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OUTLINE

1 Temperature, Heat, Entropy, that Obscure Objects of Desire

2 Maxwell-Jüttner distribution (from Synge)

3 de Sitterian material

4 Tsallis distribution as a Λ-deformation of the Maxwell-Jüttner
distribution
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PREAMBLE:

Temperature, Heat, Entropy,
that Obscure Objects of Desire
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When Physics was written in French in France (found in my personal library)
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Entropy invariance and relativistic variance of temperature according to de Broglie (1948)

It is well known that entropy, alongside the
spacetime interval, electric charge, and
mechanical action, is one of the
fundamental “invariants” of the theory of
relativity. To convince oneself of this, it is
enough to recall that, according to
Boltzmann, the entropy of a macroscopic
state is proportional to the logarithm of
the number of microstates that realize
that state. To strengthen this reasoning,
one can argue that, on the one hand, the
definition of entropy involves a integer
number of microstates, and, on the other
hand, the transformation of entropy during
a Galilean reference frame change must
be expressed as a continuous function of
the relative velocity of the reference
frames. Consequently, this continuous
function is necessarily constant and equal
to unity, which means that entropy is
constant.
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“Relativistic thermodynamics”: what it could be

In relativistic thermodynamics (i.e., in accordance with special relativity) there are 3
points of view (see Wu, EPL 2009)1, distinguished from the way heat ∆Q and
temperature T transform under a Lorentz boost from frame R0 (e.g., laboratory) to
comoving frame R with velocity v = vn̂ relative to R0 and Lorentz factor

γ(v) =
1√

1 − v2

c2

Point of view (a) (Einstein, Planck, de Broglie ...), the covariant one,

∆Q = ∆Q0γ
−1 , T = T0γ

−1 .

Point of view (b) (Ott, Arzelies, ...), the anti-covariant one,

∆Q = ∆Q0γ , T = T0γ .

Point of view (c) (Landsberg, 1966, ...), “nothing changes”,

∆Q = ∆Q0 , T = T0 .

Also note that for some authors (Landsbergh, Sewell, ...) “there is no meaningful
law of temperature under boosts”

1Z. C. Wu, Inverse Temperature 4-vector in Special Relativity, 2009 EPL 88, 20005
J.-P. Gazeau INRNE Sofia 15 February 2024
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Relativistic covariance of Temperature according to de Broglie (1948)

Consider a body B, its proper frame R0, total proper mass M0, in thermodynamical equilibrium
with temperature T0 and fixed volume V0 (e.g., a gas enclosed with surrounding rigid wall)
Then consider B from an inertial frame R in which B has constant velocity v = vn̂ relative to
R0.
Suppose that a source in R provides B with heat ∆Q. In order to keep the velocity v of B
constant a work W has to be done on B and the proper mass of the latter is consequently
modified M0 → M′

0. Then, from energy conservation :

(M′
0 − M0)γc2

= ∆Q + W , γ = γ(v) =
1√

1 − v2/c2
,

and relativistic 2d Newton law

∆P = M′
0γv − M0γv =

∫
Fdt =

1
v

∫
Fvdt =

W
v

we derive

∆Q =
c2

v2
γ
−2W = (M′

0 − M0)c2
γ
−2

In the frame R0 there is no work done (volume is constant), there is just transmitted heat
∆Q0 = (M′

0 − M0)c2.

Hence heat transforms as

∆Q = ∆Q0γ
−1

and since the entropy S =
∫ dQ

T is relativistic invariant, S = S0, temperature transforms as

T = T0γ
−1
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Maxwell-Jüttner distribution
(from Synge)
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Derivation for simple gases (Synge)-I

Notations for Minkowskian event and 4-momenta 4-vectors,

M1,3 ∋ x = (xµ) = (x0 = x0, xi = −xi , i = 1, 2, 3) ≡ (x0, x) , x·x′ = xµx′µ = x0x′0−x·x′ ,

k = (kµ) = (k0, k) .

