de Sitter material

de Sitterian Tsallis distribution

Tsallis distribution as a Λ -deformation of the Maxwell-Jüttner distribution $q = 1 + \frac{\hbar\sqrt{\Lambda}}{mc\mathfrak{n}}$

Jean-Pierre Gazeau

Laboratoire Astroparticule et Cosmologie, Université Paris Cité

Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences 15 February 2024

Further senses along which S_q , or other entropic functionals, would be unique are certainly welcome.

Constantino Tsallis in "Senses along Which the Entropy S_q Is Unique", 2023 Entropy 25, 743.

J.-P. Gazeau

INRNE Sofia

◆ロト ◆ 伊 ト ◆ 臣 ト ◆ 臣 ト ● ○ へ ○ 15 February 2024

This work started this September and was inspired by

- F. Jüttner, Das maxwellsche gesetz der geschwindigkeitsverteilung in der relativtheorie, **1911** Ann. Phys. *339*, 856-882.
- D. van Dantzig, On the phenomenological thermodynamics of moving matter, 1939 Physica VI, 673-704.

- A. H. Taub, Relativistic Ranirine-Hugoniot Equations, **1948** Phys. Rev. 74, 328-334.
- L. de Broglie, Sur la variance relativiste de la température, 1948 Cahiers de la Physique 31-32, 1-11.
- J. L. Synge, The Relativistic Gas, North-Holland Publishing Company, 1957.
- C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, 1988 J. Stat. Phys. 52, 479-487.
 - J. Bros, J.-P. Gazeau, and U. Moschella, Quantum Field Theory in the de Sitter Universe, **1994** Phys. Rev. Lett. *73*, 1746-1749.

J.-P. Gazeau and S. Graffi, Quantum Harmonic Oscillator: a Relativistic and Statistical Point of View, **1997** Boll.U.M.I. *Ser.VII* , *XI-A*, 815-839.

C. Tsallis, Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years, **2009** Braz. J. Phys *39*, 337-356.

Zhong Chao Wu, Inverse Temperature 4-vector in Special Relativity, 2009 EPL 88, 20005.

G. Chacón-Acosta, L. Dagdug Hugo, and A. Morales-Técotl, Manifestly covariant Jüttner distribution and equipartition theorem, **2010** Phys. Rev. E *81*, 021126.

M. Enayati, J.-P. Gazeau, H. Pejhan, and A. Wang, The de Sitter (dS) Group and its Representations; An Introduction to Elementary Systems and Modeling the Dark Energy Universe, Springer Nature, 2022.

J.-P. Gazeau

INRNE Sofia

15 February 2024

de Sitter material

< ロ > < 回 > < 回 > < 回 > < 回 >

15 February 2024

de Sitterian Tsallis distribution

- Temperature, Heat, Entropy, that Obscure Objects of Desire
- Maxwell-Jüttner distribution (from Synge)
- e Sitterian material
- Tsallis distribution as a Λ-deformation of the Maxwell-Jüttner distribution

de Sitterian Tsallis distribution

PREAMBLE:

Temperature, Heat, Entropy, that Obscure Objects of Desire

1

4/31

(I) < (I)

de Sitterian Tsallis distribution

5/31

When Physics was written in French in France (found in my personal library)

J.-P. Gazeau

Maxwell-Jüttner distribution

de Sitter material

de Sitterian Tsallis distribution

Entropy invariance and relativistic variance of temperature according to de Broglie (1948)

1948 CAHIERS DE PHYSIQUE CAMERS Nº 31-32

AVIS DB LEDTTEUR. — L'interruption de publication dons ent soudfer les Califies de Physique et su laquelle je me sous exployed en étée du. Cabier précédent a cu an effet particulièrement reprenable ent les mémoires de physique théroique, dons le propre est de vicilité site. Je renouvelle lei mes excues aux auteurs, La date de dépôt inactire au has de chapte mémoire lour prementar advanceis de revendaguer des antériorités.

SUR LA VARIANCE RELATIVISTE DE LA TEMPÉRATURE

PAR

Louis DE BROGLIE

REDUME: — L'hindre de la suriante relativité des grandenes thermostynamiques, et ce particulier de la stanfarater, a fait, il ya one treataine d'années, i l'étiet d'aussi montenues recherche qui nu la pareitre se pa son holites anyouré la su-Nour mou proposant deregreneste sis reglétorent la gractione de la suriante relativista de la températere misistation un certain surgest de la question, et almost mou temperature misistation un certain surgest de la question, eta anneues neu ter rapport ante neu formati du à Boltgamm et bien connae dans la théorie de l'inversione admissionique.

1. Interimental Territoria — In extrime comun spec Formagnie and, Aufer Characterille diversion, die Indergebertreicher einer Territoria meissignen un die Theoretien Heisenberg, die Indergebertreicher einer Auferteignen est propertierenden auf aufertheren die nammeter des complexisions auf effailen est auf "entrationale die aufer aufernahen die aufertreicher einer einer einer einer einer einer die entrationale einer aufertreicher einer einer

Pour établir la variance relativiste de la température, des raisonnements plus délicats sont nécessaires. Nous développerons celui qui nous paraît le plus instructif.

Considérons un corps C qui, envisagé dans un système de référence R.

It is well known that entropy, alongside the spacetime interval, electric charge, and mechanical action, is one of the fundamental "invariants" of the theory of relativity. To convince oneself of this, it is enough to recall that, according to Boltzmann, the entropy of a macroscopic state is proportional to the logarithm of the number of microstates that realize that state. To strengthen this reasoning, one can argue that, on the one hand, the definition of entropy involves a integer number of microstates, and, on the other hand, the transformation of entropy during a Galilean reference frame change must be expressed as a continuous function of the relative velocity of the reference frames. Consequently, this continuous function is necessarily constant and equal to unity, which means that entropy is constant.

