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KP-2 equation and algebraic geometry

Wikipedia

𝑷𝟏 𝑷𝒈𝑷𝟐

𝜞
𝑷𝟎

KP− 2 equation [KP− 1970] : (−4ut + 6uux + uxxx )x+3uyy = 0

is the first member of the most relevant 2 + 1 integrable hierarchy [ZS-1974].

Problem: investigate relations of spectral problems for real-regular finite-gap solutions
and real regular multi-line soliton solutions to solve problems in real algebraic
geometry and tropical geometry
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Tropicalization of (real) regular KP-2 finite–gap solutions

Real regular finite–gap KP-2 solutions ↔ non-special divisors on regular M curves
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(solitonic limit)

y

Ω
0

Ω
1 Ω

2

P1

P2

P0

KP-2 solitons ← spectral data on reducible rational curves

[Nak-2018],[Nak-2019]: Tropicalization in the Sato Grassmannian in special cases

↔
[DN-1988]

←

[ACSS-21], [AFMS-23], [FM-24]: Computational approach to tropicalization of
algebraic curves using KP theory

[Ich-23] 1-dimensional families of M–curves degenerate to rational curves and
corresponding regular finite-gap solutions degenerate to soliton solutions

S. Abenda KP-2 solitons, M-curves and Grassmannians



Spectral problems for real regular KP-2 finite–gap solutions [AG-2018...]

Real regular multiline KP-2 solitons → spectral data on reducible spectral curve
fulfilling DN theorem [AG-2018...]
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Real regular finite–gap KP-2 solutions ↔ spectral data on M–curves
fulfilling DN theorem

Real regular soliton data are points in GrTNN(k, n) encoded by planar bicolored
(plabic) networks in the disk.

→
[AG-2018...]

↔
[DN-1988]

[AG-2018a,AG-2018b,AG-2019,AG-2022c]: Use combinatorial structure of GrTNN(k, n)
to solve a degenerate spectral problem for real regular multiline KP solitons on tropical
M–curves: we prove that plabic graphs are dual to the topological model of such
tropical curve and consistently assign spectral data (divisor) solving a system of
relations on the graph.
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Intermezzo: two relevant families of KP solutions

• KP-2 regular finite gap solutions (Krichever 1976, Dubrovin-Natanzon 1988)

• KP-2 real regular multiline soliton solutions (Matveev 1979, Freeman and Nimmo
1983, Malanyuk 1991, Chakravarthy-Kodama 2009, Kodama-Williams 2013,2014,...)
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Finite-gap solutions for KP-2 (Krichever)

𝑷𝟏

𝑷𝒈𝑷𝟐

Algebraic geometric data:
(𝜞,𝑷𝟎,𝜻)

𝑷𝟎

𝜞

𝜻−1(𝑃0)=0

Families of regular quasi–periodic solutions u(x⃗) on (Γ,P0), Γ non–singular genus g

algebraic curve with marked point P0, are parametrized by non special divisors

D = (P1, . . . ,Pg ) . Here x⃗ = (x , y , t).

There exists a unique normalized KP wave–function Ψ(P, x⃗) , meromorphic on

Γ\{P0}, with poles in D and asymptotics at P0 (ζ−1(P0) = 0):

Ψ(ζ, x⃗) =
(
1−

w1(x⃗)

ζ
+ O(ζ−2)

)
eζx+ζ2y+ζ3t+··· (ζ →∞).

u(x⃗) = 2∂2x logΘ(xU(1) + yU(2) + tU(3)) + c1
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Real Finite gap KP-2 solutions (Dubrovin-Natanzon)

[DN-1988]: Smooth, real (quasi–)periodic KP-2 solutions u(x , y , t) correspond to

real and regular divisors on smooth M–curves :

• Γ possesses an antiholomorphic involution which fixes the maximum number g + 1
of ovals, Ω0, . . . ,Ωg ;

• P0 ∈ Ω0 (infinite oval) and the divisor points Pj ∈ Ωj , j = 1, ..., g (finite ovals).
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Question: how to effectively construct such solutions? How to identify M–curves and
spectral data fulfilling DN theorem?

Idea: associate degenerate spectral problems on reducible M–curves to real–regular
KP-2 multi-line solitons solutions, check DN theorem for the degenerate problem and
open gaps
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KP-2 multi–line soliton solutions via the Wronskian method
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[Mat-1979], [FN-1983], [Mal-1991] A ∈ MatR(k, n), K = {κ1 < · · · < κn}:
f (i)(x , y , t) =

∑n
i=1 A

i
j exp(κjx + κ2j y + κ3j t), i ∈ [k]

τ(x , y , t) = Wrx (f (1), . . . , f (k)) =
∑

1≤j1<···<jk≤n
∆[j1,...,jk ]

(A)Ej1,...,jk (x , y , t)

KP-2 soliton solution: u(x , y , t) = 2∂2x log(τ(x , y , t))

