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Abstract

The Heisenberg relations are derived in a quite general

setting when the field transformations are induced by

three representations of a given group. They are

considered also in the fibre bundle approach. The

results are illustrated in a case of transformations

induced by the Poincaré group.
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1. Heisenberg relations

The (global) origin of the Heisenberg relations is in

the equations like

ϕ′
i(r) = U ◦ ϕi(r) ◦ U−1. (1.1)

which connect the components ϕi and ϕ′
i of a quantum

field ϕ with respect to two frames of reference. Here

U is an operator acting on the state vectors of the

quantum system considered and it is expected that the

transformed field operators ϕ′
i can be expressed

explicitly by means of ϕi via some equations.



If the elements U (of the representation) of the group

are labeled by b = (b1, . . . , bs) ∈ Ks for some s ∈ N, we

may write U(b) for U , and then the corresponding

Heisenberg relations are obtained from the above

equation with U(b) for U by differentiating it with

respect to bω, ω = 1, . . . , s, and then setting b = b0,

where b0 ∈ Ks is such that U(b0) is the identity element.



If the elements U (of the representation) of the group

are labeled by b = (b1, . . . , bs) ∈ Ks for some s ∈ N, we

may write U(b) for U , and then the corresponding

Heisenberg relations are obtained from the above

equation with U(b) for U by differentiating it with

respect to bω, ω = 1, . . . , s, and then setting b = b0,

where b0 ∈ Ks is such that U(b0) is the identity element.

The Heisenberg relations are from pure geometric

origin and the only physics in them is the motivation

leading to the above equation. There are evidences

that to them can be given physical sense by identifying

in them the generators (of the representation) of the

group by the corresponding operators of conserved

physical quantities.



2. The Poincaré group

Let us have a quantum field with components ϕi

relative to two reference frames connected by a

general Poincaré transformation

u′(x) = Λu(x) + a. (2.1)



2. The Poincaré group

Let us have a quantum field with components ϕi

relative to two reference frames connected by a

general Poincaré transformation

u′(x) = Λu(x) + a. (2.1)

The “global’ version of the Heisenberg relations is

U(Λ, a) ◦ ϕi(x) ◦ U−1(Λ, a) = Dj
i (Λ, a)ϕj(Λx + a), (2.2)

where U (D) is a representation of the Poincaré group

on the space of state vectors (field operators), U(Λ, a)

(D(Λ, a) = [Dj
i (Λ, a)]) is the mapping (the matrix of the

mapping) corresponding via U (D) to (2.1). We have

U(11,0) = id and D(11,0) = 11.



Define

Tμ :=
∂U(Λ, a)

∂aμ

∣∣∣
(Λ,a)=(11,0)

Sμν :=
∂U(Λ, a)

∂Λμν

∣∣∣
(Λ,a)=(11,0)

Hi
jμ :=

∂Di
j(Λ, a)

∂aμ

∣∣∣
(Λ,a)=(11,0)

Ii
jμν :=

∂Di
j(Λ, a)

∂Λμν

∣∣∣
(Λ,a)=(11,0)

.

Differentiating (2.2) relative to aμ and setting after

that (Λ, a) = (11,0), we find

[Tμ, ϕi(x)] = ∂μϕi(x) + Hj
iμϕj(x), (2.4)

where [A, B] := AB − BA.



For field theories invariant relative to spacetime

translation of the coordinates, i.e. x �→ x + a, we can

suppose that

Hi
jμ = 0. (2.5)

In this case equation (2.4) reduces to

[Tμ, ϕi(x)] = ∂μϕi(x). (2.6a)



For field theories invariant relative to spacetime

translation of the coordinates, i.e. x �→ x + a, we can

suppose that

Hi
jμ = 0. (2.5)

In this case equation (2.4) reduces to

[Tμ, ϕi(x)] = ∂μϕi(x). (2.6a)

Similarly, differentiation (2.2) with respect to Λμν and

putting after that (Λ, a) = (11,0), we obtain

[Sμν, ϕi(x)] = xμ∂νϕi(x) − xν∂μϕi(x) + Ij
iμνϕj(x). (2.6b)



