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Abstract

We show that the field of complex numbers C contains non-zero
infinitesimals. They (infinitesimals) become “visible” only under ab-
solute values on C different from the usual absolute value. The talk is
intended as a “mathematical entertainment”, but it can be used for a
more serious discussion as well. After all, any new property observed
about C should be treated as a surprise, since the concept of complex
numbers is one of the most popular and beloved ones in mathematics.
An additional intrigue arises from the fact that infinitesimals are of-
ten an object of dislike, hate and obscurity in modern mathematics in
spite of (and perhaps, exactly because of) their irreplaceable role for
the creation of infinitesimal calculus by Leibniz, Newton, Euler and
others.
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1 Preliminaries

1. A field K is formally real (or orderable) if x21 + x22 + · · · + x2n = 0
always implies x1 = x2 = · · · = xn = 0. The field of real numbers R is
formally real, while C is not.

2. A field K is algebraically closed if every polynomial P ∈ K[x] (with
coefficients in K) has at least one root in K. The field C is algebraically
closed, but R is not.

3. A formally real field R is real closed if

(a) For every a ∈ R either a, or −a has a square root.

(b) Every polynomial P ∈ R[x] (with coefficients in R) of odd degree
has a root in R.

4. Examples:

• The field R of real numbers is real closed. Also the real
algebraic numbers is also real closed. More examples follow later
in the talk.

• The field Q of rational numbers is not real closed, because
neither

√
3, nor

√
−3 are in Q.

5. Theorem (Artin-Schreier): Let R is a formally real field. Then R
is real closed iff R(i) is algebraically closed (Artin & Schreier [2]). Here
R(i) = R⊕ iR.

6. A totally ordered field R is Archimedean if R has no infinitely large
elements (or equivalently, has no non-zero infinitesimals): for every
x ∈ R there exists n ∈ N such that |x| ≤ n. Here |x| = max{x,−x}.

7. R is non-Archimedean if it is not Archimedean, i.e. if there exists
x ∈ R such that n < x for all n ∈ N.

8. Definition: LetR be a totally ordered field extension of R. Let x ∈ R.
Then:

(a) x is finite if |x| ≤ n for some n ∈ N.

(b) x is infinitesimal if |x| < 1/n for all n ∈ N.
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(c) x is infinitely large if n < |x| for all n ∈ N.

We denote by F , I and L the set of the finite, infinitesimal and infinitely
large numbers in R. We write x ≈ y if x − y ∈ I. Notice that every
totally ordered field contains Q as a subfield (thus n, 1/n ∈ R).

9. We have F ∪ L = R, F ∩ L = ∅, I ⊂ F , R ∩ I = {0}. Let
x ∈ R, x 6= 0. Then x ∈ I iff 1/x ∈ L.

10. Every finite number x ∈ F there exists unique real number r ∈ R such
that x ≈ r. Consequently, I is a maximal ideal in F and F/I = R.

11. The field R is Archimedean iff I = {0} iff R = F iff L = ∅.

12. The field R is non-Archimedean iff I 6= {0} iff R 6= F iff L 6= ∅.

13. Example: Let R(t) = R[t]
R[t] denotes the field of the rational func-

tions in one variable with real coefficients. We have:

• R ⊂ R(t) under the embedding r 7→ rt0.

• Let P ∈ R[t] be a polynomial. We define P > 0 if the coefficient
in front of the lowest power of t is positive. For example
2t2 − 100t3 > 0, because 2 > 0. Thus R(t) converts in a totally
ordered field.

• The field of rational functions R(t) is not real closed, because
neither

√
t, nor

√
−t are in R(t). However, the field R(t) is a

non-Archimedean field:

(a) t, −t, 2t− t2, t2, t2 − 3t3, . . . are non-zero infinitesimals.

(b) t−1, −t−1, 3t−1, t−2, t−2 − 3t3, . . . are infinitely large.

(c) 2, 1 + t, 2− t, 5 + 2t, 6 + t2, π+ t2− 3t3, . . . are finite, but
not infinitesimal.

• To show that say, 2t2 − 100t3 is positive infinitesimal, we have
to show that 0 < 2t2 − 100t3 < 1/n for all n ∈ N. Indeed,
2t2 − 100t3 < 1/n is equivalent to 1/n − 2t + 100t3 > 0, which
holds, because 1/n > 0.

• To show that 3t−1 is positive infinitely large, we have to show
that n < 3t−1 for all n ∈ N. Indeed, n < 3t−1is equivalent to
3t−1 − n > 0, which holds, since 3 > 0.
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• To show that 6+t2 is finite, but not infinitesimal, we have to show
that 1/m < 6 + t2 < n for some m,n ∈ N. Indeed, m = 1 and
n = 7 will do.

