
Chapter VI

Normal frames for connections
on differentiable fibre bundles

8. Links between connections and
transports along paths in fibre bundles

As the title of this section indicates, its content is partially outside of the main topic
of the present book. It generalizes part of section IV.14 and investigates relations
between some axiomatic approaches to the general theories of connections, parallel
transports, and transports along paths. We hope that the material below will
clarify some problems that may have arisen in chapter IV and will be useful for
readers interested in the axiomatization of the concept of a ‘parallel transport’.

The widespread approach to the concept of a “parallel transport” is it to be
considered as a secondary one and defined on the basis of the connection theory [6,
7, 10–13, 16, 28, 60, 98, 106, 107, 117, 141–145]. However, the opposite approach, in
which the parallel transport is axiomatically defined and from it the connection
theory is constructed, is also known [17, 23, 30–33, 91, 148–151] and goes back
to 1949 1; e.g. it is systematically realized in [23], where the connection theory
on vector bundles is investigated. In [114] the concept of a “parallel transport”
was generalize to the one of “transport along paths”. The relations between both
concepts were analyzed in [115]. The aim of the present section is to be investigated

1 It seems that the earliest written accounts on this approach are the ones due to Ü. G. Lu-
miste [30, sec. 2.2] and C. Teleman [17, chapter IV, sec. B.3] (both published in 1964), the next
essential steps being made by P. Dombrowski [31, § 1] and W. Poor [23]. Besides, the author
of [31] states that his paper is based on unpublished lectures of prof. Willi Rinow (1907–1979)
in 1949; see also [23, p. 46] where the author claims that the first axiomatical definition of a
parallel transport in the tangent bundle case is given by prof. W. Rinow in his lectures at the
Humboldt University in 1949. Some heuristic comments on the axiomatic approach to parallel
transport theory can be found in [8, sec. 2.1] too.
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some links between general connections on fibre bundles and transport along paths
in them. Recall that similar problems, but in the linear case in vector bundles,
were explored in section IV.14.

The bundle and base spaces of the bundles in this section, with an exception
of subsection 8.5, are supposed to be of differentiable of class C1; however, some
parts of the text below, like definition 8.1, are valid in more general situations,
e.g. in topological bundles.

Definition 8.1. A transport along paths in a (topological) bundle (E, π, B) is a
mapping I assigning to every path γ : J → M a mapping Iγ , termed transport
along γ, such that Iγ : (s, t) 7→ Iγ

s→t where the mapping

Iγ
s→t : π−1(γ(s)) → π−1(γ(t)) s, t ∈ J, (8.1)

called transport along γ from s to t, has the properties:

Iγ
s→t ◦ Iγ

r→s = Iγ
r→t r, s, t ∈ J (8.2)

Iγ
s→s = idπ−1(γ(s)) s ∈ J, (8.3)

where ◦ denotes composition of mappings and idX is the identity mapping of a set
X .

Remark 8.1. If (E, π, M)) is a vector bundle and the mappings (8.1) are linear,
definition 8.1 reduces to definition IV.3.1.

An analysis and various comments on this definition can be found in [87,102,
114,115]; see also Sect IV.3.

As we shall see below, an important role is played by transports along paths
satisfying some additional conditions, in particular

I
γ|J′

s→t = Iγ
s→t s, t ∈ J ′ (8.4)

Iγ◦χ
s→t = Iγ

χ(s)→χ(t) s, t ∈ J ′′, (8.5)

where J ′ ⊆ J is a subinterval, γ|J ′ is the restriction of γ to J ′, and χ : J ′′ → J is
a bijection of a real interval J ′′ onto J .

Putting r = t in (8.2) and using (8.3), we see that the mappings (8.1) are
invertible and

(Iγ
s→t)

−1 = Iγ
t→s. (8.6)

8.1. Transports along paths and connections

The following result describes how a transport along paths generates a connec-
tion. 2

2 The author thanks Petko Nikolov (Physical department of the Sofia University “St. Kliment
Okhridski”) for a discussion which led to a correct formulation of theorem 8.1 as well as to
pointing his attention to some peculiarities in [33].
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Theorem 8.1. Let I be a transport along paths in a bundle (E, π, M). Let γ : J →
M be a path and, for any s0 ∈ J and p ∈ π−1(γ(s0)), the lift γ̄s0,p : J → E of γ
be defined by

γ̄s0,p(t) = Iγ
s0→t(p) t ∈ J. (8.7)

Suppose the transport I is such that:
(a) (C1 smoothness) The path

γ̄s0,p is of class C1 (8.8a)

for every C1 path γ, s0 and p.
(b) (Initial uniqueness – cf. definition IV.14.1(v)) If γi : Ji → M , i = 1, 2, are

two C1 paths and for some si ∈ Ji is fulfilled γ1(s1) = γ2(s2) and γ̇1(s1) = γ̇2(s2),
then the lifted paths γ̄i;si,p, defined via ( 8.7) with p ∈ π−1(γ1(s1)) = π−1(γ2(s2)),
have equal tangent vectors at p,

˙̄γ1;s1,p(s1) = ˙̄γ2;s2,p(s2). (8.8b)

(c) (Linearization) If γi : Ji → M , i = 1, 2, are two C1 paths and for some
si ∈ Ji is fulfilled γ1(s1) = γ2(s2), then for every a1, a2 ∈ K there exists a C1 path
γ3 : J3 → M (generally depending on a1, a2, γ1 and γ2) such that γ3(s3) = γ1(s1)
(= γ2(s2)) for some s3 ∈ J3 and the vector tangent to the lifted path γ̄3;s3,p, defined
via ( 8.7) with p ∈ π−1(γ3(s3)), at s3 is

˙̄γ3;s3,p(s3) = a1 ˙̄γ1;s1,p(s1) + a2 ˙̄γ2;s2,p(s2). (8.8c)

Then

∆I : p 7→ ∆I
p :=

{ d
dt

∣∣∣
t=s0

(
γ̄s0,p(t)

)

: γ : J → M is C1 and injective, s0 ∈ J, γ(s0) = π(p)
}
⊆ Tp(E), (8.9)

with p ∈ E, is a distribution which is a connection on (E, π, M), i.e.

∆v
p ⊕ ∆I

p = Tp(E) p ∈ E, (8.10)

with ∆v being the vertical distribution on E, ∆v
p = Tp(π−1(π(p))).