<ロト <回ト < 回ト < 回

INRNE Sofia

Pream	b	le
0000)C)

Maxwell-Jüttner distribution

de Sitter material

de Sitterian Tsallis distribution

"Relativistic thermodynamics": what it could be

In relativistic thermodynamics (i.e., in accordance with special relativity) there are 3 points of view (see Wu, EPL 2009)¹, distinguished from the way heat ΔQ and temperature *T* transform under a Lorentz boost from frame \mathcal{R}_0 (e.g., laboratory) to comoving frame \mathcal{R} with velocity $\mathbf{v} = v\hat{\mathbf{n}}$ relative to \mathcal{R}_0 and Lorentz factor

$$\gamma(v) = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

• Point of view (a) (Einstein, Planck, de Broglie ...), the covariant one,

$$\Delta Q = \Delta Q_0 \gamma^{-1} , \quad T = T_0 \gamma^{-1} .$$

• Point of view (b) (Ott, Arzelies, ...), the anti-covariant one,

$$\Delta Q = \Delta Q_0 \gamma \,, \quad T = T_0 \gamma \,.$$

• Point of view (c) (Landsberg, 1966, ...), "nothing changes",

$$\Delta Q = \Delta Q_0 \,, \quad T = T_0 \,.$$

 Also note that for some authors (Landsbergh, Sewell, ...) "there is no meaningful law of temperature under boosts"

 ¹Z. C. Wu, Inverse Temperature 4-vector in Special Relativity, 2009 EPL 88, 20005 → < Ξ → < Ξ → < Ξ → < Ξ → < </td>
 Ξ → < </td>
 >
 7/31

 J.-P. Gazeau
 INRNE Sofia
 15 February 2024

Preamble ○○○●○	Maxwell-Jüttner distribution	de Sitter material	de Sitterian

Relativistic covariance of Temperature according to de Broglie (1948)

- Consider a body B, its proper frame R₀, total proper mass M₀, in thermodynamical equilibrium with temperature T₀ and fixed volume V₀ (e.g., a gas enclosed with surrounding rigid wall)
- Then consider $\mathcal B$ from an inertial frame $\mathcal R$ in which $\mathcal B$ has constant velocity $v = v \hat{n}$ relative to $\mathcal R_{0}$.
- Suppose that a source in R provides B with heat ∆Q. In order to keep the velocity v of B constant a work W has to be done on B and the proper mass of the latter is consequently modified M₀ → M'₀. Then, from energy conservation :

$$(M'_0 - M_0)\gamma c^2 = \Delta Q + W, \quad \gamma = \gamma(v) = \frac{1}{\sqrt{1 - v^2/c^2}},$$

and relativistic 2d Newton law

$$\Delta P = M'_0 \gamma v - M_0 \gamma v = \int F dt = \frac{1}{v} \int F v dt = \frac{W}{v}$$

we derive

$$\Delta Q = \frac{c^2}{v^2} \gamma^{-2} W = (M'_0 - M_0) c^2 \gamma^{-2}$$

- In the frame \mathcal{R}_0 there is no work done (volume is constant), there is just transmitted heat $\Delta Q_0 = (M'_0 M_0)c^2$.
- Hence heat transforms as

$$\Delta Q = \Delta Q_0 \gamma^{-1}$$

and since the entropy $S = \int \frac{dQ}{T}$ is relativistic invariant, $S = S_0$, temperature transforms as

$$T = T_0 \gamma^-$$

J.-P. Gazeau

INRNE Sofia

< □ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の Q (~ 15 February 2024

8/31

sallis distribution

de Sitterian Tsallis distribution

Maxwell-Jüttner distribution (from Synge)

J.-P. Gazeau

INRNE Sofia

15 February 2024

E 990

9/31

ヘロト ヘヨト ヘヨト ヘヨト

OCOCO	Maxwell-Juttner distribution ●○○○○○○○	de Sitter material	de Sitterian Tsallis distribution
Derivation for si	mple gases (Synge)-I		

Notations for Minkowskian event and 4-momenta 4-vectors,

$$\mathbb{M}_{1,3} \ni \underline{x} = (x^{\mu}) = (x^0 = x_0, x^i = -x_i, i = 1, 2, 3) \equiv (x^0, \mathbf{x}), \ \underline{x} \cdot \underline{x'} = x^{\mu} x'_{\mu} = x^0 {x'}^0 - \mathbf{x} \cdot \mathbf{x'},$$

$$\underline{k} = (k^{\mu}) = (k^0, \mathbf{k}) \,.$$

- Let \underline{k} be a 4-momentum pointing toward $A \in$ mass shell hyperboloid $\mathcal{V}_m^+ = \{\underline{k}, \underline{k} \cdot \underline{k} = m^2 c^2\}$, and an infinitesimal hyperbolic interval at A, with length $d\sigma = mc \, d\omega \, (\, d\omega = \frac{d^3 \mathbf{k}}{k_0} \text{ is the Lorentz-invariant element on } \mathcal{V}_m^+)$,
- given a time-like unit vector <u>n</u>,
- given a straight line Δ passing through the origin and orthogonal (in $\mathbb{M}_{1,3}$ sense) to \underline{n} ,
- denote by $d\Omega$ the length of the projection of $d\sigma$ on Δ along <u>n</u>. One proves that

$$\mathrm{d}\Omega = |\underline{k} \cdot \underline{n}| \,\mathrm{d}\omega \quad (= \mathrm{d}^3 \mathbf{k} \text{ if } \underline{n} = (1, \mathbf{0}))$$

J.-P. Gazeau

Figure: \underline{n} is a time-like unit vector, Δ is a straight line passing through the origin and orthogonal (in the Minkowskian metric sense) to \underline{n} . The 4-momentum $\underline{k} = (k^{\mu}) = (k^{0}, \mathbf{k})$ points toward a point *A* of the mass shell hyperboloid $\mathcal{V}_{m}^{+} = \{\underline{k}, \underline{k} \cdot \underline{k} = m^{2}c^{2}\}$. d Ω is the length of the projection, along \underline{n} , of an infinitesimal hyperbolic interval at *A* of length $mcd\omega$.

