Infinitesimals in the Field of Complex Numbers

Todor D. Todorov (Emeritus in Cal Poly, San Luis Obispo) ttodorov@calpoly.edu

A joint project with Ivan Penkov (Jacobs University, Bremen)
November 2022, INRNE, Sofia

Abstract

We show that the field of complex numbers \mathbb{C} contains non-zero infinitesimals. They (infinitesimals) become "visible" only under absolute values on \mathbb{C} different from the usual absolute value. The talk is intended as a "mathematical entertainment", but it can be used for a more serious discussion as well. After all, any new property observed about \mathbb{C} should be treated as a surprise, since the concept of complex numbers is one of the most popular and beloved ones in mathematics. An additional intrigue arises from the fact that infinitesimals are often an object of dislike, hate and obscurity in modern mathematics in spite of (and perhaps, exactly because of) their irreplaceable role for the creation of infinitesimal calculus by Leibniz, Newton, Euler and others.

Key Words: Totally ordered field, real closed field, Archimedean field, non-Archimedean field, algebraically closed field, Steinitz theorem, ArtinSchreier theorem, Puiseux-Newton series, Levi-Civitá series, Robinson's asymptotic numbers, Robinson's non-standard real numbers.

Contents:

1. Preliminaries
2. Conventional Definition of Complex Numbers
3. Abstract Definition of Complex Numbers: Infinitesimals in \mathbb{C}
4. The Fields: $\mathbb{R}\{t\}, \mathbb{R}\left\langle t^{\mathbb{R}}\right\rangle, \mathbb{R}\left(\left(t^{\mathbb{R}}\right)\right),{ }^{\rho} \mathbb{R},{ }^{*} \mathbb{R}$
5. Philosophy: Infinitesimals are Observed or They are Created by Us ?
6. How Leibniz Derived $\left(x^{3}\right)^{\prime}=2 x^{2}$
7. How Computers Calculate $\left(x^{3}\right)^{\prime}=2 x^{2}$

1 Preliminaries

1. A field \mathbb{K} is formally real (or orderable) if $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=0$ always implies $x_{1}=x_{2}=\cdots=x_{n}=0$. The field of real numbers \mathbb{R} is formally real, while \mathbb{C} is not.
2. A field \mathbb{K} is algebraically closed if every polynomial $P \in \mathbb{K}[x]$ (with coefficients in \mathbb{K}) has at least one root in \mathbb{K}. The field \mathbb{C} is algebraically closed, but \mathbb{R} is not.
3. A formally real field \mathcal{R} is real closed if
(a) For every $a \in \mathcal{R}$ either a, or $-a$ has a square root.
(b) Every polynomial $P \in \mathcal{R}[x]$ (with coefficients in \mathcal{R}) of odd degree has a root in \mathcal{R}.
4. Examples:

- The field \mathbb{R} of real numbers is real closed. Also the real algebraic numbers is also real closed. More examples follow later in the talk.
- The field \mathbb{Q} of rational numbers is not real closed, because neither $\sqrt{3}$, nor $\sqrt{-3}$ are in \mathbb{Q}.

5. Theorem (Artin-Schreier): Let \mathcal{R} is a formally real field. Then \mathcal{R} is real closed iff $\mathcal{R}(i)$ is algebraically closed (Artin \& Schreier [2]). Here $\mathcal{R}(i)=\mathcal{R} \oplus i \mathcal{R}$.
6. A totally ordered field \mathcal{R} is Archimedean if \mathcal{R} has no infinitely large elements (or equivalently, has no non-zero infinitesimals): for every $x \in \mathcal{R}$ there exists $n \in \mathbb{N}$ such that $|x| \leq n$. Here $|x|=\max \{x,-x\}$.
7. \mathcal{R} is non-Archimedean if it is not Archimedean, i.e. if there exists $x \in \mathcal{R}$ such that $n<x$ for all $n \in \mathbb{N}$.
8. Definition: Let \mathcal{R} be a totally ordered field extension of \mathbb{R}. Let $x \in \mathcal{R}$. Then:
(a) x is finite if $|x| \leq n$ for some $n \in \mathbb{N}$.
(b) x is infinitesimal if $|x|<1 / n$ for all $n \in \mathbb{N}$.
(c) x is infinitely large if $n<|x|$ for all $n \in \mathbb{N}$.