As we have mentioned earlier, the Heisenberg relations

are from pure geometrical origin. Recalling that the

translation (resp. rotation) invariance of a

(Lagrangian) field theory results to conservation of

system’s momentum (resp. angular momentum)

operator Pμ (resp. Mμν) and the correspondences

i�Tμ �→ Pμ i�Sμν �→ Mμν, (2.7)

with � being the Planck’s constant, one may suppose

the validity of the Heisenberg relations

[Pμ, ϕi(x)] = i�∂μϕi(x) (2.8a)

[Mμν, ϕi(x)] = i�{xμ∂νϕi(x) − xν∂μϕi(x) + Ij
iμνϕj(x)}.

(2.8b)



However, one should be careful when applying the last

two equations in the Lagrangian formalism as they are

external to it and need a particular proof in this

approach; e.g. they hold in the free field theory, but a

general proof seems to be missing. In the axiomatic

quantum field theory these equations are identically

valid as in it the generators of the translations

(rotations) are identified up to a constant factor with

the components of the (angular) momentum operator,

Pμ = i�Tμ (Mμν = i�Sμν).



3. Internal transformations

An internal transformation is a change of the reference

frame (u, {ei}), consisting of a local coordinate system

u and a frame {ei} in some vector space V , such that

the spacetime coordinates remain unchanged. We

suppose that ei : x ∈ M �→ ei(x) ∈ V , where M is the

Minkowski spacetime and the quantum field ϕ

considered takes values in V , i.e.

ϕ : x ∈ M �→ ϕ(x) = ϕi(x)ei(x) ∈ V



Let G be a group whose elements gb are labeled by

b ∈ Ks for some s ∈ N. Consider two reference frames

(u, {ei}) and (u′, {e′ i}), with u′ = u and {ei} and {e′ i}
being connected via a matrix I−1(b), where

I : G �→ GL(dim V, K) is a matrix representation of G

and I : G � gb �→ I(b) ∈ GL(dim V, K). The components

of the fields transform into

ϕ′
u,i(r) = U(b) ◦ ϕu,i(r) ◦ U−1(b) (3.1)

where U is a representation of G on the Hilbert space

of state vectors and U : G � gb �→ U(b).



So that

U(b) ◦ ϕu,i(r) ◦ U−1(b) = Ij
i (b)ϕu,j(r). (3.2)

Let gb0 is the identity element of G for some b0 ∈ Ks

and for b = (b1, . . . , bs) and ω = 1, . . . , s define

Qω :=
∂U(b)

∂bω

∣∣∣
b=b0

Ij
iω :=

∂Ij
i (b)

∂bω

∣∣∣
b=b0

. (3.3)

Differentiation (3.2) with respect to bω and putting in

the result b = b0, we get the Heisenberg relation

[Qω, ϕu,i(r)] = Ij
iωϕu,j(r) (3.4)

or, if we identify x ∈ M with r = u(x) and omit the

subscript u,

[Qω, ϕi(x)] = Ij
iωϕj(x). (3.5)



Example. Consider one-dimensional group G, s = 1,

when ω = 1; so we identify b1 with b = (b1). Besides, let

I(b) = 11 exp(f(b) − f(b0)) (3.6)

for some C1 function f . Then (3.5) reduces to

[Q1, ϕi(x)] = f ′(b0)ϕi(x), (3.7)

where f ′(b) := df(b)
db

.



Example. Consider one-dimensional group G, s = 1,

when ω = 1; so we identify b1 with b = (b1). Besides, let

I(b) = 11 exp(f(b) − f(b0)) (3.6)

for some C1 function f . Then (3.5) reduces to

[Q1, ϕi(x)] = f ′(b0)ϕi(x), (3.7)

where f ′(b) := df(b)
db

.

In particular, if we are dealing with phase

transformations, i.e.