Preamble 00000	Maxwell-Jüttner distribution	de Sitter material	

Derivation for simple gases (Synge)-II

- The sample population consists of those particles with world lines cutting the infinitesimal space-like segment dΣ orthogonal to the time-like unit vector <u>n</u>.
- Every particle that crosses the portion C of the null cone between M and dΣ must (causal cone) also cross dΣ. Therefore the following population number is preassigned

$$u = \mathrm{d}\Sigma \, \int_{\mathcal{R}} \, \mathcal{N}(\underline{x}, \underline{k}) \, \mathrm{d}\Omega$$

where $\mathcal{N}(\underline{x}, \underline{k})$ is the distribution function, and \mathcal{R} the region delimited by *M* and d Σ .

 By the conservation of 4-momentum at each collision in a simple gas, the flux of 4-momentum across dΣ is predetermined as the flux across C,

$$T_{\mu} \cdot \underline{n} \, \mathrm{d}\Sigma = \mathrm{d}\Sigma \, \int_{\mathcal{R}} \, \mathcal{N}(\underline{x}, \underline{k}) \, ck_{\mu} \mathrm{d}\Omega$$

where $T = (T_{\mu\nu})$ is the energy tensor.

15 February 2024

3

シュペ 12/31

イロト イポト イヨト イヨト

シュペ 13/31

2

15 February 2024

*ロト *部ト *注ト *注ト

Figure: C is the portion of the null cone starting at the event $M = (x^0, \mathbf{x})$ and limited by the infinitesimal space-like segment $d\Sigma$ orthogonal to the time-like unit vector \underline{n} . \mathcal{R} is the region delimited by M, the portion of the light cone C, and $d\Sigma$.

00000		0000000	000000
Derivation for s	imple gases (Synge)-III		

• The most probable distribution function \mathcal{N} at M is that which maximizes the following entropy integral

$$F = -\mathrm{d}\Sigma \,\int_{\mathcal{R}} \mathcal{N} \,\log \mathcal{N} \,\mathrm{d}\Omega$$

• Variational calculus with constraints on ν and $T_{\mu} \cdot \underline{n}$ leads to the solution

$$\mathcal{N}(\underline{x},\underline{k}) = C(\underline{x}) \exp(-\underline{\eta}(\underline{x}) \cdot \underline{k})$$

• Scalar *C* and 4-vector $\underline{\eta}$ (dimension of inverse momentum) are connected with Lagrange multipliers and determined by the constraints on $\nu = \underline{N} \cdot \underline{n} \, d\Sigma$ (\underline{N} is the numerical-flux 4-vector) and $T_{\mu} \cdot \underline{n} \, d\Sigma$:

$$C\int_{\mathcal{V}_m^+} k_{\mu} e^{-\underline{\eta} \cdot \underline{k}} \, \mathrm{d}\omega = N_{\mu} \,, \qquad C\int_{\mathcal{V}_m^+} ck_{\mu} k_{\nu} \, e^{-\underline{\eta} \cdot \underline{k}} \, \mathrm{d}\omega = T_{\mu\nu} \,.$$

established by taking into account that \underline{n} is arbitrary.

• With the equations of conservation

$$\underline{\partial} \cdot \underline{N} = 0, \quad \underline{\partial} \cdot T_{\mu} = 0,$$

we finally get as many equations as functions of <u>x</u>: $C, \eta, \underline{N}, T$.

J.-P. Gazeau

INRNE Sofia

< □ ▶ < ② ▶ < 差 ▶ < 差 ▶ 差 · ♡へで 14/31 15 February 2024

Preamble 00000	Maxwell-Jüttner distribution	de Sitter material	de Sitterian Tsallis distribution
Derivation for simple	nases (Synge)-IV		

• For instance, if we deal with a simple gas consisting of material particles of proper mass *m*, we introduce the mean 4-velocity of the fluid, $\underline{\lambda} = (\lambda_{\mu} = c\eta_{\mu}/\sqrt{\eta \cdot \eta}), \underline{\lambda} \cdot \underline{\lambda} = c^2$, so that

$$\mathcal{N}(\underline{x}, \underline{k}) := rac{\mathcal{N}_0}{mcK_1 \left(mc^2/k_BT_a\right)} \exp\left(-rac{\underline{\lambda} \cdot \underline{k}}{k_BT_a}
ight) \,.$$

- T_a := c/(k_B√<u>η · η</u>) is a "relativistic" absolute temperature. It is precisely the relativistic invariant, which might fit pointview (c).
- The appearance of the Bessel functions K1 comes from the constraint

$$N_{\mu} = C \int_{\mathcal{V}_{m}^{+}} k_{\mu} \, e^{-\underline{\eta} \cdot \underline{k}} \, \frac{\mathrm{d}^{3} \mathbf{k}}{k_{0}} = -C \frac{\partial Z}{\partial \eta^{\mu}} = C \frac{\eta_{\mu} m c}{\sqrt{\underline{\eta} \cdot \underline{\eta}}} K_{1} \left(m c \sqrt{\underline{\eta} \cdot \underline{\eta}} \right) \,,$$

where $Z = \int_{\mathcal{V}_m^+} e^{-\underline{\eta} \cdot \underline{k}} \frac{d^3\mathbf{k}}{k_0} \propto K_0 \left(mc \sqrt{\underline{\eta} \cdot \underline{\eta}} \right)$ is the partition function.