2 Conventional Definition of Complex Num-

bers

1. R(i) = R⊕ iR, where R is the field of real numbers. We often write C
instead of R(i).

2. Absolute value on R(i) is defined by |x + iy|R =
√
x2 + y2, where

x, y ∈ R. We often write |z| instead of |z|R.

3. Theorem: R(i) is an algebraically closed field of zero-characteristic
and of cardinality c, where c = card (R).

4. There is no z ∈ R(i) such that 0 < |z|R < 1/n for all n ∈ N (there are
no non-zero infinitesimals in R(i), relative to |z|R).

3 Abstract Definition of Complex Numbers:

Infinitesimals in C
1. Abstract Definition: C is an algebraically closed field of zero-characteristic

and of cardinality c = card (R).

2. Notice R is not a part of the above definition (except throughout its
cardinality, c).

3. Justification (Steinitz Theorem): All algebraically closed fields of
zero-characteristic and the same cardinality are isomorphic (Steinitz [29]).
Thus C (as defined above) is uniquely determined up to isomorphism.

4. Theorem-Observation: Let R be a real closed field of cardinality c.
Then R(i) is isomorphic to C, i.e.

C ∼= R(i).

We define an absolute value |x + iy|R =
√
x2 + y2 with the same for-

mula, but now x, y ∈ R. We say that R is a real part of C.
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5. There are plenty of mutually non-isomorphic real closed fields R of
cardinality c = card (R) (Archimedean and non-Archimedean alike).
Here are some of them:

(a) R is an Archimedean real closed field. The rest of the fields below
are non-Archimedean of cardinality c = cardR:

(b) The field R{t} of Puiseux-Newton series used by Newton for
calculations algebraic curves and planet’s orbits (Prestel [23]).

(c) The field R〈tR〉 of Levi-Civitá series used nowadays for symbolic
calculation of derivatives of real functions in computers (Levi-
Civitá [12]).

(d) R((tR)) is Hahn field of power series developed in connection
with Hilbert’s seventh problem (Hahn [8]).

(e) The field ρR of Robinson’s asymptotic numbers used in the
the non-standard version of Colombeau theory (Robinson [27],
Lightstone & Robinson [13]).

(f) The field ∗R of Robinson’s non-standard real numbers of
cardinality c in the framework of non-standard analysis (Robin-
son [26]).

(g) An many others...

6. Thus (by the above Theorem-Observation) we have:

C ∼= R(i) ∼= R{t}(i) ∼= R〈tR〉(i) ∼= R((tR))(i) ∼= ρR(i) ∼= ∗R(i).

3.1 Remark. ρR(i) and ∗R(i) appear in the literature under the nota-
tions ρC and ∗C (Oberguggenberger [20], Oberguggenberger &Todorov
[21], Todorov &Vernaeve [33], Todorov [34]-[35]). We refer to ρC and
∗C as the fields of the complex asymptotic and complex non-
standard numbers, respectively. As far as we can detect, the isomor-
phisms C ∼= ρC ∼= ∗C remained so far unnoticed in the mathematical
community.

7. Theorem (Embeddings):

R(t) ⊂ R{t} ⊂ R〈tR〉 ⊂ R((tR)) ⊂ ρR ⊂ ∗R,

where all embeddings are canonical (subfields-subsets) except the last
one. Here R(t) is the field of rational functions mentioned earlier.
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8. Corollary: The fields R{t}, R〈tR〉, R((tR)), ρR, ∗R are all non-
Archimedean.

Proof: R(t) is non-Archimedean.

9. Example: The series t+ 2! t2 + 3! t3 + . . . is a positive infinitesimal in
R〈tR〉, R((tR)), ρR and ∗R, but not in R(t).

10. Infinitesimals in C: Let R be one of the real closed non-Archimedean
fields: R{t}, R〈tR〉, R((tR)), ρR or ∗R. Let σ : R(i) 7→ C be a field-
isomorphism. Then σ[R] is a real closed subfield of C. Notice that
σ(q) = q for all q ∈ Q. Let ρ be a positive infinitesimal in R, i.e.
0 < ρ < 1/n in R for all n ∈ N (for example, ρ = t). Then σ(ρ) is a
positive infinitesimal in σ[R] as well, i.e. 0 < σ(ρ) < 1/n in σ[R] for
all n ∈ N. Thus 0 < |σ(ρ)|R < 1/n for all n ∈ N, since |σ(ρ)|R = σ(ρ).
The latter means meaning that σ(ρ) is a positive infinitesimal in C !!!

