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1. Linear transports along paths

Let (E, π, B) be a complex vector bundle with bundle

(total) space E, base B, projection π : E → B, and

homeomorphic fibres π−1(x), x ∈ B. The base B is

supposed to be a C1 differentiable manifold. By J and

γ : J → B are denoted real interval and path in B,

respectively. The paths considered are generally not

supposed to be continuous or differentiable unless

their differentiability class is stated explicitly. If γ is a

C1 path, the vector field tangent to it is denoted by γ̇.



Definition 1.1. A linear transport along paths in a

bundle (E, π, B) is a map L assigning to every path γ a

map Lγ, transport along γ, such that Lγ : (s, t) 7→ Lγ
s→t

where the map

Lγ
s→t : π−1(γ(s)) → π−1(γ(t)) s, t ∈ J, (1.1)

called transport along γ from s to t, has the properties:

Lγ
s→t ◦ Lγ

r→s = Lγ
r→t, r, s, t ∈ J, (1.2)

Lγ
s→s = idπ−1(γ(s)), s ∈ J, (1.3)

Lγ
s→t(λu + µv) = λLγ

s→tu + µLγ
s→tv, λ, µ ∈ C, (1.4)

u, v ∈ π−1(γ(s)),

where ◦ denotes composition of maps and idX is the

identity map of a set X.



Let {ei(s; γ)} be a C1 basis in π−1(γ(s)), s ∈ J; here and

henceforth the Latin indices run from 1 to

dim π−1(x), x ∈ B. We also assume the Einstein

summation rule on indices repeated on different levels.

So, along γ : J → B we have a set {ei} of bases on

π−1(γ(J)) such that the liftings γ 7→ ei(·, γ) of paths are

of class C1.

The matrix L(t, s; γ) :=
[
Li

j(t, s; γ)
]

(along γ at (s, t) in

{ei}) of a linear transport L along γ from s to t is

defined via the expansion

Lγ
s→t

(
ei(s; γ)

)
=: Lj

i(t, s; γ)ej(t; γ) s, t ∈ J.



Proposition 1.1. A non-degenerate matrix-valued

function L : (t, s; γ) 7→ L(t, s; γ) is a matrix of some

linear transport along paths L (in a given field {ei} of

bases along γ) iff

L(t, s; γ) = F −1(t; γ)F (s; γ) (1.5)

where F : (t; γ) 7→ F (t; γ) is a non-degenerate

matrix-valued function.



Proposition 1.2. If the matrix L of a linear transport

L along paths has a some representation

L(t, s; γ) = ?F −1(t; γ) ?F (s; γ) for some matrix-valued

function ?F (s; γ), then all matrix-valued functions F

representing L via (1.5) are given by

F (s; γ) = D−1(γ) ?F (s; γ) (1.6)

where D(γ) is a non-degenerate matrix depending only

on γ.



Let {ei(s; γ)} be a smooth field of bases along

γ : J → B, s ∈ J. The explicit local action of the

derivation D : γ 7→ Dγ : s 7→ Dγ
s , associated to L, on a

C1 lifting of paths λ is

Dγ
s λ =

[
dλi

γ(s)

ds
+ Γi

j(s; γ)λj
γ(s)

]
ei(s; γ). (1.7)



Let {ei(s; γ)} be a smooth field of bases along

γ : J → B, s ∈ J. The explicit local action of the

derivation D : γ 7→ Dγ : s 7→ Dγ
s , associated to L, on a

C1 lifting of paths λ is

Dγ
s λ =

[
dλi

γ(s)

ds
+ Γi

j(s; γ)λj
γ(s)

]
ei(s; γ). (1.7)

Here the (2-index) coefficients Γi
j of the linear

transport L are defined by

Γi
j(s; γ) :=

∂Li
j(s, t; γ)

∂t

∣∣∣∣
t=s

= −
∂Li

j(s, t; γ)

∂s

∣∣∣∣
t=s

(1.8)

and, evidently, uniquely determine the derivation D

generated by L.



If a matrix F determines the matrix L of a transport L

according to proposition 1.1, then

Γ(s; γ) :=
[
Γi

j(s; γ)
]

=
∂L(s, t; γ)

∂t

∣∣∣
t=s

= F−1(s; γ)
dF (s; γ)

ds
.

(1.9)



If a matrix F determines the matrix L of a transport L

according to proposition 1.1, then

Γ(s; γ) :=
[
Γi

j(s; γ)
]

=
∂L(s, t; γ)

∂t

∣∣∣
t=s

= F−1(s; γ)
dF (s; γ)

ds
.