- The invariant quantity N₀ = <u>N</u> · <u>λ</u>/c is the number of particles per unit length ("numerical density") in the rest frame of the fluid (λ₀ = c).
- Note that the Maxwell-Boltzmann non relativistic distribution is recovered by considering the limit at $k_B T_a \ll mc^2$ in the rest frame of the fluid:

$$K_{1}\left(\frac{mc^{2}}{k_{B}T_{a}}\right) \approx \sqrt{\frac{\pi k_{B}T_{a}}{2mc^{2}}}e^{-\frac{mc^{2}}{k_{B}T_{a}}}$$
$$\Rightarrow \mathcal{N}(\underline{x},\underline{k}) \approx N_{0}\sqrt{\frac{2}{\pi mk_{B}T_{a}}}\exp\left(-\frac{k_{0}c - mc^{2}}{k_{B}T_{a}}\right) \approx N_{0}\sqrt{\frac{2}{\pi mk_{B}T_{a}}}\exp\left(-\frac{\mathbf{k}^{2}}{2mk_{B}T_{a}}\right) .$$

J.-P. Gazeau

INRNE Sofia

15 February 2024

Preamble 00000	Maxwell-Jüttner distribution ○○○○○●○○	de Sitter material	de Sitterian Tsallis distribution
Inverse temperatu	ire 4-vector		

• The found distribution on the Minkowskian mass shell for a simple gas consisting of particles of proper mass *m*

$$\mathcal{N}(\underline{x},\underline{k}) = \frac{\mathcal{N}_0}{mcK_1 \left(mc^2/k_BT_a\right)} \exp\left(-\frac{\underline{\lambda} \cdot \underline{k}}{k_BT_a}\right)$$

leads us to introduce the relativistic thermodynamic, future directed, time-like 4-coldness vector β , as the 4-version of the reciprocal of the thermodynamic temperature (see also Wu 2009):

$$\frac{\underline{\lambda}}{\underline{k}_{B}T_{a}} \equiv \underline{\beta} = (\beta^{0} = \beta_{0} > 0, \beta^{i} = -\beta_{i}) = (\beta_{0}, \boldsymbol{\beta}),$$

with relativistic invariant

$$\sqrt{\underline{\beta} \cdot \underline{\beta}} = \frac{c}{k_B T_a} \equiv \beta_a \,.$$

- It is precisely the way as the component β_0 transforms under a Lorentz boost, $\beta'_0 = \gamma(v)(\beta_0 - \mathbf{v} \cdot \boldsymbol{\beta}/c)$, which explains the way the temperature transforms à la de Broglie, $T \mapsto T' = T\gamma^{-1}$.
- So, in the sequel, we call Maxwell-Jüttner distribution the following relativistic invariant:

$$\mathcal{N}(\underline{\beta},\underline{k}) = \frac{\mathcal{N}_0}{mcK_1 (mc\beta_a)} \exp\left(-\underline{\beta} \cdot \underline{k}\right)$$

J.-P. Gazeau

INRNE Sofia

Maxwell-Jüttner distribution in a nutshell

Distribution

$$\mathcal{N}(\underline{x},\underline{k}) = \frac{\mathcal{N}_0}{mcK_1 \left(mc^2/k_BT_a\right)} \exp\left(-\underline{\beta}(\underline{x}) \cdot \underline{k}\right)$$

Momentum 4-vector

$$\underline{k} = (k^0, \mathbf{k}) \in \mathcal{V}_m^+, \quad \underline{k} \cdot \underline{k} = m^2 c^2$$

• Coldness 4-vector field \sim 4-version of the reciprocal of the thermodynamic temperature in terms of the mean 4-velocity $\underline{\lambda}$ of the fluid

$$\underline{\beta} = (\beta_0 > 0, \beta) = \frac{\underline{\lambda}}{k_B T_a}, \quad \sqrt{\underline{\beta} \cdot \underline{\beta}} = \frac{c}{k_B T_a}$$

J.-P. Gazeau

INRNE Sofia

15 February 2024

de Sitterian Tsallis distribution

de Sitterian material

J.-P. Gazeau

INRNE Sofia

15 February 2024

5 9 Q C

18/31

Ρ	re	aı	ml	bl	le
C	00	0	0	C	

Maxwell-Jüttner distribution

de Sitter material 000000

de Sitterian Tsallis distribution

de Sitter geometry

de Sitter space is viewed as a hyperboloid embedded in a five-dimensional Minkowski space $\mathbb{M}_{1,4}$ with metric $g_{\alpha\beta} = \text{diag}(1, -1, -1, -1, -1)$ (but keep in mind that all points are physically equivalent)

$$\mathsf{M}_{R} \equiv \{ x \in \mathbb{R}^{5}; \ x^{2} = g_{\alpha\beta} \ x^{\alpha} x^{\beta} = -R^{2} \}, \quad \alpha, \beta = 0, 1, 2, 3, 4,$$

where the pseudo-radius *R* (or inverse of curvature) is given by $R = \sqrt{\frac{3}{\Lambda}}$ within the cosmological Λ CDM standard model.

de Sitter symmetry group is SO₀(1,4) with ten (Killing) generators $K_{\alpha\beta} = x_{\alpha}\partial_{\beta} - x_{\beta}\partial_{\alpha}$.

de Sitter space-time

J.-P. Gazeau

INRNE Sofia

15 February 2024

Preamble 00000	Maxwell-Jüttner distribution	de Sitter material O●OOOOO	de Sitterian Tsallis distribution
Flat Minkowskian limit	of de Sitter geometry		