We denote by \mathcal{F}, \mathcal{I} and \mathcal{L} the set of the finite, infinitesimal and infinitely large numbers in \mathcal{R}. We write $x \approx y$ if $x-y \in \mathcal{I}$. Notice that every totally ordered field contains \mathbb{Q} as a subfield (thus $n, 1 / n \in \mathcal{R}$).
9. We have $\mathcal{F} \cup \mathcal{L}=\mathcal{R}, \mathcal{F} \cap \mathcal{L}=\varnothing, \mathcal{I} \subset \mathcal{F}, \mathbb{R} \cap \mathcal{I}=\{0\}$. Let $x \in \mathcal{R}, x \neq 0$. Then $x \in \mathcal{I}$ iff $1 / x \in \mathcal{L}$.
10. Every finite number $x \in \mathcal{F}$ there exists unique real number $r \in \mathbb{R}$ such that $x \approx r$. Consequently, \mathcal{I} is a maximal ideal in \mathcal{F} and $\mathcal{F} / \mathcal{I}=\mathbb{R}$.
11. The field \mathcal{R} is Archimedean iff $\mathcal{I}=\{0\}$ iff $\mathcal{R}=\mathcal{F}$ iff $\mathcal{L}=\varnothing$.
12. The field \mathcal{R} is non-Archimedean iff $\mathcal{I} \neq\{0\}$ iff $\mathcal{R} \neq \mathcal{F}$ iff $\mathcal{L} \neq \varnothing$.
13. Example: Let $\mathbb{R}(t)=\frac{\mathbb{R}[t]}{\mathbb{R}[t]}$ denotes the field of the rational functions in one variable with real coefficients. We have:

- $\mathbb{R} \subset \mathbb{R}(t)$ under the embedding $r \mapsto r t^{0}$.
- Let $P \in \mathbb{R}[t]$ be a polynomial. We define $P>0$ if the coefficient in front of the lowest power of t is positive. For example $2 t^{2}-100 t^{3}>0$, because $2>0$. Thus $\mathbb{R}(t)$ converts in a totally ordered field.
- The field of rational functions $\mathbb{R}(t)$ is not real closed, because neither \sqrt{t}, nor $\sqrt{-t}$ are in $\mathbb{R}(t)$. However, the field $\mathbb{R}(t)$ is a non-Archimedean field:
(a) $t,-t, 2 t-t^{2}, t^{2}, t^{2}-3 t^{3}, \ldots$ are non-zero infinitesimals.
(b) $t^{-1},-t^{-1}, 3 t^{-1}, t^{-2}, t^{-2}-3 t^{3}, \ldots$ are infinitely large.
(c) $2,1+t, 2-t, 5+2 t, 6+t^{2}, \pi+t^{2}-3 t^{3}, \ldots$ are finite, but not infinitesimal.
- To show that say, $2 t^{2}-100 t^{3}$ is positive infinitesimal, we have to show that $0<2 t^{2}-100 t^{3}<1 / n$ for all $n \in \mathbb{N}$. Indeed, $2 t^{2}-100 t^{3}<1 / n$ is equivalent to $1 / n-2 t+100 t^{3}>0$, which holds, because $1 / n>0$.
- To show that $3 t^{-1}$ is positive infinitely large, we have to show that $n<3 t^{-1}$ for all $n \in \mathbb{N}$. Indeed, $n<3 t^{-1}$ is equivalent to $3 t^{-1}-n>0$, which holds, since $3>0$.
- To show that $6+t^{2}$ is finite, but not infinitesimal, we have to show that $1 / m<6+t^{2}<n$ for some $m, n \in \mathbb{N}$. Indeed, $m=1$ and $n=7$ will do.

2 Conventional Definition of Complex Numbers

1. $\mathbb{R}(i)=\mathbb{R} \oplus i \mathbb{R}$, where \mathbb{R} is the field of real numbers. We often write \mathbb{C} instead of $\mathbb{R}(i)$.
2. Absolute value on $\mathbb{R}(i)$ is defined by $|x+i y|_{\mathbb{R}}=\sqrt{x^{2}+y^{2}}$, where $x, y \in \mathbb{R}$. We often write $|z|$ instead of $|z|_{\mathbb{R}}$.
3. Theorem: $\mathbb{R}(i)$ is an algebraically closed field of zero-characteristic and of cardinality \mathfrak{c}, where $\mathfrak{c}=\operatorname{card}(\mathbb{R})$.
4. There is no $z \in \mathbb{R}(i)$ such that $0<|z|_{\mathbb{R}}<1 / n$ for all $n \in \mathbb{N}$ (there are no non-zero infinitesimals in $\mathbb{R}(i)$, relative to $\left.|z|_{\mathbb{R}}\right)$.