Proof. To begin with, we shall write the following result.

Lemma 8.1. If a C1 path γ̄ : J → E is a lift of a C1 path γ : J → M , π ◦ γ̄ = γ,
then

π∗( ˙̄γ(t)) = γ̇(t). (8.11)

Proof of Lemma 8.1 Let {uµ = xµ ◦π, ua} be bundle coordinate system on E and
p be a point in its domain. Then (8.11) follows from π∗

(
∂

∂uI

∣∣
p

)
= ∂(xµ◦π)

∂uI

∣∣
p

∂
∂xµ

∣∣
π(p)

whose consequence is (3.33), and

˙̄γµ = γ̇µ (8.12)
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which is a corollary of ˙̄γµ(t) = d(uµ◦γ̄(t))
dt = d(xµ◦γ(t))

dt = γ̇µ(t) for all t ∈ J . �

From (8.9) and (8.11), we get

π∗(∆I
p) =

{
γ̇(s0) : γ : J → M is C1 and injective, s0 ∈ J, γ(s0) = π(p)

}

= Tπ(p)(M)

as γ̇(s0) is an arbitrary vector in Tπ(p)(M) = Tγ(s0)(M). Besides, the condition (c)
ensures that ∆I

p is a vector subspace in Tp(E). Thus π∗|∆I
p
: ∆I

p → Tπ(p)(M) is a
surjective mapping between vector spaces. It is also linear as it is a restriction of the
tangent mapping π∗, which in tern is a linear mapping [7, sec. 1.22], on the vector
subspace ∆I

p. At last, we shall prove that π∗|∆I
p

is injective, from where it follows
that π∗|∆I

p
is a vector space isomorphism for every p ∈ E which, in its turn, implies

that ∆I : p → ∆I
p is a distribution satisfying (8.10) as π∗(∆v

p) = 0π(p) ∈ Tπ(p)(M).
If Gi ∈ ∆I

p, i = 1, 2, then there exist paths γi : Ji → M such that γi(si) =
π(p) for some si ∈ Ji and Gi = ˙̄γi;si,p(si), with i = 1, 2 and the lifted paths
in the r.h.s. being given by (8.7). Then π∗(Gi) = γ̇i(si), due to (8.11). Suppose
that γ̇1(s1) = γ̇2(s2). Then condition (b) entails ˙̄γ1;s1,p(s1) = ˙̄γ2;s2,p(s2) so that
G1 = G2, which means that π∗|∆I

p
: ∆I

p → Tπ(p)(M) is injective. �

Remark 8.2. The condition (a) ensures that all our constructions have a sense. If
the condition (b) is not valid, than π∗|∆I

p
is linear and surjective, but we cannot

prove that it is also injective; precisely, π∗|∆h
p

is injective iff the property (b) is
valid. At last, the condition (c) guarantees that ∆I

p is a vector subspace of Tp(E);
in fact, ∆I

p is a vector space iff the property (c) is valid. This is quite an essential
moment as the direct complement B to a vector subspace A of a vector space V (in
our case B = ∆h

p , A = ∆v
p and V = Tp(E)) is generally not a vector subspace; i.e.

the equality V = A⊕B, with V and A being vector spaces, does not generally imply
that B is a vector space; for example, if A = {(x, 0) : x ∈ R} ⊂ R2, then R2 = A⊕B
with B = {(x, y) ∈ R, y 6= 0} ∪ {(0, 0)}, but B is not a vector subspace in R2, as
(a,−c), (b, +c) ∈ B for a, b, c ∈ R and c 6= 0 but (a,−c) + (b, +c) = (a + b, 0) 6∈ B
for a + b 6= 0.
Remark 8.3. Since (8.8c) and (8.11) entail

γ̇3(s3) = a1γ̇1(s1) + a2γ̇2(s2), (8.13a)

the path γ3 is uniquely fixed by the conditions that it passes through the point
π(p),

γ3(s3) = π(p). (8.13b)

Therefore, conditions (c) is equivalent to the requirement the vector tangent at s3

to the lift, given via (8.7), of the path defined via (8.13) to be (8.8c).
Remark 8.4. The role of the transport I along paths in theorem 8.1 is on its
base to be constructed a lifting of the paths in M to paths in E with appropriate
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properties. Namely, such a lifting should assign to a path γ : J → M a unique
path γ̄s0,p : J → E passing through a given point p ∈ π−1(γ(s0)), for some s0 ∈ J ,
and such that π ◦ γ̄s0,p = γ and, if q = γ̄s0,p(t0) for some t0 ∈ J , then γ̄t0,q =
γ̄s0,p. On this ground one can generalize theorem 8.1 as well as some of the next
considerations and results.

Definition 8.2. The connection ∆I , defined in theorem 8.1, will be called assigned
to (defined by, generated by) the transport I along paths.

Remark 8.5. Note that the transport I in this definition must have the proper-
ties (8.8) described in theorem 8.1.

Exercise 8.1. Consider a linear transport L along paths in a vector bundle (E, π, M),
E and M being C1 manifolds. Let {uI} = {uµ = xµ ◦ π, ua} be vector bundle co-
ordinates in E and {ea} be the frame generating {ua} (see the introduction to
section 4) and L and Γ be respectively the matrix and the matrix of the coeffi-
cients on L in {ea}. Then

γ̄s0,p(t) = La
b(t, s0; γ)pbea(γ(t)) (8.14)

due to (IV.3.12). Using (IV.3.15) and (IV.3.25), prove that

˙̄γµ
s0,p(t) = γ̇µ(t) ˙̄γa

s0,p(t) = −Γa
b(t; γ)γ̄b

s0,p(t). (8.15)

In particular, we have

˙̄γµ
s0,p(s0) = γ̇µ(s0) ˙̄γa

s0,p(s0) = −Γa
b(s0; γ)pb (8.16)

where pb = ub(p), i.e. p = pbeb(π(p)). The first equalities in (8.15) and (8.16) are
consequences of (8.11) or (8.12) and, in this sense, are inessential for the following.