▶ Example of global coordinates on M_R , $ct \in \mathbb{R}$, $\mathbf{n} \in \mathbb{S}^2$, $r/R \in [0, \pi]$:

$$\begin{split} \mathsf{M}_R \ni x &= (x^0, x^1, x^2, x^3, x^4) \equiv (x^0, \mathbf{x}, x^4) \\ &= (R \sinh(ct/R), R \cosh(ct/R) \sin(r/R) \mathbf{n}, R \cosh(ct/R) \cos(r/R)) \equiv x(t, \mathbf{x}) \,. \end{split}$$

▶ $\lim_{R\to\infty} M_R = M_{1,3}$, the Minkowski spacetime tangent to M_R at, say, the de Sitter origin point $O_{dS} = (0, 0, R)$, since then

$$\mathsf{M}_R \ni x \underset{R \to \infty}{\approx} (ct, \mathbf{r} = r \, \mathbf{n}, R) \equiv (\underline{\ell}, R) \,, \quad \underline{\ell} \in \mathbb{M}_{1,3}$$

▶ $\lim_{R\to\infty} SO_0(1,4) = \mathcal{P}^{\uparrow}_+(1,3) = \mathbb{M}_{1,3} \rtimes SO_0(1,3)$, the Poincaré group.

► The ten de Sitter Killing generators contract (in the Wigner-Inonü sense) to their Poincaré counterparts $K_{\mu\nu}$, Π_{μ} , $\mu = 0, 1, 2, 3$, after rescaling the four $K_{4\mu} \longrightarrow \Pi_{\mu} = K_{4\mu}/R$.

J.-P. Gazeau

INRNE Sofia

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

rea	mb	le
000	000	

Maxwell-Jüttner distribution

de Sitter plane waves as binomial deformations of Minkowskian plane waves

de Sitter (scalar) plane waves have the form

$$\phi_{\tau,\xi}(x) = \left(\frac{x \cdot \xi}{R}\right)^{\tau} , \quad x \in \mathsf{M}_R , \quad \xi \in \mathcal{C}_{1,4} ,$$

where $\mathcal{C}_{1,4}=\{\xi\in\mathbb{R}^5\,,\,\xi\cdot\xi=0\}$ is the null cone in $\mathbb{M}_{1,4}.$

They are solutions of the Klein-Gordon-like equation

$$\frac{1}{2}M_{\alpha\beta}M^{\alpha\beta}\phi_{\tau,\xi}(x) = R^2 \Box_R \phi_{\tau,\xi}(x) = \tau(\tau+3)\phi_{\tau,\xi}(x),$$

where $M_{\alpha\beta} = -i(x_{\alpha}\partial_{\beta} - x_{\beta}\partial_{\alpha})$ is the quantum representation of the Killing $K_{\alpha\beta}$, and \Box_R stands for the d'Alembertian operator on M_R .

- ▶ For $\tau = -\frac{3}{2} + i\nu$, $\nu \in \mathbb{R}$, they describe free quantum motions of "massive" scalar particles on M_R .
- ▶ The term "massive" is justified by the flat Minkowskian limit $R \to \infty$, i.e. $\Lambda \to 0$:
 - First one has the Garidi relation between proper mass ${\it m}$ (curvature independent) of the particle and the parameter $\nu \geq 0$

$$m = \frac{\hbar}{Rc} \left[\nu^2 + \frac{1}{4} \right]^{1/2} \Leftrightarrow \nu = \sqrt{\frac{R^2 m^2 c^2}{\hbar^2} - \frac{1}{4}} \underset{R \text{ large}}{\approx} \frac{Rmc}{\hbar} = \frac{mc}{\hbar} \sqrt{\frac{3}{\Lambda}} ,$$

(the quantity $\frac{\hbar c_R}{R}$ is a kind of *at rest desitterian energy*, which is distinct of the proper mass energy mc^2 if $\Lambda \neq 0$).

• Then with the mass shell parametrisation $\xi = \left(\xi^0 = \frac{k_0}{mc}, \boldsymbol{\xi} = \frac{\mathbf{k}}{mc}, \xi^4 = 1\right) \in \mathcal{C}_{1,4}^+$:

$$\phi_{\tau,\xi}(x) = (x \cdot \xi/R)^{-3/2 + i\nu} \xrightarrow[R \to \infty]{} e^{i\underline{k} \cdot \underline{\ell}/\hbar}, \quad \underline{\ell} = (ct, \mathbf{r}).$$

J.-P. Gazeau

INRNE Sofia

15 February 2024

Pream	b	e
0000	C	

Analytic extension of dS plane waves for dS QFT

- Actually dS plane waves $\phi_{\tau,\xi}(x) = \left(\frac{x\cdot\xi}{R}\right)^{\tau}$, $\tau = -3/2 + i\nu$, are not defined on all M_R due to the possible change of sign of $x \cdot \xi$.
- A solution is found through extension to tubular domains in complexified M^c_R

$$\mathcal{T}^\pm:=T^\pm\cap\mathsf{M}_{\mathit{R}}\,,\quad T^\pm:=\mathbb{M}_{1,4}+\mathsf{i} V^\pm\,,$$

where the forward and backward light cones $V^{\pm} := \{x \in \mathbb{M}_{1,4}, x^0 \ge \sqrt{\mathbf{x}^2 + (x^4)^2}\}$ allow for a causal ordering in $\mathbb{M}_{1,4}$.