3 Abstract Definition of Complex Numbers: Infinitesimals in \mathbb{C}

1. Abstract Definition: \mathbb{C} is an algebraically closed field of zero-characteristic and of cardinality $\mathfrak{c}=\operatorname{card}(\mathbb{R})$.
2. Notice \mathbb{R} is not a part of the above definition (except throughout its cardinality, \mathfrak{c}).
3. Justification (Steinitz Theorem): All algebraically closed fields of zero-characteristic and the same cardinality are isomorphic (Steinitz [29]). Thus \mathbb{C} (as defined above) is uniquely determined up to isomorphism.
4. Theorem-Observation: Let \mathcal{R} be a real closed field of cardinality \mathfrak{c}. Then $\mathcal{R}(i)$ is isomorphic to \mathbb{C}, i.e.

$$
\mathbb{C} \cong \mathcal{R}(i) .
$$

We define an absolute value $|x+i y|_{\mathcal{R}}=\sqrt{x^{2}+y^{2}}$ with the same formula, but now $x, y \in \mathcal{R}$. We say that \mathcal{R} is a real part of \mathbb{C}.
5. There are plenty of mutually non-isomorphic real closed fields \mathcal{R} of cardinality $\mathfrak{c}=\operatorname{card}(\mathbb{R})$ (Archimedean and non-Archimedean alike). Here are some of them:
(a) \mathbb{R} is an Archimedean real closed field. The rest of the fields below are non-Archimedean of cardinality $\mathfrak{c}=\operatorname{card} \mathbb{R}$:
(b) The field $\mathbb{R}\{t\}$ of Puiseux-Newton series used by Newton for calculations algebraic curves and planet's orbits (Prestel [23]).
(c) The field $\mathbb{R}\left\langle t^{\mathbb{R}}\right\rangle$ of Levi-Civitá series used nowadays for symbolic calculation of derivatives of real functions in computers (LeviCivitá [12]).
(d) $\mathbb{R}\left(\left(t^{\mathbb{R}}\right)\right)$ is Hahn field of power series developed in connection with Hilbert's seventh problem (Hahn [8]).
(e) The field ${ }^{\rho} \mathbb{R}$ of Robinson's asymptotic numbers used in the the non-standard version of Colombeau theory (Robinson [27], Lightstone \& Robinson [13]).
(f) The field * \mathbb{R} of Robinson's non-standard real numbers of cardinality \mathfrak{c} in the framework of non-standard analysis (Robinson [26]).
(g) An many others...
6. Thus (by the above Theorem-Observation) we have:

$$
\mathbb{C} \cong \mathbb{R}(i) \cong \mathbb{R}\{t\}(i) \cong \mathbb{R}\left\langle t^{\mathbb{R}}\right\rangle(i) \cong \mathbb{R}\left(\left(t^{\mathbb{R}}\right)\right)(i) \cong{ }^{\rho} \mathbb{R}(i) \cong{ }^{*} \mathbb{R}(i)
$$

3.1 Remark. ${ }^{\rho} \mathbb{R}(i)$ and ${ }^{*} \mathbb{R}(i)$ appear in the literature under the notations ${ }^{\rho} \mathbb{C}$ and ${ }^{*} \mathbb{C}$ (Oberguggenberger [20], Oberguggenberger \&Todorov [21], Todorov \&Vernaeve [33], Todorov [34]-[35]). We refer to ${ }^{\rho} \mathbb{C}$ and ${ }^{*} \mathbb{C}$ as the fields of the complex asymptotic and complex nonstandard numbers, respectively. As far as we can detect, the isomorphisms $\mathbb{C} \cong \rho \mathbb{C} \cong * \mathbb{C}$ remained so far unnoticed in the mathematical community.