(1.9)

A change {ei} → {e′i = Aj
iei} of the bases along a path

γ with a non-degenerate C1 matrix-valued function

A(s; γ) :=
[
Aj

i (s; γ)
]

implies

Γ(s; γ) =
[
Γi

j(s; γ)
]
7→ Γ′(s; γ) =

[
Γ′ i

j(s; γ)
]

with

Γ′(s; γ) = A−1(s; γ)Γ(s; γ)A(s; γ) + A−1(s; γ)
dA(s; γ)

ds
.

(1.10)

Reconstruction of L from γ ...



2. Normal frames for linear transports

Let a linear transport L along paths be given in a

vector bundle (E, π, B), U ⊆ B be an arbitrary subset in

B, and γ : J → U be a path in U .



Definition 2.1. A frame field (of bases) in π−1(γ(J)) is

called normal along γ for L if the matrix of L in it is

the identity matrix along the given path γ. A frame

field (of bases) defined on U is called normal on U for

L if it is normal along every path γ : J → U in U . The

frame is called normal for L if U = B.



Definition 2.1. A frame field (of bases) in π−1(γ(J)) is

called normal along γ for L if the matrix of L in it is

the identity matrix along the given path γ. A frame

field (of bases) defined on U is called normal on U for

L if it is normal along every path γ : J → U in U . The

frame is called normal for L if U = B.

Definition 2.2. A linear transport along paths (or

along a path γ) is called Euclidean along some (or the

given) path γ if it admits a frame normal along γ. A

linear transport along paths is called Euclidean on U if

it admits frame(s) normal on U . It is called Euclidean

if U = B.



Proposition 2.1. The following statements are

equivalent in a given frame {ei} over U ⊆ B:

(i) The matrix of L is the identity matrix on U , i.e.

L(t, s; γ) = 1 along every path γ in U .

(ii) The matrix of L along every γ : J → U depends

only on γ, i.e. it is independent of the points at which

it is calculated: L(t, s; γ) = C(γ) where C is a

matrix-valued function of γ.

(iii) If E is a C1 manifold, the coefficients Γi
j(s; γ) of L

vanish on U , i.e. Γ(s; γ) = 0 along every path γ in U .

(iv) The explicit local action of the derivation D along

paths generated by L reduces on U to differentiation

of the components of the liftings with respect to the



path’s parameter if the path lies entirely in U :

Dγ
s λ =

dλi
γ(s)

ds
ei(s; γ) where λ = λiei is a C1 lifting of

paths and λ : γ 7→ λγ.

(v) The transport L leaves the vectors’ components

unchanged along any path in U , viz. we have

Lγ
s→t

(
uiei(s; γ)

)
= uiei(t; γ) for all ui ∈ C.

(vi) The basic vector fields are L-transported along

any path γ : J → U : Lγ
s→t

(
ei(s; γ)

)
= ei(t; γ).



Corollary 2.1. Every linear transport along paths is

Euclidean along every fixed path without

self-intersections.



Corollary 2.1. Every linear transport along paths is

Euclidean along every fixed path without

self-intersections.

Theorem 2.1. A linear transport along paths admits

frames normal on some set (resp. along a given path)

if and only if its action along every path in this set

(resp. along the given path) depends only on the initial

and final point of the transportation but not on the

particular path connecting these points. In other

words, a transport is Euclidean on U ⊆ B iff it is

path-independent on U .



Proposition 2.2. Let L be a transport along paths in

a bundle (E, π, M), E and M being C1 manifolds, and

L be Euclidean on U ⊆ M (resp. along a C1 path

γ : J → M). Then the matrix Γ is of the form

Γ(s; γ) =

dim M∑

µ=1

Γµ(γ(s))γ̇µ(s) ≡ Γµ(γ(s))γ̇µ(s) (2.2)

in any frame {ei} along every (resp. the given) C1 path

γ : J → U , where Γµ =
[
Γi

jµ

]dimπ−1(x)

i,j=1
are some

matrix-valued functions, defined on an open set V

containing U (resp. γ(J)) or equal to it, and γ̇µ are the

components of γ̇ in some frame {Eµ} along γ in the

bundle space tangent to M , γ̇ = γ̇µEµ. The functions

Γi
jµ are termed 3-index coefficients of L.