Example 8.1a. In a case of a linear transport along paths in a vector bundle, the
condition (a) from proposition 8.1 means that the transport is of class C1 (along
C1 paths) – see the beginning of subsection IV.3.3. Said otherwise, it is equivalent
to C1 dependence of the transport’s matrix on path’s parameter due to (8.14). It
follows from (8.15) that, if the linear transport is of class Ck, k ≥ 1, relative to all
Cm paths in M for some m such that 1 ≤ m ≤ k, then the lifted path γ̄s0,p is of
class Cm for all Cm paths in M ; usually m = k.

Example 8.1b. In a case of a C1 linear transport along paths in a vector bundle,
the equations (8.16) entail that the condition (b) from proposition 8.1 is equivalent
to

Γ(s1; γ1) = Γ(s2; γ2) (8.17)

for the particular values s1 ∈ J1 and s2 ∈ J2 for which γ1(s1) = γ2(s2) and
γ̇1(s1) = γ̇2(s2). This is an equation for (the matrix of the coefficients of) the
transport L which must be valid for any C1 paths γ1 and γ2 with the properties
just mentioned. Its solutions is

Γ(s; γ) = G(γ(s), γ̇(s)) (8.18)
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for every C1 path γ : J → M , s ∈ J and some matrix-valued function G. In
particular, Γ(s; γ) may be given by (IV.6.1),

Γ(s; γ) = Γµ(γ(s))γ̇µ(s)) (8.19)

in which case the transport may admit normal frames (see proposition (IV.6.1)).

Example 8.1c. In a case of a C1 linear transport along paths in a vector bundle,
the equations (8.16) entail that the condition (c) from proposition 8.1 is equivalent
to

Γ(s3; γ3) = a1Γ(s1; γ1) + a2Γ(s2; γ2) (8.20)

where a1, a2 ∈ K. The C1 paths involved are such that γ1(s1) = γ2(s2) = γ3(s3) =
π(p) and, according to remark 8.3, the path γ3 is uniquely defined via the ini-
tial-value problem (8.13). Consequently, equation (8.20) is an equation for (the
matrix of the coefficients of) the transport in a sense that it should be an identity
relative to a1, a2, γ1 and γ2 provided the path γ3 is the solution of

γ̇3(s3) = a1γ̇1(s1) + a2γ̇2(s2), (8.21a)
γ3(s3) = π(p). (8.21b)

In particular, the combination of (8.21a) and (8.18) immediately results into (8.19)
which provides a solution of (8.20) due to (8.21a). Going some pages ahead (see
corollary 8.5 on page 405 and theorem 8.9 on page 405), we can formulate this
result as: the linear connections on vector bundles are the only ones that can be
generated by linear transports in them and, conversely, the linear parallel trans-
ports along paths in vector bundles are the only ones that are generated by the
parallel transports corresponding to linear connections.

It is worth recording the simple fact that, if equation (8.4) or (8.5) holds,
then the path γ̄s0,p, defined via (8.7) is such that respectively

γ̄s0,p|J ′ = (γ|J ′)s0,p s0 ∈ J ′ (8.22)
γ̄χ(s0),p ◦ χ = (γ ◦ χ)s0,p s0 ∈ J ′′. (8.23)

Exercise 8.2. Prove that for C1 paths equations (8.4) and (8.5) are consequences
of the suppositions (a)–(c) from theorem 8.1 but the converse is generally not true,
i.e. (8.4) and (8.5) are necessary but generally not sufficient conditions for (8.9)
to be a connection. To prove (8.4), use assumption (b) and the local existence
of a unique C1 path passing through a given point and having a fixed tangent
vector at it. The proof of (8.5) is more complicated. For the purpose show that
the paths β̄s0,p : t → Iβ

s0→t(p) and δ̄s0,p : t → Iγ
χ(s0)→χ(t)(p) = γ̄χ(s0),p ◦ χ(t), for

s0, t ∈ J ′′, in E are liftings of the path β = γ ◦ χ and are ∆I -horizontal, i.e.
˙̄βs0,p(t) ∈ ∆I

β̄s0,p(t)
and ˙̄δs0,p(t) ∈ ∆I

δ̄s0,p(t)
. (Here use that β̇(t) = dχ(t)

dt γ̇(χ(t)) and

similarly for δ̄s0,p.) Then the existence of a unique horizontal lift of any C1 path
(see also proposition 8.4 below) implies β̄s0,p = δ̄s0,p.
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8.2. Parallel transports and parallel transports along paths

For the further exploration of the relations between transports along paths and
connections (or parallel transports generated by them), we shall need the notion
of an inverse path and of a product of paths. There are not ‘natural’ definitions
of these concepts, but this is not important for us as the (parallel) transports
we shall consider bellow are parametrization invariant in some sense, like (8.5).
For that reason, the concepts mentioned will be defined only for canonical paths
[0, 1] → M , whose domain is the real interval [0, 1] := {r ∈ R : 0 ≤ r ≤ 1}. The
path inverse to γ : [0, 1] → M is γ := γ ◦ τ : [0, 1] → M , with τ : [0, 1] → [0, 1]
being given by τ (t) := 1 − t for t ∈ [0, 1]. If γ1, γ2 : [0, 1] → M and γ1(1) = γ2(0),
the product γ1γ2 of γ1 and γ2 is a canonical path γ1γ2 : [0, 1] → M such that
(γ1γ2)(t) := γ1(2t) for t ∈ [0, 1/2] and (γ1γ2)(t) := γ2(2t − 1) for t ∈ [1/2, 1]. For
more details on this item, see [108,132].

Recall now the basic properties of the parallel transports generated by con-
nections.

Proposition 8.1. Let

P : γ 7→ Pγ : π−1(γ(σ)) → π−1(γ(τ)) γ : [σ, τ ] → M (8.24)

be the parallel transport generated by a connection on some bundle (E, π, M). The
mapping P has the following properties:

(i) The parallel transport P is invariant under orientation preserving changes
of the paths’ parameters. Precisely, if γ : [σ, τ ] → M and χ : [σ′, τ ′] → [σ, τ ] is an
orientation preserving C1 diffeomorphism, then

Pγ◦χ = Pγ . (8.25)

(ii) If γ : [0, 1] → M and γ : [0, 1] → M is its canonical inverse, γ (t) =
γ(1− t) for t ∈ [0, 1], then

Pγ =
(
Pγ

)−1
. (8.26)

(iii) If γ1, γ2 : [0, 1] → M , γ1(1) = γ2(0), and γ1γ2 : [0, 1] → M is their
canonical product, then