U(b) = e
1
ie

bQ1 I(b) = 11e−
q
ie

b b ∈ R (3.8)

for some constants q and e (having a meaning of

charge and unit charge, respectively) and operator Q1



on system’s Hilbert space of states (having a meaning

of a charge operator), then we arrive to the familiar

equations

ϕ′
i(x) = e

1
ie

bQ1 ◦ ϕi(x) ◦ e−
1
ie

bQ1 = e−
q
ie

bϕ(x) (3.9)

[Q1, ϕi(x)] = −qϕi(x). (3.10)



on system’s Hilbert space of states (having a meaning

of a charge operator), then we arrive to the familiar

equations

ϕ′
i(x) = e

1
ie

bQ1 ◦ ϕi(x) ◦ e−
1
ie

bQ1 = e−
q
ie

bϕ(x) (3.9)

[Q1, ϕi(x)] = −qϕi(x). (3.10)

The considerations in the framework of Lagrangian

formalism invariant under phase transformations

implies conservation of the charge operator Q and

suggests the correspondence

Q1 �→ Q (3.11)

which in turn suggests the Heisenberg relation

[Q, ϕi(x)] = −qϕi(x). (3.12)



4. The general case

The corner stone of the (global) Heisenberg relations

is the equation

U◦ϕu,i(r)◦U−1 =
∂(u′ ◦ u−1)(r)

∂r

(
A−1(u−1(r))

)j

i
ϕu,j((u

′◦u−1)(r

(4.1)

representing the components ϕ′
u′,i of a quantum field ϕ

in a reference frame (u, {e′ i = Ai
je

j}) via its

components ϕu,j in a frame (u, {ei}) in two different

way. Here A = [Aj
i ] is a non-degenerate matrix-valued

function, r ∈ R4 and ϕu,i := ϕi ◦ u−1.



Let G be s-dimensional, s ∈ N, Lie group. Let its

elements be labeled by b = (b1, . . . , bs) ∈ Ks and gb0 is the

identity element of G for some fixed b0 ∈ Ks. Let there

are given three representations H, I and U of G and:

1. H : G � gb �→ Hb : RdimM → RdimM and any change

(U, u) �→ (U ′, u′) of the charts of M is such that

u′ ◦ u−1 = Hb for some b ∈ Ks.



Let G be s-dimensional, s ∈ N, Lie group. Let its

elements be labeled by b = (b1, . . . , bs) ∈ Ks and gb0 is the

identity element of G for some fixed b0 ∈ Ks. Let there

are given three representations H, I and U of G and:

1. H : G � gb �→ Hb : RdimM → RdimM and any change

(U, u) �→ (U ′, u′) of the charts of M is such that

u′ ◦ u−1 = Hb for some b ∈ Ks.

2. I : G � gb �→ I(b) ∈ GL(dim V, K) and any change

{ei} �→ {e′i = Aj
i ej} of the frames in V is such that

A−1(x) = I(b) for all x ∈ M and some b ∈ Ks.



Let G be s-dimensional, s ∈ N, Lie group. Let its

elements be labeled by b = (b1, . . . , bs) ∈ Ks and gb0 is the

identity element of G for some fixed b0 ∈ Ks. Let there

are given three representations H, I and U of G and:

1. H : G � gb �→ Hb : RdimM → RdimM and any change

(U, u) �→ (U ′, u′) of the charts of M is such that

u′ ◦ u−1 = Hb for some b ∈ Ks.

2. I : G � gb �→ I(b) ∈ GL(dim V, K) and any change

{ei} �→ {e′i = Aj
i ej} of the frames in V is such that

A−1(x) = I(b) for all x ∈ M and some b ∈ Ks.

3. U : G � gb �→ U(b), where U(b) is an operator on the

space of state vectors, and the changes

(u, {ei}) �→ (u′, {e′i}) of the reference frames

entail (1.1) with U(b) for U .