Let U be an open set, e.g. U = M . If we change the

frame {Eµ} in the bundle space tangent to M ,

{Eµ} 7→ {E′
µ = Bν

µEν} with B =
[
Bν

µ

]
being

non-degenerate matrix-valued function, and

simultaneously the bases in the fibres π−1(x), x ∈ M ,

{ei|x} 7→ {e′i|x = Aj
i (x)ej |x}, then, from (1.10) and (2.2),

we see that Γµ transforms into Γ′
µ such that

Γ′
µ = Bν

µA−1ΓνA+A−1E′
µ(A) = Bν

µA−1
(
ΓνA+Eν(A)

)
(2.3)

where A :=
[
Aj

i

]dim π−1(x)

i,j=1
is non-degenerate and of class

C1.



Theorem 2.2. A C2 linear transport L along paths is

Euclidean on a neighborhood U ⊆ M if and only if in

every frame the matrix Γ of its coefficients has a

representation (2.2) along every C1 path γ in U in

which the matrix-valued functions Γµ, defined on an

open set containing U or equal to it, satisfy the

equalities

(
Rµν(−Γ1, . . . ,−Γdim M )

)
(x) = 0 (2.4)

where x ∈ U and

Rµν(−Γ1, . . . ,−Γdim M) := −
∂Γµ

∂xν
+

∂Γν

∂xµ
+ ΓµΓν − ΓνΓµ.

(2.5)

in a coordinate frame
{
Eµ = ∂

∂xµ

}
in a neighborhood of

x.



Theorem 2.3. A linear transport L along paths is

Euclidean on a submanifold N of M if and only if in

every frame {ei}, in the bundle space over N , the

matrix of its coefficients has a representation (2.2)

along every C1 path in N and, for every p0 ∈ N and a

chart (V, x) of M such that V 3 p0 and

x(p) = (x1(p), . . . , xdim N (p), tdimN+1
0 , . . . , tdim M

0 ) for every

p ∈ N ∩ V and constant numbers tdim N+1
0 , . . . , tdimM

0 , the

equalities

(
RN

αβ(−Γ1, . . . ,−Γdim N )
)
(p) = 0, α, β = 1, . . . , dim N

(2.6)



hold for all p ∈ N ∩ V and

RN
αβ(−Γ1, . . . ,−Γdim N ) := Rαβ(−Γ1, . . . ,−Γdim M)

= −
∂Γα

∂xβ
−

∂Γβ

∂xα
+ ΓαΓβ − ΓβΓα. (2.7)

Here Γ1, . . . , Γdim N are the first dim N of the matrices

of the 3-index coefficients of L in the coordinate frame{
∂

∂xµ

}
in the tangent bundle space over N ∩ V .



3. Transports and frames in line bundles

Let (E, π, M) be one-dimensional vector bundle over a

C1 manifold M ; such bundles are called line bundles.

Thus the (typical) fibre of (E, π, M) can be identified

with C (resp. R in the real case) and then the fibre

π−1(x) over x ∈ M will be an isomorphic image of C
(resp. R in the real case). Let γ : J → M be of class C1

and L be a linear transport along paths in (E, π, M). A

frame {e} along γ consists of a single non-zero vector

field e : (s; γ) → e(s; γ) ∈ π−1(γ(s))\{0}, s ∈ J, and in it

the matrix of Lγ at (t, s) ∈ J × J is simply a number

L(t, s; γ) ∈ C, Lγ
s→t(ue(s; γ)) = uL(t, s; γ)e(t; γ) for u ∈ C

and s, t ∈ J.



Te general form of L is (proposition 1.1)

L(t, s; γ) =
f(s; γ)

f(t; γ)
(3.1)

where f : (s; γ) 7→ f(s; γ) ∈ C\{0} is defined up to (left)

multiplication with a function of γ (proposition 1.2).

Respectively, due to (1.9), the matrix of the

coefficient(s) of L is

Γ(s; γ) =
∂L(t, s; γ)

∂s

∣∣∣
t=s

=
1

f(s; γ)

df(s; γ)

ds
=

d

ds

[
ln(f(s; γ)

]

(3.2)

and the transport’s matrix takes the form

L(t, s; γ) = exp

(
−

t∫

s

Γ(σ; γ) dσ

)
. (3.3)



A change e(s; γ) 7→ e′(s; γ) = a(s; γ)e(s; γ), with

a(s; γ) ∈ C\{0}, of the frame {e} implies

L(t, s; γ) 7→ L′(t, s; γ) =
a(s; γ)

a(t; γ)
L(t, s; γ) (3.4a)

Γ(s; γ) 7→ Γ′(s; γ) = Γ(s; γ) +
d

ds

[
ln(a(s; γ)

]
. (3.4b)

The explicit local action of the derivation D along

paths generated by L is

Dγ
s λ =

(dλγ(s)

ds
+ Γ(s; γ)λγ(s)

)
e(s; γ) (3.5)

where λ ∈ PLift1(E, π, M) and (1.7) was used.