Let k be a 4-momentum pointing toward A ∈ mass shell hyperboloid
V+

m = {k , k · k = m2c2}, and an infinitesimal hyperbolic interval at A, with length
dσ = mc dω ( dω = d3k

k0
is the Lorentz-invariant element on V+

m ),

given a time-like unit vector n,

given a straight line ∆ passing through the origin and orthogonal (in M1,3 sense)
to n,

denote by dΩ the length of the projection of dσ on ∆ along n. One proves that

dΩ = |k · n| dω (= d3k if n = (1, 0))

J.-P. Gazeau INRNE Sofia 15 February 2024
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Figure: n is a time-like unit vector, ∆ is a straight line passing through the origin and orthogonal (in
the Minkowskian metric sense) to n. The 4-momentum k = (kµ) = (k0, k) points toward a point A
of the mass shell hyperboloid V+

m = {k , k · k = m2c2}. dΩ is the length of the projection, along n,
of an infinitesimal hyperbolic interval at A of length mcdω.
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Derivation for simple gases (Synge)-II

The sample population consists of those particles with world lines cutting the infinitesimal
space-like segment dΣ orthogonal to the time-like unit vector n.

Every particle that crosses the portion C of the null cone between M and dΣ must (causal
cone) also cross dΣ. Therefore the following population number is preassigned

ν = dΣ
∫
R

N (x, k) dΩ

where N (x, k) is the distribution function, and R the region delimited by M and dΣ.

By the conservation of 4-momentum at each collision in a simple gas, the flux of 4-momentum
across dΣ is predetermined as the flux across C,

Tµ · n dΣ = dΣ
∫
R

N (x, k) ckµdΩ

where T = (Tµν) is the energy tensor.
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Figure: C is the portion of the null cone starting at the event M = (x0, x) and limited by the
infinitesimal space-like segment dΣ orthogonal to the time-like unit vector n. R is the region
delimited by M, the portion of the light cone C, and dΣ.
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Derivation for simple gases (Synge)-III

The most probable distribution function N at M is that which maximizes the
following entropy integral

F = −dΣ
∫
R

N logN dΩ

Variational calculus with constraints on ν and Tµ · n leads to the solution

N (x, k) = C(x) exp(−η(x) · k)

Scalar C and 4-vector η (dimension of inverse momentum) are connected with
Lagrange multipliers and determined by the constraints on ν = N · n dΣ ( N is the
numerical-flux 4-vector) and Tµ · n dΣ:

C
∫
V+

m

kµ e−η·k dω = Nµ , C
∫
V+

m

ckµkν e−η·k dω = Tµν .

established by taking into account that n is arbitrary.

With the equations of conservation

∂ · N = 0 , ∂ · Tµ = 0 ,

we finally get as many equations as functions of x: C, η,N, T.

J.-P. Gazeau INRNE Sofia 15 February 2024
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Derivation for simple gases (Synge)-IV

For instance, if we deal with a simple gas consisting of material particles of proper mass m,
we introduce the mean 4-velocity of the fluid, λ = (λµ = cηµ/

√
η · η), λ · λ = c2, so that

N (x, k) :=
N0

mcK1 (mc2/kBTa)
exp

(
−

λ · k
kBTa

)
.

Ta := c/(kB
√

η · η) is a “relativistic” absolute temperature. It is precisely the relativistic
invariant, which might fit pointview (c).

The appearance of the Bessel functions K1 comes from the constraint

Nµ = C
∫
V+

m

kµ e−η·k d3k
k0

= −C
∂Z
∂ηµ

= C
ηµmc√
η · η

K1

(
mc
√

η · η
)

,

where Z =
∫
V+

m
e−η·k d3k

k0
∝ K0

(
mc
√

η · η
)

is the partition function.

The invariant quantity N0 = N · λ/c is the number of particles per unit length (“numerical
density”) in the rest frame of the fluid (λ0 = c).