7. Theorem (Embeddings):

$$
\mathbb{R}(t) \subset \mathbb{R}\{t\} \subset \mathbb{R}\left\langle t^{\mathbb{R}}\right\rangle \subset \mathbb{R}\left(\left(t^{\mathbb{R}}\right)\right) \subset^{\rho} \mathbb{R} \subset^{*} \mathbb{R},
$$

where all embeddings are canonical (subfields-subsets) except the last one. Here $\mathbb{R}(t)$ is the field of rational functions mentioned earlier.
8. Corollary: The fields $\mathbb{R}\{t\}, \mathbb{R}\left\langle t^{\mathbb{R}}\right\rangle, \mathbb{R}\left(\left(t^{\mathbb{R}}\right)\right),{ }^{\rho} \mathbb{R},{ }^{*} \mathbb{R}$ are all nonArchimedean.

Proof: $\mathbb{R}(t)$ is non-Archimedean.
9. Example: The series $t+2!t^{2}+3!t^{3}+\ldots$ is a positive infinitesimal in $\mathbb{R}\left\langle t^{\mathbb{R}}\right\rangle, \mathbb{R}\left(\left(t^{\mathbb{R}}\right)\right),{ }^{\rho} \mathbb{R}$ and ${ }^{*} \mathbb{R}$, but not in $\mathbb{R}(t)$.
10. Infinitesimals in \mathbb{C} : Let \mathcal{R} be one of the real closed non-Archimedean fields: $\mathbb{R}\{t\}, \mathbb{R}\left\langle t^{\mathbb{R}}\right\rangle, \mathbb{R}\left(\left(t^{\mathbb{R}}\right)\right),{ }^{\rho} \mathbb{R}$ or ${ }^{*} \mathbb{R}$. Let $\sigma: \mathcal{R}(i) \mapsto \mathbb{C}$ be a fieldisomorphism. Then $\sigma[\mathcal{R}]$ is a real closed subfield of \mathbb{C}. Notice that $\sigma(q)=q$ for all $q \in \mathbb{Q}$. Let ρ be a positive infinitesimal in \mathcal{R}, i.e. $0<\rho<1 / n$ in \mathbb{R} for all $n \in \mathbb{N}$ (for example, $\rho=t$). Then $\sigma(\rho)$ is a positive infinitesimal in $\sigma[\mathcal{R}]$ as well, i.e. $0<\sigma(\rho)<1 / n$ in $\sigma[\mathbb{R}]$ for all $n \in \mathbb{N}$. Thus $0<|\sigma(\rho)|_{\mathcal{R}}<1 / n$ for all $n \in \mathbb{N}$, since $|\sigma(\rho)|_{\mathcal{R}}=\sigma(\rho)$. The latter means meaning that $\sigma(\rho)$ is a positive infinitesimal in $\mathbb{C}!!!$

4 Series Representation of the Fields: $\mathbb{R}, \mathbb{R}\{t\}$, $\mathbb{R}\left\langle t^{\mathbb{R}}\right\rangle, \mathbb{R}\left(\left(t^{\mathbb{R}}\right)\right),{ }^{\rho} \mathbb{R}$

1. $\mathbb{R}=\left\{\sum_{n=\mu}^{\infty} c_{n}\left(\frac{1}{10}\right)^{n}: \mu \in \mathbb{Z}, c_{n} \in\{0,1, \ldots, 9\}\right\}$, the real numbers.
2. $\mathbb{R}\{t\}=:\left\{\sum_{n=\mu}^{\infty} a_{n}(\sqrt[m]{t})^{n}: \mu \in \mathbb{Z}, m \in \mathbb{N}, a_{n} \in \mathbb{R}\right\}$ is the field of Puiseux series with real coefficients (also known as PuiseuxNewton series) (Prestel [23]).

- $\mathbb{R}\{t\}$ is a real closure of the field of Laurent series $\mathbb{R}\left\langle t^{\mathbb{Z}}\right\rangle$.
- Puiseux series were introduced by Isaac Newton [19] and later rediscovered by Victor Puiseux [24]-[25].

