12 January 2022, 19:00 (EET), online seminar
- Todor Popov (ИЯИЯЕ)
- Заглавие: Dynamical Symmetries of the Landau Problem
- Резюме:
Dynamical Symmetries of the Landau Problem
Abstract: We show that the dynamical group of a system of an electron in a constant magnetic field is the group of symplectomorphisms Sp(4, R). It is generated by the spinorial realization of the conformal algebra so(2, 3) considered in Dirac’s seminal paper ”A Remarkable Representation of the 3 + 2 de Sitter Group”. The symplectic group Sp(4, R) is the double covering of the conformal group SO(2, 3) of 2+1 dimensional Minkowski spacetime which is in turn the dynamical group of a hydrogen atom in 2 space dimensions. The Newton-Hooke duality between the 2D hydrogen atom and the Landau problem is explained via the Tits-Kantor-Koecher construction of the conformal symmetries of the Jordan algebra of real symmetric 2 × 2 matrices. The connection between the Landau problem and the 3D hydrogen atom is elucidated by the reduction of a Dirac spinor to a Majorana one in the Kustaanheimo-Stiefel spinorial regularization.