Note that the Maxwell-Boltzmann non relativistic distribution is recovered by considering the
limit at kBTa ≪ mc2 in the rest frame of the fluid:

K1

(
mc2

kBTa

)
≈
√

πkBTa

2mc2
e
− mc2

kBTa

⇒ N (x, k) ≈ N0

√
2

πmkBTa
exp

(
−

k0c − mc2

kBTa

)
≈ N0

√
2

πmkBTa
exp

(
−

k2

2mkBTa

)
.
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Inverse temperature 4-vector

The found distribution on the Minkowskian mass shell for a simple gas consisting
of particles of proper mass m

N (x, k) =
N0

mcK1 (mc2/kBTa)
exp

(
−

λ · k
kBTa

)
leads us to introduce the relativistic thermodynamic, future directed, time-like
4-coldness vector β, as the 4-version of the reciprocal of the thermodynamic
temperature (see also Wu 2009):

λ

kBTa
≡ β = (β0 = β0 > 0, βi = −βi) = (β0,β) ,

with relativistic invariant √
β · β =

c
kBTa

≡ βa .

It is precisely the way as the component β0 transforms under a Lorentz boost,
β′

0 = γ(v)(β0 − v · β/c), which explains the way the temperature transforms à la
de Broglie, T 7→ T′ = Tγ−1.
So, in the sequel, we call Maxwell-Jüttner distribution the following relativistic
invariant:

N (β, k) =
N0

mcK1 (mcβa)
exp

(
−β · k

)
J.-P. Gazeau INRNE Sofia 15 February 2024
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Maxwell-Jüttner distribution in a nutshell

Distribution

N (x, k) =
N0

mcK1 (mc2/kBTa)
exp

(
−β(x) · k

)
Momentum 4-vector

k = (k0,k) ∈ V+
m , k · k = m2c2

Coldness 4-vector field ∼ 4-version of the
reciprocal of the thermodynamic temperature
in terms of the mean 4-velocity λ of the fluid

β = (β0 > 0,β) =
λ

kBTa
,

√
β · β =

c
kBTa

J.-P. Gazeau INRNE Sofia 15 February 2024
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de Sitterian material
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de Sitter geometry

▶ de Sitter space is viewed as a hyperboloid embedded in a five-dimensional Minkowski space
M1,4 with metric gαβ =diag(1,−1,−1,−1,−1) (but keep in mind that all points are
physically equivalent)

MR ≡ {x ∈ R5
; x2

= gαβ xαxβ = −R2}, α, β = 0, 1, 2, 3, 4,

where the pseudo-radius R (or inverse of curvature) is given by R =

√
3
Λ

within the

cosmological ΛCDM standard model.

▶ de Sitter symmetry group is SO0(1, 4) with ten (Killing) generators Kαβ = xα∂β − xβ∂α.
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Flat Minkowskian limit of de Sitter geometry

▶ Example of global coordinates on MR, ct ∈ R, n ∈ S2, r/R ∈ [0, π]:

MR ∋ x = (x0, x1, x2, x3, x4) ≡ (x0, x, x4)

= (R sinh(ct/R), R cosh(ct/R) sin(r/R)n,R cosh(ct/R) cos(r/R)) ≡ x(t, x) .
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x4
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Space direction

x0
▶ limR→∞ MR = M1,3, the Minkowski spacetime tangent to MR at, say, the de Sitter

origin point OdS = (0, 0,R), since then

MR ∋ x ≈
R→∞

(ct, r = r n,R) ≡ (ℓ,R) , ℓ ∈ M1,3

▶ limR→∞ SO0(1, 4) = P↑
+(1, 3) = M1,3 ⋊ SO0(1, 3), the Poincaré group.

▶ The ten de Sitter Killing generators contract (in the Wigner-Inonü sense) to their
Poincaré counterparts Kµν , Πµ, µ = 0, 1, 2, 3, after rescaling the four
K4µ −→ Πµ = K4µ/R.