Normal frames on one-dimensional vector bundles

A frame {e} is normal for L along γ (resp. on U) iff in

that frame equation (3.1) holds with

f(s; γ) = f0(γ) (3.6)

where γ : J → M (resp. γ : J → U) and

f0 : γ 7→ f0(γ) ∈ C\{0} Since, in a frame normal along γ

(resp. on U), it is fulfilled

L(t, s; γ) = 11, Γ(s; γ) = 0 (3.7)

for the given path γ (resp. every path in U), in every

frame {e′ = ae}, we have

L′(t, s; γ) =
a(s; γ)

a(t; γ)
, Γ′(s; γ) =

d

ds

[
ln(a(s; γ)

]
. (3.8)



In addition, for Euclidean on U ⊆ M transport L, the

representation

Γ′(s; γ) = Γ′
µ(γ(s))γ̇′µ(s) (3.9)

holds for every C1 path γ : J → U and some Γ′
µ : V → C

with V being an open set such that V ⊇ U

(proposition 2.2). This means (see theorem 2.1)

that (3.8) holds for

a(s; γ) = a0(γ(s)), (3.10)

where a0 : U → C\{0}, and, consequently, the

equality (3.9) can be satisfied if we choose

Γ′
µ = Eµ(a) (3.11)

with a : V → C, a|U = a0 and {Eµ} being a frame in the



bundle space tangent to M which, in particular, can be

a coordinate one, Eµ = ∂
∂xµ . Of course, if U is not an

open set, this choice of Γ′
µ is not necessary; for

example, the equality (3.9) will be preserved, if to the

r.h.s. of (3.11) is added a function G′
µ such that

G′
µγ̇′µ = 0.



Final remark:



Final remark:

• Frames normal along injective paths always exist

(corollary 2.1).

• On an arbitrary submanifold N ⊆ M normal

frames exist iff the functions Γµ satisfy the

conditions (2.6) with x ∈ N in the coordinates

described in theorem 2.3.



4. The classical electromagnetic field

Now we would like to apply the above formalism to a

description of the classical electromagnetic field.

Before going on, we should say that the accepted

natural formalism in gauge field theories, in particular

in the electrodynamics, is via connections on vector

bundles [1, 2]. Below we sketch an equivalent

technique for an electromagnetic field.



Recall, the classical electromagnetic field is described

via a real 1-form A over a 4-dimensional real manifold

M (endowed with a (pseudo-)Riemannian metric g

and) representing the space-time model and, usually,

identified with the Minkowski space M4 of special

relativity or the (pseudo-)Riemannian space V4 of

general relativity. The electromagnetic field itself is

represented by the two-form F = dA, where “d”

denotes the exterior derivative operator, with local

components (in some local coordinates {xµ})

Fµν = −
∂Aµ

∂xν
+

∂Aν

∂xµ
. (4.1)



As it is well known, the electromagnetic field, the

Maxwell equations describing it, and its (minimal)

interactions with other objects are invariant under a

gauge transformation

Aµ 7→ A′
µ = Aµ +

∂λ

∂xµ
(4.2)

or A 7→ A′ = A + dλ, where λ is a C2 function. As is

almost evident, the electromagnetic field is invariant

under simultaneous changes of the local coordinate

frame, Eµ = ∂
∂xµ 7→ E′

µ = Bν
µEν with Bν

µ := ∂xν

∂x′ µ , and a

gauge transformation (4.2):

Aµ 7→ A′
µ = Bν

µAν + E′
µ(λ) = Bν

µ

(
Aν +

∂λ

∂xν

)
. (4.3)



Under the transformation (4.3), the quantities (4.1)

transform like components of an antisymmetric tensor,

Fµν 7→ F ′
µν = Bσ

µBτ
ν Fστ (4.4)

due to which the 2-form F remains unchanged,

F = dA = dA′. Notice, above A′
µ are not the

components of A in {E′
µ} unless λ = const while F ′

µν are

the components of F in
{
E′µ = ∂x′µ

∂xν dxν
}
.