- ▶ Then the extended plane waves $\phi_{\tau,z}(x) = \left(\frac{z \cdot \xi}{R}\right)^{\tau}$ are globally defined for $z \in \mathcal{T}^{\pm}$ and $\xi \in \mathcal{C}_{1,4}^+$.
- ► These analytic extensions allow for a consistent QFT for free scalar fields on M_R: the two-point Wightman function $W_{\nu}(x, x') = \langle \Omega, \phi(x)\phi(x')\Omega \rangle$ can be extended to the complex covariant, maximally analytic, two-point function having the spectral representation in terms of these extended plane waves:

$$W_{\nu}(z,z') = c_{\nu} \int_{\mathcal{V}_{m}^{+} \cup \mathcal{V}_{m}^{-}} (z \cdot \xi)^{-3/2 + i\nu} (\xi \cdot z')^{-3/2 - i\nu} \frac{d\mathbf{k}}{k_{0}}, \quad z \in \mathcal{T}^{-}, \, z' \in \mathcal{T}^{+}.$$

Details are found in J. Bros, J.P. G., and U. Moschella, Quantum Field Theory in the de Sitter Universe, 1994 Phys. Rev. Lett. 73 1746-1749. See references in M. Enayati, J.P. G., H. Pejhan, and A. Wang, *The de Sitter (dS) Group and its Representations; An Introduction to Elementary Systems and Modeling the Dark Energy Universe*, Springer Nature (2022).

J.-P. Gazeau

INRNE Sofia

15 February 2024

Preamble 00000	Maxwell-Jüttner distribution	de Sitter material ○○○○●○○	de Sitterian Tsallis distribution
KMS interpretation	of $W_{\nu}(z, z')$ analyticity		

For the analyticity of $W_{\nu}(z, z')$ we deduce that $W_{\nu}(x, x')$ defines a $2i\pi R/c$ periodic analytic function of *t*, whose domain is the periodic cut plane

 $\mathbb{C}_{x,x'}^{\text{cut}} = \left\{ t \in \mathbb{C} , \, \operatorname{Im}(t) \neq 2n\pi R/c \,, \, n \in \mathbb{Z} \right\} \cup \left\{ t \,, \, t - 2in\pi R/c \in I_{x,x'} \,, \, n \in \mathbb{Z} \right\},$

where $I_{x,x'}$ is the real interval on which $(x - x')^2 < 0$.

• Hence $W_{\nu}(z, z')$ is analytic in the strip

$$\left\{t\in\mathbb{C}\,,\,0<\mathrm{Im}(t)<2\mathrm{i}\pi R/c\right\},\,$$

and satisfies:

$$\mathcal{W}_{\nu}(x'(t+t',\mathbf{x}),x) = \lim_{\epsilon \to 0^+} W_{\nu}\left(x,x'(t+t'+2i\pi R/c-i\epsilon,\mathbf{x})\right), \quad t' \in \mathbb{R}.$$

This is a KMS relation at (~ Hawking) temperature

$$T_{\Lambda} = rac{\hbar c}{2\pi k_B R} := rac{\hbar c}{2\pi k_B} \sqrt{rac{\Lambda}{3}} \, .$$

2

23/31

イロト イロト イヨト イ

Ρ	re	aı	ml	bl	le
С	0	0	0	C	

Maxwell-Jüttner distribution

de Sitter material

de Sitterian Tsallis distribution

de Sitter (dS) plane waves in a nutshell

• dS (scalar) plane waves for "massive" scalar particles on dS manifold $M_R = \left\{ x = (\underline{x}, x^4), x \cdot x = \underline{x} \cdot \underline{x} - (x^4)^2 = -R^2 = -\frac{3}{\Lambda} \right\}$

$$\phi_{\tau,\xi}(x) = \left(\frac{x \cdot \xi}{R}\right)^{3/2 - i\nu} , \quad x = (\underline{x}, x^4) \in \mathsf{M}_R \subset \mathbb{M}_{1,4}$$

• de Sitterian "momentum" on the null cone $C_{1,4} = \{\xi \in \mathbb{R}^5, \xi \cdot \xi = 0\}$ in $\mathbb{M}_{1,4}$

$$\xi = \left(\underline{\xi} = \frac{\underline{k}}{mc}, \xi^4 = 1\right) \in \mathcal{C}_{1,4}$$

• 3 + 1 Minkowskian limit at $R \to \infty$ (i.e. $\Lambda \to 0$)

$$(x \cdot \xi/R)^{-3/2 + i\nu} \xrightarrow[R \to \infty]{} e^{i\underline{k} \cdot \underline{\ell}/\hbar}, \quad \underline{\ell} = (ct, \mathbf{r}), \quad \nu = \frac{mc}{\hbar} \sqrt{\frac{3}{\Lambda}} = \frac{mc^2}{2\pi k_B T_{\Lambda}}$$
J.P. Gazeau
INRINE Sofia

Tsallis distribution as a Λ -deformation of the Maxwell-Jüttner distribution

J.-P. Gazeau

INRNE Sofia

15 February 2024

2

25/31

• □ > • □ > • □ > •

Preamble 00000	Maxwell-Jüttner distribution	de Sitter material	de Sitterian Tsallis distribution ●○○○○○
Tsallis entropy a	nd distribution		

• Given a discrete (resp. continuous) set of probabilities $\{p_i\}$ (resp. continuous $x \mapsto p(x)$) with $\sum_i p_i = 1$ (resp. $\int p(x) dx = 1$), and a real q, the *Tsallis entropy* is defined as

$$S_q(p_i) = k \frac{1}{q-1} \left(1 - \sum_i p_i^q \right)$$
 resp. $S_q[p] = \frac{1}{q-1} \left(1 - \int (p(x))^q dx \right)$

- As $q \to 1$, $S_q(p_i) \to S_{BG}(p) = -k \sum_i p_i \ln p_i$ (Boltzmann-Gibbs)
- Tsallis entropy is non additive : For two independent systems *A* and *B*, for which $p(A \cup B) = p(A) p(B)$, $S_q(A \cup B) = S_q(A) + S_q(B) + (1 q)S_q(A)S_q(B)$.
- A *Tsallis distribution* is a probability distribution derived from the maximization of the Tsallis entropy under appropriate constraints.
- The so-called *q*-exponential Tsallis distribution has the probability density function

$$(2-q)\lambda[1-(1-q)\lambda x]^{1/(1-q)} \equiv (2-q)\lambda e_q(-\lambda x),$$

where q < 2 and $\lambda > 0$ (rate), arises from the maximization of the Tsallis entropy under appropriate constraints, including constraining the domain to be positive ².