• same u(x , y , t) if recombine rows of A =⇒ [A] ∈ Gr(k, n) = GLR(k)\MatR(k, n)

• u is bounded for real (x , y , t) ⇐⇒ [A] ∈ GrTNN(k, n) = GL+R (k)\MatTNNR (k, n)
[KW-2013])
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Direct spectral problem for KP-2 solitons [Mal-1991]

Soliton data: (K, [A]) 7→ Sato algebraic geometric data: (Γ0,P0, ζ;D(k)
S )

0ࢣ

𝒌𝟏 𝒌𝟐 𝒌𝟑 𝒌𝒏 P𝟎
…

𝜸1 𝜸2 𝜸𝑘

Γ0 copy of CP1, ζ such that ζ−1(P0) = 0 and ζ(κi ) = κi .

D = ∂kx − w1(t)∂
k−1
x − . . .− wk (t) = W∂kx , Dfi (x⃗) ≡ 0

W = Dressing operator in Sato Grassmannian for (K, [A])!

Sato divisor DS,Γ0 = {γj : γkj − w1(x⃗0)γ
k−1
j − · · · − wk−1(x⃗0)γj − wk (x⃗0) = 0}

γj ∈ [κ1, κn], j ∈ [k] and for a.a. x⃗0 γj are distinct.

Incompleteness of Sato algebraic–geometric data:

k = deg (DS,Γ0 ) < dim (GrTNN(k, n)) = k(n − k)

Conclusion: it is not possible to reconstruct the soliton solution from the degree k
divisor DS,Γ0 !!!!
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The degenerate spectral problem associated to KP-2 solitons [AG2018,...]

Recap:

• KP-2 multi-line soliton solutions are represented by points [A] ∈ GrTNN(k, n)

Direct spectral problem [Mal-1991]: (Γ0 = CP1,P0) and divisor P1, . . . ,Pk ∈ [κ1, κn]

[AG-2018, AG-2019, AG-2022c]: Complete Sato divisor using Krichever approach to
degenerate finite–gap solutions !!!!

Step 1) Construct a rational reducible M–curve Γ such that Γ0 is a component.

Question: how to choose the curve? We had the idea to use the planar graphs
classifying the soliton data in GrTNN(k, n) to get the topological model of the curve

Step 2) Extend KP-2 wave function from Γ0 to Γ so that DN thm holds true (need to
control the value of the wave-function at nodes and intersection of rational
components)

We had the idea to use systems of relations on the graph since the edges represent
nodes and intersection points of the rational components

⋄ Total non–negativity =⇒ reality and regularity DN conditions: one divisor point in
each finite oval
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Intermezzo: totally non-negative Grassmannians

⋄ [Lusz-1990s] generalizes the classical notion of total positivity in GLn to reductive
Lie groups and generalized partial flag varietes; cell decomposition of (G/P)≥0
(Rietsch, Ph.D. thesis).

⋄ [Pos-2006] characterizes the cell decomposition of GrTNN(k, n) combinatorially and
using graph theory:

A positroid cell STNN
M in GrTNN(k, n) is the equivalence class of the totally

non–negative k × n matrices sharing the same matroid (=the same list of positive
maximal minors, all other maximal minors are zero). STNN

M is represented by a Young
diagram filled with the Le–rule.

STNN
M is represented by an equivalence class of perfectly orientable planar bicolored

graphs in the disk (real positive weights on edges of the graph) :

n univalent vertices on the boundary of the disk and k of them are sources in
each perfect orientation;

At each internal black vertex, exactly one edge oriented outward;

At each internal white vertex, exactly one edge oriented inward.
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Representation of STNN

M via Le–diagrams [Pos-2006]

Postnikov constructs a bijection between STNN
M ⊂ GrTNN(k, n) and { Le–diagrams } in

k × n boxes.

A Le–diagram is a filling of Young diagram with 0’s and 1’s s.t. for any 3 boxes (i ′, j),
(i , j ′), (i ′, j ′), with i < i ′, j < j ′, a, c = 1 =⇒ b = 1:

 

Le diagram (tableau) ⇐⇒ perfectly oriented bipartite Le–graph (network) in the disk:

𝒕𝟐𝟓 𝒕𝟐𝟑

𝒕𝟕𝟖

𝒕𝟒𝟔 𝒕𝟒𝟓𝒕𝟒𝟖𝒕𝟒𝟗

𝒕𝟏𝟓𝒕𝟏𝟔𝒕𝟏𝟗 𝒃𝟏

𝒃𝟐

𝒃𝟑
𝒃𝟒

𝒃𝟓𝒃𝟔

𝒃𝟕

𝒃𝟖𝒃𝟗

𝑽𝟏𝟔
′𝑽𝟏𝟗

′
𝑽𝟏𝟓
′

𝒕𝟏𝟗 𝒕𝟏𝟔 𝒕𝟏𝟓

𝒕𝟐𝟑

𝒕𝟒𝟓𝒕𝟒𝟔𝒕𝟒𝟗
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𝟎
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𝒕𝟒𝟔 𝒕𝟒𝟓𝒕𝟒𝟖𝒕𝟒𝟗