3. The field of Levi-Civita series with real coefficients is defined by

$$
\mathbb{R}\left\langle t^{\mathbb{R}}\right\rangle=:\left\{\sum_{r \in \mathbb{R}} a_{r} t^{r}: a_{r} \in \mathbb{R} \text { and }\left\{r \in \mathbb{R}: a_{r} \neq 0\right\} \text { is a left-finite set }\right\} .
$$

Recall that S is a left-finite subset of \mathbb{R} if for every $r \in \mathbb{R}$ the set $\{s \in S$: $s \leq r\}$ is finite. Here is a characterization: $\sum_{r \in \mathbb{R}} a_{n} t^{r}$ is a Levi-Civitá series with real coefficients iff $\sum_{r \in \mathbb{R}} a_{r} t^{r}$ can be presented in the form
$\sum_{n=0}^{\infty} b_{n} t^{r_{n}}$ for some sequence $\left(b_{n}\right)$ in \mathbb{R} and some strictly increasing unbounded sequence $\left(r_{n}\right)$ in \mathbb{R} (Levi-Civitá [12]). For example, $t^{\sqrt{2}}+$ $t^{\pi}+t^{4}+t^{5}+t^{6}+\cdots \in \mathbb{R}\left\langle t^{\mathbb{R}}\right\rangle$.
4. The field of Hahn's (generalized) series with coefficients in \mathbb{R} and valuation group $(\mathbb{R},+,<)$ is defined by
$\mathbb{R}\left(\left(t^{\mathbb{R}}\right)\right)=:\left\{\sum_{r \in \mathbb{R}} a_{r} t^{r}: a_{r} \in \mathbb{R}\right.$ and $\left\{r \in \mathbb{R}: a_{r} \neq 0\right\}$ is a well ordered set $\}$,
(Hahn [8]). For example, $1+t^{1 / 2}+t^{2 / 3}+t^{3 / 4}+\cdots \in \mathbb{R}\left(\left(t^{\mathbb{R}}\right)\right) \backslash \mathbb{R}\left\langle t^{\mathbb{R}}\right\rangle$, since $\lim _{n \mapsto \infty} \frac{n}{n+1}=1 \neq \infty$.
5. Non-Standard Numbers * \mathbb{R} (Robinson [26]):

- Let $\mathbb{R}^{\mathbb{N}}$ stand for the partially ordered ring of sequences in \mathbb{R} under the pointwise addition and multiplication and order.
- Let \mathcal{U} be a free ultrafilter on \mathbb{N}. We define the maximal convex ideal in $\mathbb{R}^{\mathbb{N}}$ by

$$
\mathcal{I}_{\mathcal{U}}=\left\{\left(a_{n}\right) \in \mathbb{R}^{\mathbb{N}}: Z\left(a_{n}\right) \in \mathcal{U}\right\},
$$

where $Z\left(a_{n}\right)=\left\{n \in \mathbb{N}: a_{n}=0\right\}$ stands for the zero-set of the sequence $\left(a_{n}\right) \in \mathbb{R}^{\mathbb{N}}$.

- We have $\mathcal{I}_{0} \subset \mathcal{I}_{\mathcal{U}}$, where $\mathcal{I}_{0}=\left\{\left(a_{n}\right) \in \mathbb{R}^{\mathbb{N}}: \mathbb{N} \backslash Z\left(a_{n}\right)\right.$ is a finite set $\}$.
- ${ }^{*} \mathbb{R}=\mathbb{R}^{\mathbb{N}} / \mathcal{I}_{\mathcal{U}}$ is the field of non-standard real numbers. We denote by $\left\langle a_{n}\right\rangle$ the equivalence class of $\left(a_{n}\right)$.
- $\mathbb{R} \subset{ }^{*} \mathbb{R}$ under $r \mapsto\langle r, r, \ldots\rangle$.
- We define order on ${ }^{*} \mathbb{R}$ by $\left\langle a_{n}\right\rangle>0$ if $\left\langle a_{n}\right\rangle=\left\langle\varepsilon_{n}\right\rangle$ for some sequence $\left(\varepsilon_{n}\right)$ with positive terms $\varepsilon_{n}>0$.
- ${ }^{*} \mathbb{R}$ is a real closed saturated non-Archimedean field. In particular, $\langle 1 / n\rangle$ is a positive infinitesimal and $\langle n\rangle$ is positive infinitely large number.
- Every finite number $x \in \mathcal{F}$ there exists unique real number $r \in \mathbb{R}$ such that $x \approx r$.
- Let X be a subset of \mathbb{R}. We define its non-standard extension by ${ }^{*} X=\left\{\left\langle x_{n}\right\rangle \in{ }^{*} \mathbb{R}:\left(x_{n}\right) \in X^{\mathbb{N}}\right\}$.
- Let X be a subset of \mathbb{R} and $f: X \mapsto \mathbb{R}$ be a real function. We define its non-standard extension, ${ }^{*} f:{ }^{*} X \mapsto{ }^{*} \mathbb{R}$, by