Now there arises an idea for identifying the

electromagnetic potentials Aµ with the matrices Γµ of

the 3-index coefficients of some linear transport along

paths in a 1-dimensional vector bundle (E, π, M). This

can be done as follows.



Let M be a real 4-dimensional manifold, representing

the space-time model, and (E, π, M) be a

1-dimensional real vector bundle over it. We identify

the potentials Aµ of an electromagnetic field with the

(local) coefficients of a linear transport L along paths

in (E, π, M) whose matrix has the representation

Γ′(s; γ) = Γ′
µ(γ(s))γ̇′µ(s) (along every path and in every

pair of frames). Hence, the 3-index coefficients of L

are uniquely defined and supposed to be (arbitrarily)

fixed in some pair of frames.



It should be emphasized, now the (pure) gauge

transformation (4.2) appears as a special case of (4.3),

corresponding to a change of the frame in E and a

fixed frame in T (M). This means that, in the approach

proposed, the gauge transformations are directly

incorporated in the definition of the field potential A.

This conclusion is in contrast to the situation in

classical electrodynamics as in it the gauge

transformations are a simple observation of ‘additional’

invariance of the field, which is not connected with the

geometrical interpretation of the theory.



Defining the electromagnetic field by F = dA, the

equality (4.1) remains valid in a coordinate frame

{Eµ = ∂/∂xµ}. Since A and F possess all of the

properties they must have in electrodynamics, they

represent an equivalent description of electromagnetic

field. The only difference with respect to the classical

description is the clear geometrical meaning of these

quantities, as a consequence of which an

electromagnetic field can be identified with a linear

transport along paths in a one-dimensional vector

bundle over the space-time. The proposed treatment

of electromagnetic field is equivalent to the modern

one in the bundle picture of gauge theories [1, 3],

where the electromagnetic potentials are regarded as

coefficients of a suitable linear connection.



In the approach proposed, the different gauge

conditions, which are frequently used, find a natural

interpretation as a partial fix of the class of frames in

the bundle space employed.

For instance, any one of the gauges in the table 4.1

on the next slide corresponds to a class of frames for

which (4.3) holds for Bν
µ = δν

µ, δν
µ being the Kronecker

deltas, and λ subjected to a condition given in the

table. (Below M is supposed to be endowed with a

(pseudo-)Riemannian metric gµν, the coordinates to be

numbered as x0, x1, x2, and x3, x0 to be the ‘time’

coordinate, ∂µ := ∂/∂xµ, and ∂µ := gµν∂ν with

[gµν ] := [gµν ]−1.)



Table 4.1: Examples of gauge conditions

Gauge Condition on A Condition on λ

Lorenz ∂µAµ = 0 ∂µ∂µλ = 0

Coulomba ∂kAk = 0 ∂k∂kλ = 0

Hamilton A0 = 0 λ(x) = λ(x1, x2, x3)

Axial A3 = 0 λ(x) = λ(x0, x1, x2)

aIn this row the summation over k is from 1 to 3.



Historical Remark:

The Lorenz condition and gauge are named in honor

of the Danish theoretical physicist

Ludwig Valentin Lorenz (1829–1891),

who has first published it in 1867 [4] (see also [5, pp.

268-269, 291]); however this condition was first

introduced in lectures by Bernhard G. W. Riemann in

1861 as pointed in [5, p. 291]. It should be noted that

the Lorenz condition/gauge is quite often erroneously

referred to as the Lorentz condition/gauge after the

name of the Dutch theoretical physicist Hendrik

Antoon Lorentz (1853–1928) as, e.g., in [6, p. 18] and

in [7, p. 45].



5. Normal and inertial frames

Comparing (4.1) with (2.5), we get (in this section, we

assume the Greek indices to run over the range 0, 1,

2, 3. )

Fµν = Rµν(−A0,−A1,−A2,−A3). (5.1)

Thus, the electromagnetic field tensor F is completely

responsible for the existence of frames normal for L

(theorems 2.2 and 2.3). For example, if U is an open

set, frames normal on U ⊆ M for L exist iff F |U = 0,

i.e. if electromagnetic field is missing on U . Also, if N

is a submanifold of M , frames normal on U for L exist

iff in the special coordinates {xµ}, described in

theorem 2.3, is valid Fαβ|U = 0 for α, β = 1, . . . , dim N .