Pγ1γ2 = Pγ2 ◦ Pγ1 . (8.27)

(iv) If γr,x : {r} = [r, r] → {x} for some given r ∈ R and x ∈ M , then

Pγr,x = idπ−1(x). (8.28)

(v) If γ̄p : s ∈ [σ, τ ] → γ̄(s) := Pγ|σ,s](p) is the lifting of γ through p ∈
π−1(γ(σ)) defined by P and the C1 paths γi : [σi, τi] → M are such that γ1(σ1) =
γ2(σ2) and γ̇1(σ1) = γ̇2(σ2), then (a) the lifted path

γ̄p is of class C1 (8.29)
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for any C1 path γ and (b) the lifted paths γ̄1;p and γ̄2;p have equal tangent vectors
at p,

˙̄γ1;p(σ1) = ˙̄γ2;p(σ2). (8.30)

(vi) If γi : [σi, τi] → M , i = 1, 2, are two C1 paths and γ1(σ1) = γ2(σ2), then
for every a1, a2 ∈ K there exists a C1 path γ3 : [σ3, τ3] → M such that γ3(σ3) =
γ1(σ1) (= γ2(σ2)) and the vector tangent to the lifted path γ̄3;p : t3 ∈ [σ3, τ3] →
γ̄3;p(t3) := Pγ3|[σ3.t3](p), with p ∈ π−1(γ3(σ3)), at σ3 is

˙̄γ3;p(σ3) = a1 ˙̄γ1;p(σ2) + a2 ˙̄γ2;p(σ2), (8.31)

where γ̄i;p : ti ∈ [σi, τi] → γ̄i;p(ti) := Pγi|[σi.ti](p).

Remark 8.6. As a result of (8.25), some properties of the parallel transports gener-
ated by connections, like (8.26) and (8.27), are sufficient to be formulated/proved
only for canonical paths [0, 1] → M .
Proof. The proofs of (8.25)–(8.31) can be found in a number of works, for ex-
ample in [3, 4, 6, 11, 30, 32, 33, 149, 150, 155]. Alternatively, the reader can prove
them by applying the definitions given in this book. (See also subsections IV.14.1
and IV.14.2 in a case of a vector bundle.) �

Definition 8.3 (cf. definition IV. 14.11 on page 310). A mapping (8.24) satisfying
the equalities (8.25)–(8.31) will be called (axiomatically defined) parallel transport.

Proposition 8.2. Let P be the parallel transport assigned to a Cm, with m ∈ N∪{0},
connection on a smooth, of class Cm+1, bundle (E, π, M). Then P is smooth, of
class Cm, in a sense that, if γ : [σ, τ ] → M is a C1 path, then Pγ is in the set of
Cm diffeomorphisms between the fibres π−1(γ(σ)) and π−1(γ(τ)),

P : γ 7→ Pγ ∈ Diffm
(
π−1(γ(σ)), π−1(γ(τ))

)
γ : [σ, τ ] → M. (8.32)

Proof. See [16,106,107]. �

The axiomatic approach to parallel transport was developed mainly on the
ground on the properties (8.25)–(8.32) of the parallel transports assigned to con-
nections. However, this topic is out of the range of the present monograph and the
reader is referred to the literature cited at the beginning of the present section.

Now we shall present a modified version of [115, p. 13, theorem 3.1].

Theorem 8.2. Let I be a transport along paths in bundle (E, π, M) and γ : [σ, τ ] →
M . If I satisfies the conditions ( 8.8) from theorem 8.1, 3 then the mapping

I : γ 7→ Iγ := Iγ
σ→τ : π−1(γ(σ)) → π−1(γ(τ)) γ : [σ, τ ] → M (8.33)

is a parallel transport, i.e. it possess the properties ( 8.25)–( 8.31), with I for P.
Besides, if I is smooth in a sense that

Iβ
s→t ∈ Diffm

(
π−1(β(s)), π−1(β(t))

)
β : J → M s, t ∈ J (8.34)

3 Recall, according to exercise 8.2, the equations (8.8) imply (8.4) and (8.5).
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for some m ∈ N ∪ {0}, then the mapping ( 8.33) satisfies ( 8.32), with I for P.
Conversely, suppose the mapping

P : γ 7→ Pγ : π−1(γ(σ)) → π−1(γ(τ)) γ : [σ, τ ] → M (8.35)

is a parallel transport, i.e. it satisfies ( 8.25)–( 8.31), and define the mapping

P : β 7→ P β : (s, t) 7→ P β
s→t = P(β|[σ,τ ])◦χ

[σ,τ]
t ◦

(
P(β|[σ,τ ])◦χ[σ,τ]

s

)−1

β : J → M,

(8.36)
where s, t ∈ J , σ, τ ∈ J are such that σ ≤ τ and [σ, τ ] 3 s, t, 4 and χ

[σ,τ ]
s : [σ, τ ] →

[σ, s] are for s > σ arbitrary orientation preserving C1 diffeomorphisms (depending
on β via the interval [σ, τ ]). Then the mapping ( 8.36) is a transport along paths
in (E, π, M), which transport satisfies the conditions ( 8.8), with P for I. Besides,
under the same assumptions, the condition ( 8.32) for P implies ( 8.34), with P
for I, where P is given by ( 8.36).

Remark 8.7. Instead by (8.36), the transport P along paths generated by a parallel
transport P can be defined equivalently as follows. For a path γ : [σ, τ ] → M and
s, t ∈ [σ, τ ], we put (see (8.25))

P : γ 7→ P γ : (s, t) 7→ P γ
s→t = Pγ◦χ

[σ,τ]
t ◦

(
Pγ◦χ[σ,τ]

s

)−1

= Pγ|[σ,t] ◦
(
Pγ|[σ,s]

)−1

γ : [σ, τ ] → M

(8.37a)

Now, for an arbitrary path β : J → M , with J being closed or open at one or both
its ends, we set

P : β 7→ P β : (s, t) 7→ P β
s→t =

{
P

β|[s,t]
s→t for s ≤ t(
P

β|[t,s]
t→s

)−1 for s ≥ t
β : J → M s, t ∈ J.

(8.37b)
It can easily be verified that (8.37) are tantamount to

P : β 7→ P β : (s, t) 7→ P β
s→t =

{
Pβ|[s,t] for s ≤ t(
Pβ|[t,s])−1 for s ≥ t

β : J → M s, t ∈ J.

