}} \overline{\left(\sqrt{j} Z_{j}^{\prime}\right)^{m_{j}^{\prime}}}\right) \mathbb{1}_{\{|\boldsymbol{m}| \leqslant N\}}
\end{aligned}
$$

and $\left(Z_{1}, \ldots, Z_{N}\right),\left(Z_{1}^{\prime}, \ldots, Z_{N}^{\prime}\right)$ are independent complex Gaussians.

- The algebraic equivalent of the Strong Szegö Theorem is :

Theorem (Diaconis-Shashahani, 1994)

$$
\mathbb{E}\left(\prod_{j \geqslant 1} \operatorname{tr}\left(U_{N}^{j}\right)^{m_{j}} \overline{\operatorname{tr}\left(U_{N}^{j}\right)^{m_{j}^{\prime}}}\right) \underset{N \rightarrow+\infty}{ } \mathbb{E}\left(\prod_{j \geqslant 1}\left(\sqrt{j} Z_{j}\right)^{m_{j}} \overline{\left(\sqrt{j} Z_{j}^{\prime}\right)^{m_{j}^{\prime}}}\right)
$$

P. Diaconis, M. Shahshahani, On the Eigenvalues of Random Matrices, J. Appl. Prob. 31:49-62 (1994).

Outline

(1) Generalities
(2) The Toeplitz connection

- The Andréieff-Heine-Szegö/Cauchy-Binet formula
- Orthogonal polynomials on the unit circle
- The Schur measure and the Borodin-Okounkov formula
- Application : the Ising model
(3) Characters of \mathfrak{S}_{n} and $\mathcal{H}_{n}(q)$
- Schur-Weyl dualities
- The Hecke algebra
(4) Conclusion

Characters of the Hecke algebra (1/3)

- A q-deformation of the Schur-Weyl duality was implemented in :
A. Ram, A Frobenius formula for the characters of the Hecke algebra, Invent. Math. 106(1):61-88 (1991).

Theorem (Ram, 1991)

(2.7) Theorem. Let $V=\mathbb{C}(q)^{n}$. As an $H_{f} \otimes U_{q}(s l(n))$ representation

$$
V^{\otimes f} \cong \underset{\substack{\lambda, f \\(\lambda) \leqq n}}{\oplus} H_{\lambda} \otimes V_{\lambda},
$$

where H_{λ} is a irreducible H_{f} representation and V_{λ} is an irreducible $U_{q}(\xi l(n))$ representation.

- $H_{f} \equiv \mathcal{H}_{f}(q)$ is the Hecke algebra, and $U_{q}\left(\mathfrak{s l}_{n}\right)$ a quantum group.

Characters of the Hecke algebra (2/3)

- Ram computes moreover the character of $\left(\mathbb{C}(q)^{n}\right)^{\otimes k}$ and of V^{λ} :

Theorem (Ram, 1991)

$$
\begin{aligned}
\tilde{q}_{r}(x ; q) & =\frac{1}{q-1} h_{r}(X(q-1)), \\
\tilde{q}_{\mu}\left(x_{1}, \ldots, x_{n} ; q\right) & =\prod_{i=1}^{\ell(\mu)} \tilde{q}_{\mu_{i}}(x ; q) .
\end{aligned}
$$

We have the following Frobenius type formula for the characters of H_{f}.
(4.14) Theorem. For each $\mu \vdash f$,

$$
\tilde{q}_{\mu}(x ; q)=\sum_{\lambda \vdash f} \chi^{\lambda}\left(T_{\gamma_{\mu}}\right) s_{\lambda}(x),
$$

where χ^{λ} denotes the irreducible character of H_{f} corresponding to λ and $s_{\lambda}(x)$ denotes the Schur function in the variables x_{1}, \ldots, x_{n}.

- We thus have $\widetilde{q}_{\lambda}(X ; q)=\frac{1}{(1-q)^{\ell(\lambda)}} h_{\lambda}[(q-1) X] \equiv \frac{1}{(1-q)^{\ell(\lambda)}} h_{\lambda}(q X / X)$ (supersymmetric h_{λ} in the notations of Macdonald).