J.-P. Gazeau INRNE Sofia 15 February 2024
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de Sitter plane waves as binomial deformations of Minkowskian plane waves

▶ de Sitter (scalar) plane waves have the form

ϕτ,ξ(x) =

(
x · ξ

R

)τ

, x ∈ MR , ξ ∈ C1,4 ,

where C1,4 = {ξ ∈ R5 , ξ · ξ = 0} is the null cone in M1,4.
▶ They are solutions of the Klein-Gordon-like equation

1
2

MαβMαβ
ϕτ,ξ(x) = R2

2Rϕτ,ξ(x) = τ(τ + 3)ϕτ,ξ(x) ,

where Mαβ = −i (xα∂β − xβ∂α) is the quantum representation of the Killing Kαβ , and 2R
stands for the d’Alembertian operator on MR.

▶ For τ = − 3
2 + iν, ν ∈ R, they describe free quantum motions of “massive” scalar particles on

MR.
▶ The term “massive” is justified by the flat Minkowskian limit R → ∞, i.e. Λ → 0:

First one has the Garidi relation between proper mass m (curvature independent) of the
particle and the parameter ν ≥ 0

m =
ℏ
Rc

[
ν

2
+

1
4

]1/2

⇔ ν =

√
R2m2c2

ℏ2
−

1
4

≈
R large

Rmc
ℏ

=
mc
ℏ

√
3
Λ

,

(the quantity ℏcν
R is a kind of at rest desitterian energy, which is distinct of the proper

mass energy mc2 if Λ ̸= 0).
Then with the mass shell parametrisation ξ =

(
ξ0 =

k0
mc , ξ = k

mc , ξ
4 = 1

)
∈ C+

1,4 :

ϕτ,ξ(x) = (x · ξ/R)−3/2+iν →
R→∞

eik·ℓ/ℏ
, ℓ = (ct, r) .

J.-P. Gazeau INRNE Sofia 15 February 2024
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Analytic extension of dS plane waves for dS QFT

▶ Actually dS plane waves ϕτ,ξ(x) =
(

x·ξ
R

)τ
, τ = −3/2 + iν, are not defined on all

MR due to the possible change of sign of x · ξ.
▶ A solution is found through extension to tubular domains in complexified Mc

R

T ± := T± ∩ MR , T± := M1,4 + iV± ,

where the forward and backward light cones V± := {x ∈ M1,4 , x0 ≷
√

x2 + (x4)2}
allow for a causal ordering in M1,4.

▶ Then the extended plane waves ϕτ,z(x) =
(

z·ξ
R

)τ
are globally defined for z ∈ T ±

and ξ ∈ C+
1,4.

▶ These analytic extensions allow for a consistent QFT for free scalar fields on MR:
the two-point Wightman function Wν(x, x′) = ⟨Ω, ϕ(x)ϕ(x′)Ω⟩ can be extended to
the complex covariant, maximally analytic, two-point function having the spectral
representation in terms of these extended plane waves:

Wν(z, z′) = cν
∫
V+

m ∪V−
m

(z · ξ)−3/2+iν(ξ · z′)−3/2−iν dk
k0

, z ∈ T − , z′ ∈ T + .

▶ Details are found in J. Bros, J.P. G., and U. Moschella, Quantum Field Theory in
the de Sitter Universe, 1994 Phys. Rev. Lett. 73 1746-1749. See references in M.
Enayati, J.P. G., H. Pejhan, and A. Wang, The de Sitter (dS) Group and its
Representations; An Introduction to Elementary Systems and Modeling the Dark
Energy Universe, Springer Nature (2022)..
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KMS interpretation of Wν(z, z′) analyticity

▶ For the analyticity of Wν(z, z′) we deduce that Wν(x, x′) defines a 2iπR/c periodic
analytic function of t, whose domain is the periodic cut plane

Ccut
x,x′ = {t ∈ C , Im(t) ̸= 2nπR/c , n ∈ Z} ∪ {t , t − 2inπR/c ∈ Ix,x′ , n∈Z} ,

where Ix,x′ is the real interval on which (x − x′)2 < 0.