$$
{ }^{*} f\left(\left\langle x_{n}\right\rangle\right)=\left\langle f\left(x_{n}\right)\right\rangle .
$$

6. Let $\rho \in{ }^{*} \mathbb{R}$ be a (fixed) positive infinitesimal. The field Robinson's field of asymptotic numbers is defined as ${ }^{\rho} \mathbb{R}=\mathcal{M}_{\rho} / \mathcal{N}_{\rho}$, where

$$
\begin{aligned}
& \mathcal{M}_{\rho}=\left\{x \in{ }^{*} \mathbb{R}:|x| \leq \rho^{-n} \text { for some } n \in \mathbb{N}\right\}, \\
& \mathcal{N}_{\rho}=\left\{x \in{ }^{*} \mathbb{R}:|x|<\rho^{n} \text { for all } n \in \mathbb{N}\right\},
\end{aligned}
$$

(Robinson [27], Lightstone \& Robinson [13]). Notice that $e^{1 / \rho} \notin \mathcal{M}_{\rho}$ and $e^{-1 / \rho} \in \mathcal{N}_{\rho}$. If $x \in \mathcal{M}_{\rho}$, we let $\widehat{x}=x+\mathcal{N}_{\rho}$.
7. ${ }^{\rho} \mathbb{R}$ does not depend on the choice of ρ in the sense that ${ }^{\rho_{1}} \mathbb{R} \cong{ }^{\rho_{2}} \mathbb{R}$ for every two positive infinitesimals, ρ_{1} and ρ_{2}.
8. ${ }^{\rho} \mathbb{R} \cong{ }^{*} \mathbb{R}\left(\left(t^{\mathbb{R}}\right)\right)$, where ${ }^{*} \mathbb{R}\left(\left(t^{\mathbb{R}}\right)\right)$ is the Hahn field with coefficients in ${ }^{*} \mathbb{R}$ and valuation group $(\mathbb{R},+,<)$, i.e.
${ }^{*} \mathbb{R}\left(\left(t^{\mathbb{R}}\right)\right)=\left\{\sum_{r \in \mathbb{R}} a_{r} t^{r}: a_{r} \in{ }^{*} \mathbb{R},\left\{r \in \mathbb{R} ; a_{r} \neq 0\right\}\right.$ is a well ordered set $\}$, (Todorov \& Wolf [31]).
9. We have the field self-embeddings ${ }^{\rho} \mathbb{R} \hookrightarrow{ }^{*} \mathbb{R}$ and ${ }^{*} \mathbb{R} \hookrightarrow^{\rho} \mathbb{R}$.
10. ${ }^{\rho} \mathbb{R}$ plays the role of the field of scalars of the algebra of asymptotic functions in the non-standard version of Colombeau theory (Todorov \&Vernaeve [33]).

5 Philosophy: Infinitesimals are Observed or They are Created by Us ?

Two philosophical questions (without answers):

1. Infinitesimals exist and are present in \mathbb{C} (regardless of us) and we use the absolute value $|\cdot|_{\mathcal{R}}$ (with non-Archimedean field \mathcal{R}) merely to observe them ?
or/and
2. We (humans) create infinitesimals within \mathbb{C} by "intruding" into \mathbb{C} with \mathcal{R} and $|\cdot|_{\mathcal{R}}$?