(8.38)
Proof. Suppose I satisfies (8.8). To begin with, we notice that (8.8) imply (8.4)
and (8.5) by virtue of exercise 8.2. Equation (8.25) follows from (8.33), and (8.5).
Equation (8.26) is a consequence of (8.33), (8.5) and (8.6) for γ : [0, 1] → M and
τ (t) = 1 − t for t ∈ [0, 1]:

Iγ = Iγ◦τ
0→1 = Iγ

τ (0)→τ (1) = Iγ
1→0 = (Iγ

0→1)
−1 = (Iγ)−1.

4 In particular, one can set σ = min(s, t) and τ = max(s, t) or, if J is a closed interval, define
σ and τ as the end points of J , i.e. J = [σ, τ ].
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To prove (8.27), we set γ1,2 : [0, 1] → M , τ1(t) = 2t for t ∈ [0, 1/2] and τ2(t) = 2t−1
for t ∈ [1/2, 1] and, applying equations (8.33), (8.4), (8.5), (8.6) and (8.2), we find:

Iγ1γ2 = Iγ1γ2
0→1 = Iγ1γ2

1/2→1 ◦ Iγ1γ2
0→1/2 = I

γ1γ2|[1/2,1]
1/2→1 ◦ I

γ1γ2|[0,1/2]
0→1/2

= Iγ2◦τ2
1/2→1 ◦ Iγ1◦τ1

0→1/2 = Iγ2
τ2(1/2)→τ2(1)

◦ Iγ1
τ1(0)→τ1(1/2) = Iγ2

0→1 ◦ Iγ1
0→1 = Iγ2 ◦ Iγ1 .

Next, equation (8.28) is a direct corollary from (8.33) and (8.3). At last, the
properties (v) and (vi) are trivial consequences from (8.33) and respectively (8.8a)-
(8.8b) and (8.8c). So, I is a parallel transport, which, evidently, satisfies (8.32) with
I for P, if (8.34) is valid.

Conversely, suppose P is a parallel transport and P is defined via (8.36),
or, equivalently (see remark 8.7), via (8.38). The verification of (8.1)–(8.3) can be
done by applying (8.35) and (8.25)–(8.28). Therefore P is a parallel transport along
paths. Similarly, the conditions (8.8) follow from the properties (v) and (vi) of the
parallel transport P. At last, the validity of (8.28), with P for I , is a consequence
from (8.32) and (8.38). �

Definition 8.4. A transport I along paths which has the properties (8.8) will be
called parallel transport along paths.

Theorem 8.2 simply says that there is a bijective correspondence between the
parallel transports along paths and the parallel transports.

Definition 8.5. If I is a parallel transport along paths, then we say that the parallel
transport (8.33) is generated by (defined by, assigned to) I . Respectively, if P is a
parallel transport, then we say that the (parallel) transport along paths (8.36) is
generated by (defined by, assigned to) P.

Proposition 8.3. If I is a parallel transport along paths and I is the assigned to
it parallel transport, then the parallel transport along paths defined by I coincides
with I. Conversely, if P is a parallel transport and P is the parallel transport along
paths generated by P, then the parallel transport defined by P coincides with P.

Proof. The assertions are consequences from definition 8.5, theorem 8.2 and re-
mark 8.7. �

Let us now return to the connection ∆I generated by a transport I along
paths, introduced in theorem 8.1.

Proposition 8.4. If γ : J → M is a C1 injective path and p ∈ π−1(γ(s0)) for some
s0 ∈ J , then there is a unique ∆I -horizontal lift of γ (relative to ∆I) in E through
p and it is exactly the path γ̄s0,p defined by ( 8.7).

Proof. Simply apply the definitions (8.7) and (8.9) and use the properties (8.1)
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and (8.2) of the transports along paths (t0 ∈ J):

˙̄γs0,p(t0) =
d
dt

∣∣∣
t=t0

(
Iγ
s0→t(p)

)
=

d
dt

∣∣∣
t=t0

(
Iγ
t0→t(I

γ
s0→t0(p))

)

=
d
dt

∣∣∣
t=t0

(
Iγ
t0→t(γ̄s0,p(t0))

)
= ˙̄γt0,γ̄s0,p(t0)(t0) ∈ ∆I

γ̄s0,p(t0).

�

Remark 8.8. If γ is not injective and γ(s0) = γ(t0) for some s0, t0 ∈ J such that
s0 6= t0, then the paths γ̄s0,p, γ̄t0,p : J → E need not to coincide as γ̄s0,p = It0→s0

◦
γ̄t0,p, due to (8.7) and (8.2). Therefore the ∆I -horizontal lift of a non-injective path
through a point in E lying in a fibre over a self-intersection point of the path, if
any, may not be unique. Similar is the situation for an arbitrary connection. (This
range of problems is connected with the so-called holonomy groups.)

Proposition 8.5. The parallel transport I generated by the connection ∆I , defined
by a transport along paths I, is such that

Iγ = Iγ
σ→τ for γ : [σ, τ ] → M. (8.39)

Proof. According to definition 3.2 and (8.7), we have:

I : γ 7→ Iγ : π−1(γ(σ)) → π−1(γ(τ)) γ : [σ, τ ] → M

Iγ : p 7→ Iγ(p) = γ̄σ,p(τ) = Iγ
σ→τ (p) p ∈ π−1(γ(σ)).

�

Corollary 8.1. The parallel transport I generated by the connection ∆I , assigned
to a transport I along paths, is a parallel transport, i.e. it satisfies ( 8.25)–( 8.31)
with I for P.

Proof. This result is a particular case of proposition 8.1. An alternative proof can
be carried out by using (8.1)–(8.8), (8.39), and the definitions of inverse path and
product of paths. The assertion is also a consequence of (8.39) and theorem 8.2.

�

8.3. Connections and parallel transports along paths

Until this point, we have studied how a transport along paths generates a connec-
tion (theorem 8.1) and parallel transport (proposition 8.5). Besides, theorem 8.2
establishes a bijective correspondence between particular class of transports along
paths and mappings having (some of) the main properties of the parallel trans-
ports generated by connections. Below we shall pay attention, in a sense, to the
opposite links, starting from a connection on a bundle.
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Proposition 8.6. Let P be the parallel transport assigned to a connection ∆h on a
bundle (E, π, M). The mapping

P : γ 7→ P γ : (s, t) 7→ P γ
s→t γ : J → M (8.40a)

defined by

P γ
s→t =

{
Pγ|[s,t] for s ≤ t(
Pγ|[t,s])−1 for s ≥ t

(8.40b)

is a transport along paths in (E, π, M). Moreover, P is parallel transport along
paths, i.e. it satisfies the equations ( 8.8) from theorem 8.1 with P for I.