▶ Hence Wν(z, z′) is analytic in the strip

{t ∈ C , 0 < Im(t) < 2iπR/c} ,

and satisfies:

Wν(x′(t + t′, x), x) = lim
ϵ→0+

Wν
(
x, x′(t + t′ + 2iπR/c − iϵ, x)

)
, t′ ∈ R .

▶ This is a KMS relation at (∼ Hawking) temperature

TΛ =
ℏc

2πkBR
:=

ℏc
2πkB

√
Λ

3
.

J.-P. Gazeau INRNE Sofia 15 February 2024
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Preamble Maxwell-Jüttner distribution de Sitter material de Sitterian Tsallis distribution

de Sitter (dS) plane waves in a nutshell

dS (scalar) plane waves for “massive” scalar particles on dS

manifold MR =

{
x = (x, x4) , x · x = x · x − (x4)2 = −R2 = − 3

Λ

}

ϕτ,ξ(x) =
(

x · ξ
R

)3/2−iν

, x = (x, x4) ∈ MR ⊂ M1,4

de Sitterian “momentum” on the null cone
C1,4 = {ξ ∈ R5 , ξ · ξ = 0} in M1,4

ξ =

(
ξ =

k
mc

, ξ4 = 1
)

∈ C1,4

3 + 1 Minkowskian limit at R → ∞ (i.e. Λ → 0)

(x · ξ/R)−3/2+iν →
R→∞

eik·ℓ/ℏ , ℓ = (ct, r) , ν =
mc
ℏ

√
3
Λ

=
mc2

2πkBTΛ

J.-P. Gazeau INRNE Sofia 15 February 2024
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Tsallis distribution as a Λ-deformation of
the Maxwell-Jüttner distribution
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Tsallis entropy and distribution

Given a discrete (resp. continuous) set of probabilities {pi} (resp. continuous
x 7→ p(x)) with

∑
i pi = 1 (resp.

∫
p(x)dx = 1) , and a real q, the Tsallis entropy is

defined as

Sq(pi) = k
1

q − 1

(
1 −

∑
i

pq
i

)
resp. Sq[p] =

1
q − 1

(
1 −

∫
(p(x))qdx

)
As q → 1, Sq(pi) → SBG(p) = −k

∑
i pi ln pi (Boltzmann-Gibbs)

Tsallis entropy is non additive : For two independent systems A and B, for which
p(A ∪ B) = p(A) p(B), Sq(A ∪ B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B).

A Tsallis distribution is a probability distribution derived from the maximization of
the Tsallis entropy under appropriate constraints.

The so-called q-exponential Tsallis distribution has the probability density function

(2 − q)λ[1 − (1 − q)λx]1/(1−q) ≡ (2 − q)λeq(−λx) ,

where q < 2 and λ > 0 (rate), arises from the maximization of the Tsallis entropy
under appropriate constraints, including constraining the domain to be positive 2.

2Tsallis, C. Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years. Braz. J.
Phys. 2009, 39, 337-356
J.-P. Gazeau INRNE Sofia 15 February 2024
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Coldness in de Sitter

In analogy with the de Sitter plane waves, let us introduce the distributions on subset
∼ V+

m ⊂ C+
1,4 = {ξ ∈ M1,4 , ξ · ξ = 0 , ξ0 > 0}:

ϕτ,ξ(x) =

(
b · ξ

B

)τ

, b ∈ MB , ξ =

(
k0

mc
> 0,

k
mc

,−1

)
,

where one should note the negative value −1 for ξ4, and
MB ≡ {b ∈ M1,4 , b

2 = gαβ bαbβ = −B2}, α, β = 0, 1, 2, 3, 4 , is the manifold of the
“deSitterian coldnesses”.
Like for MR we use global coordinates on MB: β0 ∈ R,β = ∥β∥n ∈ R3, ∥, ∥β∥/B ∈ [0, π],
with

MB ∋ b = (b
0
, b

1
, b

2
, b

3
, b

4
) ≡ (b

0
,b, b

4
)

=
(

B sinh(β
0
/B), B cosh(β

0
/B) sin(∥β∥/B)n, B cosh(β

0
/B) cos(∥β∥/B)

)
≡ b(β) ,

in such a way that at large B we recover the Minkowskian coldness β:

MB ∋ b ≈
B→∞

(β, B) .