Characters of the Hecke algebra (3/3)

- Finally, one gets

Theorem (Ram, 1991)

The irreducible character $\chi^{\lambda, q}$ of $\mathcal{H}_{N}(q)$ evaluated in a "minimal word with descent type μ " noted $M_{\mu}:=T_{\sigma_{\mu}}$ (an equivalent of the conjugacy class in $\left.\mathcal{H}_{N}(q)\right)$

$$
\chi^{\lambda, q}\left(M_{\mu}\right)=\int_{\mathcal{U}_{N}} s_{\lambda}(U) \frac{1}{(1-q)^{\ell(\lambda)}} h_{\mu}\left[(q-1) U^{-1}\right] d U
$$

- To compare with the Frobenius formula in \mathfrak{S}_{n}

$$
\chi^{\lambda}\left(\sigma_{\mu}\right)=\int_{\mathcal{U}_{N}} s_{\lambda}(U) p_{\mu}\left(U^{-1}\right) d U
$$

- This formula was also discovered (independently) by King-Wybourne (1990) and Kerov-Vershik (1989).

The Ocneanu trace/Jones polynomial

- For all $z \in \mathbb{C}$, one defines the trace τ_{z} on $\mathcal{H}_{\infty}(q):=\uplus_{k \geqslant 0} \mathcal{H}_{k}(q)$ by

$$
\begin{aligned}
\tau_{z}(a b) & =\tau_{z}(b a) \quad(\text { trace }) \\
\tau_{z}(\mathrm{id}) & =1 \\
\tau_{z}\left(s_{i} h\right) & =z \tau_{z}(h) \quad \forall h \in \mathcal{H}_{N}(q), s_{i}=\text { generator of } \mathcal{H}_{N}(q)
\end{aligned}
$$

- One can prove that

Theorem (Ocneanu, 1985)

$$
\tau_{z}=\sum_{\lambda \vdash N} W_{\lambda}(q, z) \chi^{\lambda, q}
$$

where, in λ-ring notation

$$
W_{\lambda}(q, z)=s_{\lambda}\left[\frac{w-z}{1-q}\right] \equiv s_{\lambda}\left(\frac{w}{1-q} / \frac{z}{1-q}\right), \quad w:=1-q+z
$$

- As a result, the Ocneanu trace evaluated in a minimal word of descent type μ as the matrix integral

$$
\begin{aligned}
\tau_{z}\left(M_{\mu}\right) & =\sum_{\lambda \vdash N} s_{\lambda}\left[\frac{w-z}{1-q}\right] \int_{\mathcal{U}_{N}} s_{\lambda}(U) \frac{h_{\mu}\left[(q-1) U^{-1}\right]}{(1-q)^{\ell(\mu)}} d U \\
& =\int_{\mathcal{U}_{N}} h_{N}\left[\frac{w-z}{1-q} U\right] \frac{h_{\mu}\left[(q-1) U^{-1}\right]}{(1-q)^{\ell(\mu)}} d U \\
& =\frac{h_{\mu}\left[(q-1) \frac{w-z}{1-q}\right]}{(1-q)^{\ell(\mu)}} \\
& =\frac{h_{\mu}[z-w]}{(1-q)^{\ell(\mu)}} \\
& =\prod_{k \geqslant 1} \frac{z^{\mu_{k}}(1-w / z)}{1-q} \\
& =z^{|\mu|-\ell(\mu)}
\end{aligned}
$$

- This is a result of Ocneanu/King-Wybourne critically used by Jones.

Outline

(1) Generalities

(2) The Toeplitz connection

- The Andréieff-Heine-Szegö/Cauchy-Binet formula
- Orthogonal polynomials on the unit circle
- The Schur measure and the Borodin-Okounkov formula
- Application : the Ising model
(3) Characters of \mathfrak{S}_{n} and $\mathcal{H}_{n}(q)$
- Schur-Weyl dualities
- The Hecke algebra
(4) Conclusion

Conclusion

- We have only partially touched some of the use of random unitary matrices/unitary matrix integrals with the previous topics (random partitions, Ising model, Toeplitz correspondance, evaluation of characters of \mathfrak{S}_{n} and $\mathcal{H}_{n}(q)$, etc.).
- Lots of other applications : realisations of tau-functions of some classical integrable systems (KP, Calogero-Moser with $\beta=2$, etc.), eigenvectors of some vertex operators, models of partition functions of quantum gravity, toy-models of the Riemann Zeta function, etc.

Thank you for your attention.