Under the above hypotheses we have

U(b) ◦ ϕu,i(r) ◦ U−1(b) = det
[∂(Hb(r))

i

∂rj

]
Ij
i (b)ϕu,j(Hb(r))

(4.2)

which can be called global Heisenberg relation in the

particular situation. The next step is to differentiate

this equation with respect to bω, ω = 1, . . . , s, and then

to put b = b0 in the result. In this way we obtain the

following (local) Heisenberg relation

[Uω, ϕu,i(r)] = Δω(r)ϕu,i(r) + Ij
iωϕu,j(r) + (hω(r))

k ∂ϕu,i(r)

∂rk
,

(4.3)

where



Uω :=
∂U(b)

∂bω

∣∣∣
b=b0

Δω(r) :=
∂ det

[
∂(Hb(r))

j

∂rj

]

∂bω

∣∣∣∣∣∣∣
b=b0

∈ R
dimM

Ij
iω :=

∂Ij
i (b)

∂bω

∣∣∣
b=b0

∈ K hω :=
∂Hb

∂bω

∣∣∣
b=b0

: R
dimM → R

dimM .



Uω :=
∂U(b)

∂bω

∣∣∣
b=b0

Δω(r) :=
∂ det

[
∂(Hb(r))

j

∂rj

]

∂bω

∣∣∣∣∣∣∣
b=b0

∈ R
dimM

Ij
iω :=

∂Ij
i (b)

∂bω

∣∣∣
b=b0

∈ K hω :=
∂Hb

∂bω

∣∣∣
b=b0

: R
dimM → R

dimM .

In this setting the Heisenberg relations corresponding

to Poincaré transformations are described by

b �→ (Λμν, aλ), H(b) �→ Λ, a(b) �→ a and I(b) �→ I(Λ), so

that Uω �→ (Sμν,Tλ
), Δω(r) ≡ 0, Ij

iω �→ (Ij
iμν, 0) and

(hω(r))k ∂
∂rk �→ rμ

∂
∂rν − rν

∂
∂rμ .



Uω :=
∂U(b)

∂bω

∣∣∣
b=b0

Δω(r) :=
∂ det

[
∂(Hb(r))

j

∂rj

]

∂bω

∣∣∣∣∣∣∣
b=b0

∈ R
dimM

Ij
iω :=

∂Ij
i (b)

∂bω

∣∣∣
b=b0

∈ K hω :=
∂Hb

∂bω

∣∣∣
b=b0

: R
dimM → R

dimM .

In this setting the Heisenberg relations corresponding

to Poincaré transformations are described by

b �→ (Λμν, aλ), H(b) �→ Λ, a(b) �→ a and I(b) �→ I(Λ), so

that Uω �→ (Sμν,Tλ
), Δω(r) ≡ 0, Ij

iω �→ (Ij
iμν, 0) and

(hω(r))k ∂
∂rk �→ rμ

∂
∂rν − rν

∂
∂rμ .

The case of internal transformations, considered in the

previous subsection, corresponds to Hb = idRdimM and,

consequently, in it Δω(r) ≡ 0 and hω = 0.



5. Fibre bundle approach

Let a physical field is described as a section ϕ : M → E

of a vector bundle (E, π,M ). Here M is a real

differentiable (4-)manifold, serving as a spacetime

model, E is the bundle space and π : M → E is the

projection; the fibres π−1(x), x ∈ M .

Let (U, u) be a chart of M and {ei} be a frame in the

bundle with domain U , i.e. ei : x �→ ei(x) ∈ π−1(x) with x

in the domain of {ei} and {ei(x)} being a basis in

π−1(x). Below we assume x ∈ U ⊆ M . Thus, we have

ϕ : M � x �→ ϕ(x) = ϕi(x)ei(x) = ϕu,i(x)ei(u−1(x)), (5.1)

where x := u(x) ϕu,i := ϕi ◦ u−1.



The origin of the Heisenberg relations on the

background of fibre bundle setting is in the equations

U ◦ ϕi(x) ◦ U−1 = (A−1)j
i (x)ϕj(x) (5.2)

U ◦ ϕu,i(x) ◦ U−1 = (A−1)j
i (x)ϕu,j(x). (5.2′)

Consider a Lie group G, its representations I and U

and reference frames with the following properties:
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i (x)ϕj(x) (5.2)
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j} of the frames in V are such

that A−1(x) = I(b) for all x ∈ M and some b ∈ Ks.