Proof. One should check the conditions (8.1)–(8.3), and (8.8) with P for I . The
relations (8.1)–(8.3) follow directly from definition 3.2 of a parallel transport gener-
ated by a connection. The rest conditions are consequences of (8.40) and a simple,
but tedious, application of the properties (8.25)–(8.31) of the parallel transports.
Alternatively, this proposition is a consequence of the second part of theorem 8.2
and remark 8.7. �

Remark 8.9. Applying (8.25)–(8.27), the reader can verify that

P γ
s→t = F−1(t; γ) ◦ F (s; γ) (8.41)

with

F (r; γ) =

{
Pγ|[r,w] for r ≤ w(
Pγ|[w,r]

)−1 for r ≥ w
r = s, t (8.42)

for any (arbitrarily) fixed w ∈ J . This result is a special case of the general
structure of the transports along paths [114, theorem 3.1].

Definition 8.6. The parallel transport along paths, defined by a connection ∆h

on a bundle through proposition 8.6, will be called parallel transport along paths
assigned to (defined by, generated by) the connection ∆h.

Corollary 8.2. Let ∆I be the connection generated by a parallel transport I along
paths according to theorem 8.1. If I is the parallel transport assigned to ∆I , then
the transport along paths assigned to I (or ∆I), as described in proposition 8.6,
coincides with the initial transport I along paths.

Proof. Substitute (8.39) into (8.40), with I for P and I for P. �

Corollary 8.3. Let P be the transport along paths assigned to a connection ∆h

(via its parallel transport P) according to proposition 8.6. The connection ∆P

generated by P , as described in theorem 8.1, coincides with the initial connection
∆h, ∆P = ∆h.
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Proof. On one hand, if p ∈ E, the space ∆P
p consists of the vectors tangent

at s0 to the paths γ̄s0,p : t 7→ P γ
s0→t(p), with γ : J → M of class C1, s0 ∈ J ,

and π(p) = γ(s0), due to theorem 8.1. On another hand, ∆h
p consists of the

vectors tangent at s0 to the paths γ̃s0,p : t 7→ Pγ|[s0,t](p), by virtue of definition 3.2.
Equation (8.40b) says that both types of paths coincide, γ̃s0,p = γ̄s0,p, so that their
tangent vectors at t = s0 are identical and, consequently, ∆P

p and ∆h
p are equal as

sets, ∆P
p = ∆h

p , for all p ∈ E. �

8.4. Recapitulation

Roughly speaking, the above series of results says that a connection ∆h is equiva-
lent to a mapping P (the assigned to it parallel transport) satisfying (8.24)–(8.31)
or to a mapping P (the assigned to it parallel transport along paths) satisfy-
ing (8.1)–(8.3) and (8.8) (with P for I). Besides, the smoothness of ∆h is equivalent
to the one of P or P . Let us summarize these results as follows.

Theorem 8.3. Given a connection ∆h on a bundle (E, π, M), there exists a unique
parallel transport I along paths in (E, π, M) which generates ∆h via ( 8.9), i.e.
∆I = ∆h. Besides, the parallel transport P defined by ∆h is given by ( 8.33), i.e.
P = I.

Proof. See theorem 8.1, proposition 8.5 and theorem 8.2. �

Theorem 8.4. Given a parallel transport I along paths in a bundle (E, π, M), then
there exists a unique connection ∆h on (E, π, M) such that the parallel transport
P along paths assigned to ∆h coincides with I, P = I. Besides, the connection ∆I

generated by I is identical with ∆h, ∆I = ∆h.

Proof. Apply theorem 8.1 and corollaries 8.2 and 8.3. �

Theorem 8.5. Given a parallel transport along paths in a bundle, there is a unique
(axiomatically defined) parallel transport generating it. Conversely, given a parallel
transport, there is a unique parallel transport along paths generating it.

Proof. This statement is a reformulation of theorem 8.2. �

Theorem 8.6. Given a parallel transport P, there exists a unique connection ∆h

generating it. Besides, the parallel transport assigned to ∆h coincides with P.

Proof. See theorems 8.5 and 8.4 and definitions 3.2 and 8.5. �

Theorem 8.7. Given a connection ∆h, there is a unique parallel transport P such
that the defined by it parallel transport P along paths generates ∆h, ∆P = ∆h.
Besides, P coincides with the parallel transport assigned to ∆h.
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Figure 8.1: Mappings between the sets of parallel transports, connections and
parallel transports along paths in differentiable bundles

the set of
connections
(defintion 3.1)

the set of parallel
transports along
paths (defintion 8.4)

the set of
parallel transports
(defintion 8.3)

Q
Q

QQs
k�

�
��+
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Proof. Apply theorems 8.3 and 8.5. �

The above results can be summarized in the commutative diagram shown on
figure 8.1, the mappings in which are described via theorems 8.3–8.7. Besides, if
one of these objects is smooth, so are the other ones corresponding to it via the
bijections constructed in the present section.

We end with the main moral of the above theorems. In a case of a differen-
tiable bundle, the concepts “connection,” “(axiomatically defined) parallel trans-
port” and “parallel transport along path” are equivalent in a sense that there
are bijective mappings between the sets of these objects. Besides, if one of these
objects is smooth, so are the other ones corresponding to it via the bijections
constructed in the present section.

8.5. The case of topological bundles

Now we want to say a few words concerning bundles which are not differentiable.
The definition 3.1 of a connection is strongly related to the concept of the tangent
bundle T (E) of the bundle space E and, consequently, it is senseless in a case
when E is a manifold of class C0 of a topological space. As we have demonstrated
above (see theorems 8.3 and 8.4), a connection can equivalently be described via
a suitable parallel transport which, by definition 8.3, is a mapping possessing the
properties (8.25)–(8.31). One observes at first sight that the properties (8.25)–
(8.28) do not depend on the differentiable structure of the bundle and, on the
contrary, the properties (8.29)–(8.31) are senseless if E is not of class C1 or higher.
This separation of the properties of the parallel transports assigned to connections
to ones that depend and do not depend on the differentialble structure of the
bundles points to a natural way for generalizing the concept of a parallel transport
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(and hence of a connection) on bundles with class of smoothness not higher than
C0.