4 Series Representation of the Fields: R, R{t},
R〈tR〉, R((tR)), ρR

1. R =
{∑∞

n=µ cn( 1
10

)n : µ ∈ Z, cn ∈ {0, 1, . . . , 9}
}

, the real numbers.

2. R{t} =:
{∑∞

n=µ an( m
√
t)n : µ ∈ Z, m ∈ N, an ∈ R

}
is the field

of Puiseux series with real coefficients (also known as Puiseux-
Newton series) (Prestel [23]).

• R{t} is a real closure of the field of Laurent series R〈tZ〉.
• Puiseux series were introduced by Isaac Newton [19] and later

rediscovered by Victor Puiseux [24]-[25].

3. The field of Levi-Civita series with real coefficients is defined by

R〈tR〉 =:
{∑
r∈R

art
r : ar ∈ R and {r ∈ R : ar 6= 0} is a left-finite set

}
.

Recall that S is a left-finite subset of R if for every r ∈ R the set {s ∈ S :
s ≤ r} is finite. Here is a characterization:

∑
r∈R ant

r is a Levi-Civitá
series with real coefficients iff

∑
r∈R art

r can be presented in the form
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∑∞
n=0 bnt

rn for some sequence (bn) in R and some strictly increasing

unbounded sequence (rn) in R (Levi-Civitá [12]). For example, t
√
2 +

tπ + t4 + t5 + t6 + · · · ∈ R〈tR〉.

4. The field of Hahn’s (generalized) series with coefficients in R
and valuation group (R,+, <) is defined by

R((tR)) =:
{∑
r∈R

art
r : ar ∈ R and {r ∈ R : ar 6= 0} is a well ordered set

}
,

(Hahn [8]). For example, 1 + t1/2 + t2/3 + t3/4 + · · · ∈ R((tR)) \ R〈tR〉,
since limn7→∞

n
n+1

= 1 6=∞.

5. Non-Standard Numbers ∗R (Robinson [26]):

• Let RN stand for the partially ordered ring of sequences in R under
the pointwise addition and multiplication and order.

• Let U be a free ultrafilter on N. We define the maximal convex
ideal in RN by

IU = {(an) ∈ RN : Z(an) ∈ U},

where Z(an) = {n ∈ N : an = 0} stands for the zero-set of the
sequence (an) ∈ RN.

• We have I0 ⊂ IU , where I0 = {(an) ∈ RN : N \Z(an) is a finite set}.
• ∗R = RN/IU is the field of non-standard real numbers. We denote

by 〈an〉 the equivalence class of (an).

• R ⊂ ∗R under r 7→ 〈r, r, . . .〉.
• We define order on ∗R by 〈an〉 > 0 if 〈an〉 = 〈εn〉 for some sequence

(εn) with positive terms εn > 0.

• ∗R is a real closed saturated non-Archimedean field. In
particular, 〈1/n〉 is a positive infinitesimal and 〈n〉 is positive in-
finitely large number.

• Every finite number x ∈ F there exists unique real number r ∈ R
such that x ≈ r.

• Let X be a subset of R. We define its non-standard extension
by ∗X = {〈xn〉 ∈ ∗R : (xn) ∈ XN}.
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• Let X be a subset of R and f : X 7→ R be a real function. We
define its non-standard extension, ∗f : ∗X 7→ ∗R, by

∗f(〈xn〉) = 〈f(xn)〉.

6. Let ρ ∈ ∗R be a (fixed) positive infinitesimal. The field Robinson’s
field of asymptotic numbers is defined as ρR =Mρ/Nρ, where

Mρ = {x ∈ ∗R : |x| ≤ ρ−n for some n ∈ N},
Nρ = {x ∈ ∗R : |x| < ρn for all n ∈ N},

(Robinson [27], Lightstone & Robinson [13]). Notice that e1/ρ /∈ Mρ

and e−1/ρ ∈ Nρ. If x ∈Mρ, we let x̂ = x+Nρ.

7. ρR does not depend on the choice of ρ in the sense that ρ1R ∼= ρ2R for
every two positive infinitesimals, ρ1 and ρ2.

8. ρR ∼= ∗R((tR)), where ∗R((tR)) is the Hahn field with coefficients in ∗R
and valuation group (R,+, <), i.e.

∗R((tR)) =
{∑
r∈R

ar t
r : ar ∈ ∗R, {r ∈ R; ar 6= 0} is a well ordered set

}
,

(Todorov & Wolf [31]).

9. We have the field self-embeddings ρR ↪→ ∗R and ∗R ↪→ ρR.

10. ρR plays the role of the field of scalars of the algebra of asymptotic
functions in the non-standard version of Colombeau theory (Todorov
&Vernaeve [33]).

5 Philosophy: Infinitesimals are Observed or

They are Created by Us ?