The origin of the Heisenberg relations on the

background of fibre bundle setting is in the equations

U ◦ ϕi(x) ◦ U−1 = (A−1)j
i (x)ϕj(x) (5.2)

U ◦ ϕu,i(x) ◦ U−1 = (A−1)j
i (x)ϕu,j(x). (5.2′)

Consider a Lie group G, its representations I and U

and reference frames with the following properties:

1. I : G � gb �→ I(b) ∈ GL(dim V, K) and the changes

{ei} �→ {e′i = Ai
je

j} of the frames in V are such

that A−1(x) = I(b) for all x ∈ M and some b ∈ Ks.

2. U : g � gb �→ U(b), U(b) being operator on the space

of state, and the changes (u, {ei}) �→ (u′, {e′i}) of

the reference frames entail (1.1) with U(b) for U .



Thus equations (5.2) and (5.2′) transform into

U(b) ◦ ϕi(x) ◦ U−1(b) = Ij
i (b)ϕj(x) (5.3)

U(b) ◦ ϕu,i(x) ◦ U−1(b) = Ij
i (b)ϕu,j(x). (5.3′)

Differentiating with respect to bω and putting b = b0,

we get the Heisenberg relations

[Uω, ϕi(x)] = Ij
iωϕj(x) (5.4)

[Uω, ϕu,i(x)] = Ij
iωϕu,j(x), (5.4′)

where Uω := ∂U(b)
∂bω

∣∣∣
b=b0

Ij
iω :=

∂Ij
i (b)

∂bω

∣∣∣
b=b0

.

We can rewire the Heisenberg relations obtained as

[Uω, ϕ] = Ij
iωϕje

i. (5.5)



The Poncaré transformations are described by

b �→ (Λμν, aλ), Uω �→ (Sμν, Tλ) and Ij
iω �→ (Ij

iμν, 0) and,

consequently, the equations (5.3) and (5.3′) now read

U(Λ, a) ◦ ϕi(x) ◦ U−1(Λ, a) = Ij
i (Λ, a)ϕj(x) (5.6)

U(Λ, a) ◦ ϕu,i(x) ◦ U−1(Λ, a) = Ij
i (Λ, a)ϕu,j(x). (5.6′)

For instance, we have the Heisenberg relations

[Tμ, ϕi(x)] = 0 (5.7a)

[Sμν, ϕi(x)] = Ij
iμνϕj(x). (5.7b)



The ”physical” versions of these relations are

[Pμ, ϕi(x)] = 0 (5.8a)

[Mμν, ϕi(x)] = Ij
iμνϕj(x). (5.8b)

These relations contradict to the particle

interpretation of quantum field theory which may be

retained if one accepts their non-bundle versions. This

is possible if the frames used are connected by linear

homogeneous transformations with spacetime constant

matrices, A(x) = const or ∂μA(x) = 0.



Since the general case is coordinates independent, it

describes also the fibre bundle version of internal

transformations. This explains why some equations in

the both versions are identical up to the meaning ϕu,i

and Ij
iω. In particular, for

U(b) = e
1
ie

bQ1 I(b) = 11e−
q
ie

b b ∈ R (5.9)

the Heisenberg relations (5.4) reduce to

[Q1, ϕi(x)] = −qϕi(x), (5.10)

which is identical with (3.10), but now ϕi are the

components of the section ϕ in {ei}. The invariant

form of the last relations is

[Q1, ϕ] = −qϕ. (5.11)



6. Conclusion

We have shown how the Heisenberg equations arise in

the general case and in particular situations. They are

from pure geometrical origin and one should be careful

when applying them to the Lagrangian formalism in

which they are subsidiary conditions, like the Lorentz

gauge in the electrodynamics. Generally they need not

to be consistent with the Lagrangian formalism and

their validity should carefully be checked. For instance,

if one starts with field operators in the Lagrangian

formalism of free fields and adds to it the Heisenberg

relations concerning the momentum operator, then the

arising scheme is not consistent as in it start to appear

distributions, like the Dirac delta function.
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