Definition 8.7. A parallel transport P in a topological bundle (E, π, B) is a map-
ping (8.24) (with B for M) which has the properties (8.25)–(8.28). Such a mapping
will also be called topological parallel transport if there is a risk to mix it with the
one defined via definition 8.3 in a case of a differentiable bundle.

Proposition 8.7. A parallel transport in a differentiable bundle of class C1 is a
topological parallel transport.

Proof. Compare definitions 8.3 and 8.7. �

Relying on our experience with connections and parallel transports in differ-
entiable bundles, the concepts “connection” and “(topological) transport” in topo-
logical bundles should be identified and, hence considered as equivalent. As the
following result shows, the set of (topological) parallel transports is in a bijec-
tive correspondence with certain subset of transports along paths in topological
bundles.

Theorem 8.8. Let I be a transport along paths in an arbitrary topological bundle
(E, π, B) and γ : [σ, τ ] → B. If I satisfies the conditions ( 8.4) and ( 8.5), then the
mapping

I : γ 7→ Iγ := Iγ
σ→τ : π−1(γ(σ)) → π−1(γ(τ)) γ : [σ, τ ] → M (8.43)

is a parallel transport, i.e. it possess the properties ( 8.25)–( 8.28), with I for P.
Conversely, suppose the mapping

P : γ 7→ Pγ : π−1(γ(σ)) → π−1(γ(τ)) γ : [σ, τ ] → M (8.44)

is a parallel transport, i.e. satisfies ( 8.25)–( 8.28), and define the mapping

P : β 7→ P β : (s, t) 7→ P β
s→t =

{
Pβ|[s,t] for s ≤ t(
Pβ|[t,s])−1 for s ≥ t

β : J → B s, t ∈ J.

(8.45)
Then the mapping ( 8.45) is a transport along paths in (E, π, B), which transport
satisfies the conditions ( 8.4) and ( 8.5), with P for I.

Proof. To prove the first part of the theorem, we define τ− : t 7→ 1 − t, τ1 : t 7→ 2t
and τ2 : t 7→ 2t − 1 for t ∈ [0, 1]. Applying (8.2)–(8.5) and using the notation of
proposition 8.1, we get:

Iγ◦χ = Iγ◦χ
σ→τ = Iγ

χ(σ)→χ(τ) = Iγ

Iγ− = I
γ◦τ−
0→1 = Iγ

τ−(0)→τ−(1) = Iγ
1→0 = (Iγ

0→1)
−1 = (Iγ)−1

Iγ1γ2 = Iγ1γ2
0→1 = I

(γ1γ2)|[1/2,1]
1/2→1 ◦ I

(γ1γ2)|[0,1/2]
0→1/2 = Iγ2◦τ2

1/2→1 ◦ Iγ1◦τ1
0→1/2 = Iγ2

0→1 ◦ Iγ1
0→1 = Iγ2 ◦ Iγ1

Iγr,x = Iγr,x
r→r = idπ−1(x).
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To prove the second part, we first note that (8.3) and (8.5) follow from (8.28)
and (8.25), respectively, due to (8.45). As a result of (8.45), we have, e.g. for s ≤ t,

P
γ|J′

s→t = P(γ|J′)|[s,t] = Pγ|[s,t] = P γ
s→t

by virtue of [s, t] ⊆ J ′. At last, we shall prove (8.2) for r ≤ s ≤ t; the other
cases can be proved similarly. Let us fix some orientation-preserving bijections
τ ′ : [0, 1] → [r, s] and τ ′′ : [0, 1] → [s, t]. Then:

P β
s→t ◦ P β

r→s = Pβ|[s,t] ◦ Pβ|[r,s] = Pβ◦τ ′′
◦ Pβ◦τ ′

= P(β◦τ ′)(β◦τ ′′)

= Pβ◦τ = Pβ|[r,t] = P β
r→t

where τ : a 7→ τ ′(2a) for a ∈ [0, 1/2] and τ : a 7→ τ ′′(2a−1) for a ∈ [1/2, 1], so that
τ(0) = τ ′(0) = r and τ(1) = τ ′′(1) = t. �

Remark 8.10. In fact, this proof is contained implicitly in the proof of theorem 8.2.

Definition 8.8. In a topological bundle, a transport I along paths which has the
properties (8.4) and (8.5) will be called parallel transport along paths. If I is a
parallel transport along paths, then we say that the parallel transport (8.43) is
generated by (defined by, assigned to) I . Respectively, if P is a parallel transport,
then we say that the (parallel) transport along paths (8.45) is generated by (defined
by, assigned to) P.

Theorem 8.8 simply says that there is a bijective correspondence between the
set of parallel transports along paths and the one of parallel transports.

Theorem 8.8 and definition 8.8 are analogues of respectively Theorem 8.2
and definition 8.4 in a case of a topological bundle and contain them as special
cases when differentiable bundles are considered. The last assertion is confirmed
by the result of exercise 8.2 that equations (8.4) and (8.5) are consequences from
the equations (8.8). Thus, in terms of transports along paths, equations (8.4)
and (8.5) single out the parallel transports which are independent of the differ-
entiable structure of the bundles in which they act. The same result is expressed
by the properties (8.25)–(8.28) of the parallel transports assigned to connections
while (8.29)–(8.31) are sensible only in differentiable bundles and single out from
the topological parallel transports the ones defined by connections.

We can summarize the above considerations in the commutative diagram
presented on figure 8.2 on the next page the mappings in which are described via
theorem 8.8.

As a conclusion, we can say that in topological bundles the concept of con-
nection does not survive and there is a bijection between the sets of “parallel
transports” and “parallel transports along paths” and, in that sense, these con-
cepts are equivalent.
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Figure 8.2: Mappings between the sets of (topological) parallel transports and
parallel transports along paths in topological bundles

the set of parallel
transports along
paths (defintion 8.8)

the set of (topological)
parallel transports
(defintion 8.7)

-�

8.6. The case of vector bundles

The purpose of this section is to be presented some links between transports and
connections in vector bundles in a case these objects are linear, i.e. when they are
compatible with the vector structure of the bundle.