INRNE Sofia

15 February 2024

²Tsallis, C. Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years. Braz. J. Phys. 2009, 39, 337-356

Ρ	re	ar	nl	bl	le
C	00	0	0	C	

Maxwell-Jüttner distribution

de Sitter material

de Sitterian Tsallis distribution ○●○○○○

Coldness in de Sitter

• In analogy with the de Sitter plane waves, let us introduce the distributions on subset $\sim \mathcal{V}_{+}^{+} \subset \mathcal{C}_{+}^{+} = \{\xi \in \mathbb{M}_{1,4}, \xi \cdot \xi = 0, \xi^{0} > 0\}$:

$$\phi_{\tau,\xi}(x) = \left(\frac{\mathfrak{b} \cdot \xi}{B}\right)^{\tau} , \quad \mathfrak{b} \in \mathsf{M}_B , \quad \xi = \left(\frac{k^0}{mc} > 0, \frac{\mathbf{k}}{mc}, -1\right) ,$$

where one should note the negative value -1 for ξ_4 , and $M_B \equiv \{ \mathfrak{b} \in \mathbb{M}_{1,4} , \mathfrak{b}^2 = g_{\alpha\beta} \ \mathfrak{b}^{\alpha} \mathfrak{b}^{\beta} = -B^2 \}, \quad \alpha, \beta = 0, 1, 2, 3, 4$, is the manifold of the "deSitterian coldnesses".

• Like for M_R we use global coordinates on M_B : $\beta^0 \in \mathbb{R}$, $\beta = \|\beta\|\mathbf{n} \in \mathbb{R}^3$, $\|, \|\beta\|/B \in [0, \pi]$, with

$$\begin{split} \mathsf{M}_B &\ni \mathfrak{b} = (\mathfrak{b}^0, \mathfrak{b}^1, \mathfrak{b}^2, \mathfrak{b}^3, \mathfrak{b}^4) \equiv (\mathfrak{b}^0, \mathfrak{b}, \mathfrak{b}^4) \\ &= \left(B \sinh(\beta^0/B), B \cosh(\beta^0/B) \sin(\|\boldsymbol{\beta}\|/B) \mathbf{n}, B \cosh(\beta^0/B) \cos(\|\boldsymbol{\beta}\|/B)\right) \equiv \mathfrak{b}(\underline{\beta}) \,, \end{split}$$

• in such a way that at large *B* we recover the Minkowskian coldness β :

$$\mathsf{M}_B \ni \mathfrak{b} \underset{B \to \infty}{\approx} (\underline{\beta}, B) \,.$$

• We now need to connect the desitterian coldness scale B with Λ . Inspired by relativistic

invariant
$$\beta_a = \frac{c}{k_B T_a}$$
 and the KMS temperature $T_{\Lambda} = \frac{\hbar c}{2\pi k_B} \sqrt{\frac{\Lambda}{3}}$ we write

$$B \propto \frac{2\pi}{\hbar} \sqrt{\frac{3}{\Lambda}}$$
, i.e. $B = \frac{n}{\hbar\sqrt{\Lambda}}$, $\Lambda_{\text{current}} = 1.1056 \times 10^{-52} \text{ m}^{-2}$, $\hbar = 1.054571817... \times 10^{-34} \text{ J s}$

where n is a numerical factor. $B \approx 0.9 \times 10^{60}$ n SI is the inverse of a momentum.

J.-P. Gazeau

INRNE Sofia

15 February 2024

э

∽ < ⁽~ 27/31

Preamble	Maxwell-Jüttner distribution	de Sitter material	de Sitterian Tsallis distribution
A de Sitterian Tsa	llis distribution		

• Now consider the distribution on $M_B \times \mathcal{V}_m^+$ with $B = \frac{n}{\hbar \sqrt{\lambda}}$:

$$\mathcal{N}(\mathfrak{b},\underline{k}) = C_B \left(\frac{\mathfrak{b} \cdot \xi}{B}\right)^{-mcB} = C_B \left(\frac{\mathfrak{b}^0}{B}\frac{k^0}{mc} - \frac{\mathfrak{b}}{B} \cdot \frac{\mathbf{k}}{mc} + \frac{\mathfrak{b}^4}{B}\right)^{-mcB}$$
$$\mathfrak{b} \in \mathsf{M}_B, \quad \xi = \left(\frac{k^0}{mc} > 0, \frac{\mathbf{k}}{mc}, -1\right),$$

where $M_B \equiv \{ b \in M_{1,4}, b^2 = g_{\alpha\beta} b^{\alpha} b^{\beta} = -B^2 \}$, $\alpha, \beta = 0, 1, 2, 3, 4$, is the manifold of the "deSitterian coldnesses", and constant C_B involves Legendre function of mc^2/k_BT_a (?!). • With global coordinates

$$\mathsf{M}_{B} \ni \mathfrak{b} = \left(B \sinh(\beta^{0}/B), B \cosh(\beta^{0}/B) \sin(\|\mathcal{B}\|/B) \mathfrak{n}, -B \cosh(\beta^{0}/B) \cos(\|\mathcal{B}\|/B) \right),$$

with the constraint $\beta^0/B \in [0, \pi/2), \mathcal{N}(\mathfrak{b}, \underline{k})$ reads

$$\mathcal{N}(\mathfrak{b},\underline{k}) = C_B \left(\cosh(\beta^0/B) \cos(\|\boldsymbol{\beta}\|/B) + \sinh(\beta^0/B) \frac{k^0}{mc} - \cosh(\beta^0/B) \sin(\|\boldsymbol{\beta}\|/B) \frac{\mathbf{n} \cdot \mathbf{k}}{mc} \right)^{-mcB}$$