6 How Leibniz Derived $\left(x^{3}\right)^{\prime}=3 x^{2}$

1. Definition:
(a) $\left(x^{3}\right)^{\prime}$ is the standard function $\left(x^{3}\right)^{\prime}: \mathbb{R} \mapsto \mathbb{R}$ such that:
(b) $\left(x^{3}\right)^{\prime} \approx \frac{(x+d x)^{3}-x^{3}}{d x}$ for every non-zero infinitesimal $d x$.
2. Deriving the Formula:

$$
\frac{(x+d x)^{3}-x^{3}}{d x}=\frac{x^{3}+3 x^{2} d x+3 x d x^{2}+d x^{3}-x^{3}}{d x}=3 x^{2}+3 x d x+d x^{2} \approx 3 x^{2}
$$

because $3 x^{2}$ is standard (real) and $3 x d x+d x^{2}$ is infinitesimal. Thus

$$
\left(x^{3}\right)^{\prime}=3 x^{2}
$$

as required.

7 How Computers Calculate $\left(x^{3}\right)^{\prime}=3 x^{2}$

1. Definition: Left to Humans.

2. Algorithm:

(a) Step 1: Let $d x \neq 0$ is non-zero real (standard) variable. The algebra is the same:

$$
\frac{(x+d x)^{3}-x^{3}}{d x}=\frac{x^{3}+3 x^{2} d x+3 x d x^{2}+d x^{3}-x^{3}}{d x}=3 x^{2}+3 x d x+d x^{2}
$$

(b) Step 2: Let $d x=0$ and the result is:

$$
\left(x^{3}\right)^{\prime}=3 x^{2}
$$

3. The logical paradox: " $d x \neq 0$ and $d x=0$ " is left to Humans.
4. The above logical paradox is exactly the reason for the revolution against infinitesimals starting from Bolzano and Weirstrass in 19-th century.