We now need to connect the desitterian coldness scale B with Λ. Inspired by relativistic

invariant βa = c
kBTa

and the KMS temperature TΛ =
ℏc

2πkB

√
Λ

3
we write

B ∝
2π
ℏ

√
3
Λ

, i.e. B =
n

ℏ
√
Λ

, Λcurrent = 1.1056×10−52 m−2
, ℏ = 1.054571817...×10−34 J s

where n is a numerical factor. B ≈ 0.9 × 1060 nSI is the inverse of a momentum.
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A de Sitterian Tsallis distribution

Now consider the distribution on MB × V+
m with B = n

ℏ
√

Λ
:

N (b, k) = CB

(
b · ξ

B

)−mcB

= CB

(
b0

B
k0

mc
−

b

B
·

k
mc

+
b4

B

)−mcB

.

b ∈ MB , ξ =

(
k0

mc
> 0,

k
mc

,−1

)
,

where MB ≡ {b ∈ M1,4 , b
2 = gαβ bαbβ = −B2}, α, β = 0, 1, 2, 3, 4 , is the manifold of

the “deSitterian coldnesses”, and constant CB involves Legendre function of mc2/kBTa (?!).
With global coordinates

MB ∋ b =
(

B sinh(β
0
/B), B cosh(β

0
/B) sin(∥β∥/B)n,−B cosh(β

0
/B) cos(∥β∥/B)

)
,

with the constraint β0/B ∈ [0, π/2), N (b, k) reads

N (b, k) = CB

(
cosh(β

0
/B) cos(∥β∥/B) + sinh(β

0
/B)

k0

mc
− cosh(β

0
/B) sin(∥β∥/B)

n · k
mc

)−mcB

= CBe

[
−mcB log

(
cosh(β0/B) cos(∥β∥/B)+sinh(β0/B) k0

mc −cosh(β0/B) sin(∥β∥/B) n·k
mc

)]

= CB exp
[
−mcB log

(
cosh(β

0
/B) cos(∥β∥/B)

)]
×

× exp−mcB log

1 +
sinh(β0/B) k0

mc − cosh(β0/B) sin(∥β∥/B) n·k
mc

cosh(β0/B) cos(∥β∥/B)


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A de Sitterian Tsallis distribution

At large B this expression becomes the Maxwell-Jüttner distribution:

N (b, k) ≈ CBe−β·k .

So, going back to the original expression

N (b, k) = CB

(
b · ξ

B

)−mcB

= CB

(
b0

B
k0

mc
−

b

B
·

k
mc

+
b4

B

)−mcB

= CB

(
b4

B

)−mcB (
1 +

b · k
b4mc

)−mcB

, b := (b0, b) .

Introducing

q = 1 +
1

mcB
= 1 +

ℏ
√
Λ

mcn
,

we get the Tsallis-type distribution

N (b, k) = CB

(
1 − (1 − q)

B
b4

b · k
) 1

1−q
.

J.-P. Gazeau INRNE Sofia 15 February 2024



30/31
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de Sitterian Tsallis distribution in a nutshell

de Sitterian coldness manifold with B = n
ℏ
√
Λ

, n: numerical,

MB ∋ b = (b0,b, b4) , b · b = (b0)2 − b · b− (b4)2 = −B2

de Sitterian distribution on MB × V+
m :

N (b, k) = CB

(
b · ξ

B

)−mcB

, ξ =

(
k0

mc
> 0,

k
mc

,−1
)

de Sitterian Tsallis-type distribution

N (b, k) = CB

(
1 − (1 − q)

B
b4 b · k

) 1
1−q

With

q = 1 +
1

mcB
= 1 +

ℏ
√
Λ

mcn
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