In the context of theorem 2.1, we can say that an

electromagnetic field admits frames normal on U ⊆ M

iff the linear transport L corresponding to it is

path-independent on U (along paths lying entirely in

U). Thus, if L is path-dependent on U , the field does

not admit frames normal on U . This important result

is the classical analogue of a quantum effect, know as

the Aharonov-Bohm effect [8,9], whose essence is that

the electromagnetic potentials directly, not only

through the field tensor F , can give rise to observable

physical results.



Physical meaning of the normal frames

Suppose L is Euclidean on a neighborhood U ⊆ M . As

a consequence of (5.1) and theorem 2.2, we have

F |U = dA|U = 0, i.e. on U the electromagnetic field

strength vanishes and hence the field is a pure gauge

on U ,

Aµ|U =
∂f0

∂xµ

∣∣∣
U

(5.2)

for some C1 function f0 defined on an open set

containing U or equal to it. In a frame {e′} normal on

U for L vanish the 2-index coefficients of L along any

path γ in U :

Γ′(s; γ) = A′
µ(γ(s))γ̇µ(s) = 0. (5.3)



Any transformation (4.3) with λ = −f0 transforms Aµ

into A′
µ such that

A′
µ|U = 0 (5.4)

(irrespectively of the frames {Eµ} and {E′
µ}.) Hence,

the one-vector frame {e′ = e−f0e} in the bundle space

E is normal for L on U . Therefore, in the frame {e′},
vanish the 2-index and 3-index coefficients of L, i.e.

{e′} is a strong normal frame. One can verify, all

frames strong normal on a neighborhood U for L are

obtainable from {e′} by multiplying its vector e′ by a

function f such that ∂f
∂xµ

∣∣
U

= 0, i.e. they are {be−f0e}
with b ∈ R\{0} as U is a neighborhood. Thus, every

frame normal on a neighborhood U for L is strong

normal on U for L and vice versa.



A frame (of reference) in the bundle space in

which (5.4) holds on a subset U ⊆ M , will be called

inertial on U for the electromagnetic field considered.

In other words, the frames inertial on U for a given

electromagnetic field are the ones in which its

potentials vanish on U . Thus, every frame inertial on

U is strong normal on it and vice versa.

So, in a frame inertial on U ⊆ M for an

electromagnetic field it is not only a pure gauge, but

in such a frame its potentials vanish on U .



Relying on known results [10, 11, 12], we can assert

the existence of frames inertial at a single point

and/or along paths without self-intersections for every

electromagnetic field, while on submanifolds of

dimension not less than two such frames exist only as

an exception if (and only if) some additional

conditions are satisfied, i.e. for some particular types

of electromagnetic fields.



Links with the (strong) equivalence principle

In [13] was demonstrated that the (ordinary strong)

equivalence principle is a provable theorem and the

inertial frames in a gravity theory based on a linear

connection (or other derivation) are the frames normal

for it. Such frames are called inertial for the

gravitational field under consideration.

Let there be given a physical system consisting of pure

or, possibly, interacting gravitational and

electromagnetic fields which are described via,

respectively, a linear connection ∇ in the tangent

bundle (T (M), πT , M) (or the tensor algebra) over the

space-time M and a linear transport along paths in a

1-dimensional vector bundle (E, πE, M) over M .



• The frames inertial for an electromagnetic field, if

any, in the bundle space E are completely

independent of any frame in the bundle space

T (M) tangent to M .

• The frames inertial for the gravity field, i.e. the

ones normal for ∇, if any, are frames in T (M) and

have nothing in common with the frames in E, in

particular with the frames normal for L, if any.



• The frames inertial for an electromagnetic field, if

any, in the bundle space E are completely

independent of any frame in the bundle space

T (M) tangent to M .

• The frames inertial for the gravity field, i.e. the

ones normal for ∇, if any, are frames in T (M) and

have nothing in common with the frames in E, in

particular with the frames normal for L, if any.

So, if a frame {Eµ} in T (M) is inertial on U ⊆ M for the

gravity field and a frame {e} in E inertial on U for the

electromagnetic field, the frame {e × Eµ} = {(e, Eµ)} in

the bundle space of (E × T (M), πE × πT , M × M) over

M × M can be called simply inertial on U (for the

system of gravity and electromagnetic fields).



Thus, in an inertial frame, if any, the potentials of

both, gravity and electromagnetic, fields vanish. We

can assert the existence of inertial frames at every

single space-time point and/or along every path

without self-intersections in it. On submanifolds of

dimension higher than one, inertial frames exist only

for some exceptional configurations of the fields which

can be described on the base of the results in the cited

works.
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