References

[1] Amir Alexander, Infinitesimals: How a Dangerous Mathematical Theory shaped the Modern Would, Scientific American/Farrar, Straus and Giroux, New York, First Edition, 2014.
[2] E. Artin and E. Schreier, Algebraische Konstruction reeller Körper, Abh. Math. Sem. Hansischen Univ. 5 (1927) pp. 85-99.
[3] M. Capiński and N. J. Cutland, Nonstandard Methods for Stochastic Fluid Mechanics, World Scientific, Singapore-New Jersey-London-Hong Kong, 1995.
[4] C. C. Chang and H. Jerome Keisler, Model Theory, Studies in Logic and the Foundations of Mathematics, Vol. 73, Elsevier, Amsterdam, 1998.
[5] Martin Davis, Applied Nonstandard Analysis, Dover Publications, Inc., Mineola, New York, 2005 (originally published in 1977).
[6] P. Erdös, L. Gillman and M. Henriksen, An Isomorphism Theorem for Real-Closed Fields, Annals of Mathematics, Vol. 61, No. 3, May 1955, p. 542-560.
[7] L. Gillman and M. Jerison, Rings of Continuous Functions, SpringerVerlag, New York, Berlin, Heidelberg, London, Paris, 1976 (first publihsed in 1060).
[8] H. Hahn, Über die nichtarchimedischen Grössensysteme, Sitz. K. Akad. Wiss. 116 (1907), p. 601-655.
[9] James F. Hall and Todor D. Todorov, Ordered Fields, the Purge of Infinitesimals from Mathematics and the Rigorousness of Infinitesimal Calculus, Bulgarian Journal of Physics, Vol. 42 (2015) 99-127 - An issue dedicated to the centenary of the birth of Prof. Christo Yankov Christov (available at http://arxiv.org/abs/1509.03798).
[10] Thomas W. Hunderford, Algebra, Graduate Texts in Mathematics 73, Springer-Verlag, 2003.
[11] S. Lang, Algebra, Addison-Wesley, Third Edition, 1071.
[12] T. Levi-Civita, Sugli Infiniti ed Infinitesimi Attuali Quali Elementi Analitici (1892-1893), Opere Mathematiche, vol. 1, Bologna (1954), p. 139.
[13] A. H. Lightstone and A. Robinson, Nonarchimedean Fields and Asymptotic Expansions, North-Holland-Amsterdam-New York-Oxford, Vol. 13, 1975.
[14] T. Lindstrøm, An invitation to nonstandard analysis. In: Cutland N (ed) Nonstandard Analysis and its applications. Cambridge University Press, London, 1988, pp 1-105.
[15] Peter A. Loeb and Manfred Wolff (Eds.), Nonstandard Analysis for the Working Mathematician, Kluwer Academic Publishers, Dordrecht/Boston/London, 2000.
[16] W. A. J. Luxemburg, Non-Standard Analysis: Lectures on A. Robinson's Theory of Infinitesimals and Infinitely large Numbers, California Institute of Technology, Pasadena, California, 1973 (©)W. A. J. Luxemburg 1962).
[17] W. A. J. Luxemburg, On a class of valuation fields introduced by A. Robinson, Israel J. Math. 25 (1976), p. 189-201.
[18] Paul J. McCarthy, Algebraic Extensions of Fields, Dover Publications, Inc., New York, 1991.
[19] Isaac Newton (1736) [1671], The method of fluxions and infinite series; with its application to the geometry of curve-lines, translated by Colson, John, London: Henry Woodfall, p. 378 (Translated from Latin) (https://archive.org/details/methodoffluxions00newt).
[20] M. Oberguggenberger, Contributions of nonstandard analysis to partial differential equations, in: Developments in Nonstandard Mathematics (Eds. N.J. Cutland, V. Neves, F. Oliveira and J. Sousa-Pinto), Longman Press, Harlow, 1995, p.130-150.
[21] M. Oberguggenberger and T. Todorov, An Embedding of Schwartz Distributions in the Algebra of Asymptotic Functions, International J. Math. \& Math. Sci., Vol. 21, No. 3 (1998), p.417-428.
[22] V. Pestov, On a valuation field invented by A. Robinson and certain structures connected with it, Israel J. Math. 74 (1991), p.65-79.
[23] A. Prestel, Lectures on formally real fields, Lecture notes in Mathematics 1093, Springer, New York, 1984.
[24] Victor Alexandre Puiseux (1850), Recherches sur les functions algébriques (PDF). J. Math. Pures Appl. 15: 365-480.
[25] Victor Alexandre Puiseux (1851). Nouvelles recherches sur les functions algébriques (PDF). J. Math. Pures Appl. 16: 228-240.
[26] A. Robinson, Nonstandard Analysis, North Holland, Amsterdam, 1966.
[27] A. Robinson, Function theory on some nonarchimedean fields, Amer. Math. Monthly 80 (6), Part II: Papers in the Foundations of Mathematics (1973), p. 87-109.
[28] Khodr Shamseddine, Nontrivial order preserving automorphisms of nonArchimedean fields, Contemporary Mathematics, Volume 547, 2001.
[29] E. Steinitz, Algebraische Theorie der Körper, Berlin, 1930.
[30] K. D. Stroyan and W. A. J. Luxemburg, Introduction to the Theory of Infinitesimals, Academic Press, New York, 1976.
[31] T. Todorov and R. Wolf, Hahn field representation of A. Robinsono's asymptotic numbers, in Nonlinear Algebraic Analysis and Applications, Proceedings of the International Conference on Generalized Functions (ICGF) 2000, Edited by A. Delcroix, M. Hasler, J.A. Marti, and V.Valmorin, Cambridge Scientific Publishers, Cottenham, Cambridge, 2004, pp. 357-374 (available at ArxivMathematics: [http://arxiv.org/abs/math/0601722]).
[32] Todor D. Todorov, Lecture Notes: Non-Standard Approach to J.F. Colombeau's Theory of Generalized Functions, University of Vienna, Austria, May 2006, (available at ArxivMathematics: http://arxiv.org/abs/1010.3482).
[33] Todor Todorov and Hans Vernaeve, Full Algebra of Generalized Functions and Non-Standard Asymptotic Analysis, In: Logic and

Analysis, Springer, Vol. 1, Issue 3, 2008, pp. 205-234 (available at: (http://www.logicandanalysis.com/index.php/jla/article/view/193/79) and/or at: http://arxiv.org/abs/0712.2603).
[34] Todor D. Todorov, An axiomatic approach to the non-linear theory of generalized functions and consistency of Laplace transforms, In: Integral Transforms and Special Functions, Volume 22, Issue 9, September 2011, p. 695-708 (available at arXivMathematics: http://arxiv.org/abs/1101.5740).
[35] Todor D. Todorov, Algebraic Approach to Colombeau Theory, In: San Paulo Journal of Mathematical Sciences, 7 (2013), no. 2, 127-142 http://arxiv.org/abs/1405.7341.
[36] B. L. van Der Waerden Algebra, Volume I, Ungar Publishing, New York, third printing, 1970.