Corollary 8.4. In a case of a vector bundle:
(a) A parallel transport I along paths is linear if and only if the assigned to it
parallel transport I is is linear;
(b) A parallel transport P is linear if and only if the generated by it parallel trans-
port P along paths is linear.

Proof. The results follow from theorem 8.2 and proposition 8.3. �

Corollary 8.5. In a case of a vector bundle:
(a) The linear connections are the only connections that can be generated by linear
parallel transports along paths;
(b) The linear parallel transports along paths are the only transports along paths
that can be generated by linear connections (via the assigned to them parallel trans-
ports).

Proof. The assertions are consequences from definition 4.1, corollary 8.4 and propo-
sition 8.6. �

Theorem 8.9. Let ∆h be a linear connection on a vector bundle (E, π, M), E and
M being C1 manifolds. Let {uI} = {xµ ◦ π, ua} be vector bundle coordinates on
E generated by a frame {ea} in E, {XI} be the frame adapted to {uI} and Γa

bµ

be the 3-index coefficients of ∆h in {XI} (see theorem 4.1). If P is the parallel
transport along paths assigned to ∆h, then the coefficients of P in {ea} along a
C1 path γ : J → M are (s ∈ J)

Γa
b(s; γ) = Γa

bµ(γ(s))γ̇µ(s). (8.46)

Conversely, if I is a C1 linear transport along paths in (E, π, M) and in
{ea} its coefficients have a representation ( 8.46) along every C1 path γ for some
functions Γa

bµ, then there exists a unique linear connection ∆h on (E, π, M) such
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that the parallel transport P along paths generated by ∆h coincides with I, P = I;
besides, Γa

bµ are exactly the 3-index coefficients of ∆h.

Proof. According to corollaries 8.2 and 8.3 and proposition 8.4, the ∆h-horizontal
lift of γ through p ∈ π−1(γ(s0)), s0 ∈ J is given by γ̄s0,p(s) = P γ

s0→s(p) and
therefore

˙̄γa
s0,p(s) = −Γa

b(s; γ)γ̄b
s0,p(s)

by virtue of (8.15). On another hand, the parallel transport equation (3.39′a)
implies

˙̄γa
s0,p(s) = Γa

µ(γ̄s0,p(s)) ˙̄γµ
s0,p(s),

where Γa
µ are the 2-index coefficients of ∆h. Inserting here (4.13) and comparing

the result with the previous displayed equation, we obtain (8.46), due to π◦γ̄s0,p =
γ and (8.11).

Conversely, suppose (8.46) holds. Then I satisfies the conditions (a)–(c) from
theorem 8.1 (see examples 8.1a–8.1c), so (8.9) defines a connection ∆h. Then the
parallel transport P along paths generated by ∆h coincides with I , P = I , by
virtue of corollary 8.2. As a result of proposition 8.4, (8.46) and (8.15), the ∆h

horizontal lift of γ is such that

˙̄γs0,p(s) = −Γa
bµ(γ(s))γ̇µ(s)γ̄b

s0,p(s).

Comparing this result with the parallel transport equation (3.39′a), we get (see
also (8.11))

Γa
µ(γ̄s0,p(s)) = −Γa

bµ(γ(s))γ̄b
s0,p(s)

which entails Γa
µ = −(Γa

bµ ◦ π) · ub due to π ◦ γ̄s0,p = γ and the arbitrariness of γ

and p ∈ π−1(γ(s0)). At last, theorem 4.1 on page 350 says that the connection ∆h

is linear. �

Theorem 8.9 simply means that a linear transport along paths is a paral-
lel transport along paths (generated by a linear connection) if and only if equa-
tion (8.46) holds in some (and hence in any) frame {ea}. In this sense, a linear
transport along paths is equivalent to a linear connection iff equation (8.46) is
valid in some (and hence in any) frame {ea}. We can also say that theorem 8.9
describes the subset of all linear transports along paths that can be generated by
linear connections, viz. these are the transports with coefficeints given by equa-
tion (8.46).

Exercise 8.3. Derive corollary 8.5 from theorem 8.9.

Corollary 8.6. Let L be a linear transport along paths in a vector bundle (E, π, M),
E and M being C1 manifolds. Then L admits frames normal on U ⊆ M (resp.
along a C1 path γ : J → M), if along every C1 path γ : J → M (resp. along the
given path γ) it coincides with some parallel linear transport along paths (generated
by some linear connection) in (E, π, M).
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Proof. Apply theorem 8.9 and proposition IV.6.1. �

In fact, the last result is an invariant reformulation of proposition IV.6.1.
Note, along a fixed/given path γ, the result is trivial as a representation like (8.46)
always exists along a fixed/given path. Besides, according to corollary IV.5.1,
frames normal along injective paths always exist.

Example 8.2. As an application of theorem 8.9, we shall prove that the evolution
transport arising in bundle quantum mechanics [127] (see (IV.16.3)) is generally
not a parallel linear transport along paths. 5 To show this, we note that the
coefficients of the evolution transport are (see [128, eq. (2.22)] or (IV.16.4))

Γa
b(t; γ) = − 1

i~
(Hm

γ (t))a
b (8.47)

where i is the imaginary unit, ~ is the Planck’s constant (devided by 2π) and
Hm

γ (t) is the matrix-bundle Hamiltonian. One can choose a special frame which
is independent of γ and is such that [128, remark 2.1] Hm

γ (t) = H(t), where H(t)
is the matrix of the usual Hilbert space Hamiltonian. So, in this frame, we have

Γa
b(t; γ) = − 1

i~
Ha

b (t) (8.48)

with Ha
b (t) being the matrix elements of the system Hamiltonian which may de-

pend on the (time) parameter t but does not depend on the path γ. Therefore
equation (8.46) is generally not valid 6 and consequently the evolution transport
cannot be generated by a linear connection in the general case. In particular, this
conclusion is valid for all time-independent Hamiltonians, ∂H(t)

∂t = 0.

5 The below-presented proof is not quite rigorous as theorem 8.9 is proved in the finite-
dimensional case while the evolution transport acts in generally infinite dimensional Hilbert
bundle.

6 The same result can be prooved by using the general expression (IV.16.5) for the matrix-
bundle Hamiltonian instead of the one in special frame mantioned above.