Two philosophical questions (without answers):

1. Infinitesimals exist and are present in C (regardless of us) and we use
the absolute value | · |R (with non-Archimedean field R) merely to
observe them ?

or/and

2. We (humans) create infinitesimals within C by “intruding” into C with
R and | · |R ?

9



6 How Leibniz Derived (x3)′ = 3x2

1. Definition:

(a) (x3)′ is the standard function (x3)′ : R 7→ R such that:

(b) (x3)′ ≈ (x+dx)3−x3
dx

for every non-zero infinitesimal dx.

2. Deriving the Formula:

(x+ dx)3 − x3

dx
=
x3 + 3x2dx+ 3xdx2 + dx3 − x3

dx
= 3x2+3xdx+dx2 ≈ 3x2,

because 3x2 is standard (real) and 3xdx+ dx2 is infinitesimal. Thus

(x3)′ = 3x2,

as required.

7 How Computers Calculate (x3)′ = 3x2

1. Definition: Left to Humans.

2. Algorithm:

(a) Step 1: Let dx 6= 0 is non-zero real (standard) variable. The
algebra is the same:

(x+ dx)3 − x3

dx
=
x3 + 3x2dx+ 3xdx2 + dx3 − x3

dx
= 3x2+3xdx+dx2.

(b) Step 2: Let dx = 0 and the result is:

(x3)′ = 3x2.

3. The logical paradox: “dx 6= 0 and dx = 0” is left to Humans.

4. The above logical paradox is exactly the reason for the revolution
against infinitesimals starting from Bolzano and Weirstrass in 19-th
century.
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algébriques (PDF). J. Math. Pures Appl. 16: 228-240.

[26] A. Robinson, Nonstandard Analysis, North Holland, Amsterdam, 1966.

[27] A. Robinson, Function theory on some nonarchimedean fields, Amer.
Math. Monthly 80 (6), Part II: Papers in the Foundations of Mathemat-
ics (1973), p. 87–109.

[28] Khodr Shamseddine, Nontrivial order preserving automorphisms of non-
Archimedean fields, Contemporary Mathematics, Volume 547, 2001.

[29] E. Steinitz, Algebraische Theorie der Körper, Berlin, 1930.

[30] K. D. Stroyan and W. A. J. Luxemburg, Introduction to the Theory of
Infinitesimals, Academic Press, New York, 1976.

[31] T. Todorov and R. Wolf, Hahn field representation of A. Robin-
sono’s asymptotic numbers, in Nonlinear Algebraic Analysis and Ap-
plications, Proceedings of the International Conference on General-
ized Functions (ICGF) 2000, Edited by A. Delcroix, M. Hasler, J.-
A. Marti, and V.Valmorin, Cambridge Scientific Publishers, Cotten-
ham, Cambridge, 2004, pp. 357-374 (available at ArxivMathematics:
[http://arxiv.org/abs/math/0601722]).

[32] Todor D. Todorov, Lecture Notes: Non-Standard Approach to
J.F. Colombeau’s Theory of Generalized Functions, University
of Vienna, Austria, May 2006, (available at ArxivMathematics:
http://arxiv.org/abs/1010.3482).

[33] Todor Todorov and Hans Vernaeve, Full Algebra of Generalized
Functions and Non-Standard Asymptotic Analysis, In: Logic and

13



Analysis, Springer, Vol. 1, Issue 3, 2008, pp. 205-234 (available at:
(http://www.logicandanalysis.com/index.php/jla/article/view/193/79)
and/or at: http://arxiv.org/abs/0712.2603).

[34] Todor D. Todorov, An axiomatic approach to the non-linear the-
ory of generalized functions and consistency of Laplace transforms,
In: Integral Transforms and Special Functions, Volume 22, Is-
sue 9, September 2011, p. 695-708 (available at arXivMathematics:
http://arxiv.org/abs/1101.5740).

[35] Todor D. Todorov, Algebraic Approach to Colombeau Theory, In: San
Paulo Journal of Mathematical Sciences, 7 (2013), no. 2, 127-142
http://arxiv.org/abs/1405.7341.

[36] B. L. van Der Waerden Algebra, Volume I, Ungar Publishing, New York,
third printing, 1970.

14

http://arxiv.org/abs/0712.2603
http://arxiv.org/abs/1101.5740
http://arxiv.org/abs/1405.7341

	Preliminaries
	Conventional Definition of Complex Numbers
	Abstract Definition of Complex Numbers: Infinitesimals in C
	Series Representation of the Fields: R, R{t}, RtR, R((tR)), R
	Philosophy: Infinitesimals are Observed or They are Created by Us ?
	How Leibniz Derived (x3)=3x2
	How Computers Calculate (x3)=3x2