$$= C_B e^{\left[-mcB \log\left(\cosh(\beta^0/B) \cos(\|\boldsymbol{\beta}\|/B) + \sinh(\beta^0/B) \frac{k^0}{mc} - \cosh(\beta^0/B) \sin(\|\boldsymbol{\beta}\|/B) \frac{\mathbf{n} \cdot \mathbf{k}}{mc} \right) \right]}$$

$$= C_B \exp\left[-mcB \log\left(\cosh(\beta^0/B) \cos(\|\boldsymbol{\beta}\|/B) \right) \right] \times$$

$$\times \exp\left[-mcB \log\left[1 + \frac{\sinh(\beta^0/B) \frac{k^0}{mc} - \cosh(\beta^0/B) \sin(\|\boldsymbol{\beta}\|/B) \frac{\mathbf{n} \cdot \mathbf{k}}{mc}}{\cosh(\beta^0/B) \cos(\|\boldsymbol{\beta}\|/B)} \right]$$

$$= C_B \exp\left[-mcB \log\left[1 + \frac{\sinh(\beta^0/B) \frac{k^0}{mc} - \cosh(\beta^0/B) \sin(\|\boldsymbol{\beta}\|/B) \frac{\mathbf{n} \cdot \mathbf{k}}{mc}}{\cosh(\beta^0/B) \cos(\|\boldsymbol{\beta}\|/B)} \right] \right]$$

$$= C_B \exp\left[-mcB \log\left[1 + \frac{\sinh(\beta^0/B) \frac{k^0}{mc} - \cosh(\beta^0/B) \sin(\|\boldsymbol{\beta}\|/B) \frac{\mathbf{n} \cdot \mathbf{k}}{mc}}{\cosh(\beta^0/B) \cos(\|\boldsymbol{\beta}\|/B)} \right] \right]$$

$$= C_B \exp\left[-mcB \log\left[1 + \frac{\sinh(\beta^0/B) \frac{k^0}{mc} - \cosh(\beta^0/B) \sin(\|\boldsymbol{\beta}\|/B) \frac{\mathbf{n} \cdot \mathbf{k}}{mc}} \right] \right]$$

J.-P. Gazeau

INRNE Sofia

15 February 2024

00000	00000000	0000000	000000
A de Sitterian Tsa	allis distribution		
 At la 	rge <i>B</i> this expression become	s the Maxwell-Jüttner dist	ribution:
		0.1	

$$\mathcal{N}(\mathfrak{b},\underline{k})\approx C_B e^{-\underline{\beta}\cdot\underline{k}}$$
.

• So, going back to the original expression

$$\mathcal{N}(\mathfrak{b},\underline{k}) = C_B \left(\frac{\mathfrak{b}\cdot\xi}{B}\right)^{-mcB} = C_B \left(\frac{\mathfrak{b}^0}{B}\frac{k^0}{mc} - \frac{\mathfrak{b}}{B}\cdot\frac{\mathbf{k}}{mc} + \frac{\mathfrak{b}^4}{B}\right)^{-mcB}$$
$$= C_B \left(\frac{\mathfrak{b}^4}{B}\right)^{-mcB} \left(1 + \frac{\mathfrak{b}\cdot\underline{k}}{\mathfrak{b}^4mc}\right)^{-mcB}, \quad \underline{\mathfrak{b}} := (\mathfrak{b}^0,\mathfrak{b}).$$

Introducing

$$q = 1 + \frac{1}{mcB} = 1 + \frac{\hbar\sqrt{\Lambda}}{mcn}$$

we get the Tsallis-type distribution

$$\mathcal{N}(\mathfrak{b},\underline{k}) = C_B \left(1 - (1-q) \frac{B}{\mathfrak{b}^4} \underline{\mathfrak{b}} \cdot \underline{k} \right)^{\frac{1}{1-q}} \,.$$

J.-P. Gazeau

INRNE Sofia

15 February 2024

E 990

29/31

◆□▶ ◆舂▶ ◆差▶ ◆差▶

distribution

Preamble	Maxwell-Jüttner distribution

de Sitter material

de Sitterian Tsallis distribution ○○○○●○

de Sitterian Tsallis distribution in a nutshell

• de Sitterian coldness manifold with $B = \frac{\mathfrak{n}}{\hbar\sqrt{\Lambda}}$, \mathfrak{n} : numerical,

$$\mathsf{M}_B \ni \mathfrak{b} = (\mathfrak{b}^0, \mathfrak{b}, \mathfrak{b}^4), \quad \mathfrak{b} \cdot \mathfrak{b} = (\mathfrak{b}^0)^2 - \mathfrak{b} \cdot \mathfrak{b} - (\mathfrak{b}^4)^2 = -B^2$$

• de Sitterian distribution on $M_B \times \mathcal{V}_m^+$:

$$\mathcal{N}(\mathfrak{b},\underline{k}) = C_B \left(rac{\mathfrak{b}\cdot\xi}{B}
ight)^{-mcB}, \quad \xi = \left(rac{k^0}{mc} > 0, rac{\mathbf{k}}{mc}, -1
ight)$$

• de Sitterian Tsallis-type distribution

$$\mathcal{N}(\mathfrak{b},\underline{k}) = C_B \left(1 - (1-q)rac{B}{\mathfrak{b}^4}\,\underline{\mathfrak{b}}\cdot\underline{k}
ight)^{rac{1}{1-q}}$$

With

$$q = 1 + \frac{1}{mcB} = 1 + \frac{\hbar\sqrt{\Lambda}}{mcn}$$

J.-P. Gazeau

INRNE Sofia

15 February 2024

3

THANK FOR YOUR INDULGENT ATTENTION

INRNE Sofia

15 February 2024