𝒕𝟏𝟓𝒕𝟏𝟔𝒕𝟏𝟗
𝒃𝟏

𝒃𝟐

𝒃𝟑
𝒃𝟒

𝒃𝟓𝒃𝟔
𝒃𝟕

𝒃𝟖𝒃𝟗

𝑽𝟏𝟓 𝑽𝟏

𝑽𝟐𝟓

𝑽𝟏𝟔𝑽𝟏𝟗

𝑽𝟒𝟖 𝑽𝟒𝟔
𝑽𝟒𝟗

𝑽𝟕𝟖 𝑽𝟕

𝑽𝟒𝟓
𝑽𝟒

𝑽𝟐𝟑 𝑽𝟐

[Pos-2006]: Classification of planar networks in the disk representing the same point
[A] ∈ STNN

M using moves and reductions
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Step 1: Γ rational degeneration of M–curve [AG-2019,AG-2022]

• Take soliton data in STNN
M and choose a graph in the disk G representing STNN

M in
Postnikov classification.

• G is dual to the reducible rational curve Γ:

G Γ

Boundary of disk Sato component Γ0
Boundary vertex bl Marked point κl on Γ0

Internal black vertex V ′
s Copy of CP1 denoted Σs

Internal white vertex Vl Copy of CP1 denoted Γl
Edge e Double point

Face f Oval

• Perturb Γ to Γϵ opening gaps so that Γϵ is an M–curve of genus g = F − 1, where F
is the number of faces of the graph (g ≥ dim STNN

M , [AG-2019]: have = for the
Le–graph)
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Soliton lattices of KP-2 and desingularization of spectral curves in
Gr TP(2, 4) [AG-2018b]
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0 = P0(λ, µ) = µ ·
(
µ− (λ− κ1)

)
·
(
µ+ (λ− κ2)

)
·
(
µ− (λ− κ3)

)
·
(
µ+ (λ− κ4)

)
.

Genus 4 M–curve after desingularization:

Γ(ε) : P(λ, µ) = P0(λ, µ) + ε(β2 − µ2) = 0, 0 < ε≪ 1,

β = κ4−κ1
4

+ 1
4
max {κ2 − κ1, κ3 − κ2, κ4 − κ3},

κ1 = −1.5, κ2 = −0.75, κ3 = 0.5, κ4 = 2.

Level plots for KP-2 finite gap solutions: ϵ = 10−2 [left], ϵ = 10−18 [right].
Horizontal axis is −60 ≤ x ≤ 60, vertical axis is 0 ≤ y ≤ 120, t = 0.
White (black) = lowest (highest) value of u.
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Intermezzo: Dimer models and Gr TNN(k , n)

• Dimer models were introduced in [Kas-1961] and [TF-1961] to describe crystal
surfaces at equilibrium like partially dissolved salt crystals.

[PSW-2009]: Dimer configuration on G = (V = B ∪W, E) is a collection M of edges
of G that contains exactly once internal vertices, and at most once the n boundary
vertices.

k = ∂M = {i ∈ [n] : black boundary vertex bi ∈ M} ∪
{i ∈ [n] : white boundary vertex bi ̸∈ M}.

Perfect orientations ⇐⇒ dimer configurations

Example: GrTP(3, 6):

𝒃𝟏𝒃𝟓𝒃𝟔 𝒃𝟒 𝒃𝟑 𝒃𝟐 𝒃𝟏𝒃𝟓𝒃𝟔 𝒃𝟒 𝒃𝟑 𝒃𝟐

S. Abenda KP-2 solitons, M-curves and Grassmannians



Boundary measurement maps in Gr TNN(k , n) and dimer partition functions

𝒕𝟐𝟑𝒕𝟐𝟓
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𝑽𝟐𝟑 𝑽𝟐

[Pos-2006]: [A] ∈ GrTNN(k, n):

Ar
j = (−1)σir j

∑
P:bir 7→bj

(−1)Wind(P)wt(P)

σir j = #{ sources between ir and j};
wt(P) =

∏
e∈P

te

𝒃𝟏𝒃𝟓𝒃𝟔 𝒃𝟒 𝒃𝟑 𝒃𝟐

[Lam-2016]: Weight of dimer state M:

wt(M) =
∏

e∈M
te

The partition function Z(G , t; ∂M)

relative to ∂M = I is the I -th

Plücker coordinate of [A] ∈ GrTNN(k, n):

Z(G ,wt; ∂M) =
∑

M : ∂M=I
wt(M) = DI (A)

[AG-2022a, AG-2022b]: [A] can be computed solving a geometric system of relations
[AG-2022c]: these relations provide the value of the KP-2 wavefunction at the double
points of Γ (Step 2)
[A-2021]: the system of relations is associated to a Kasteleyn sign matrix in the case
of bipartite graphs
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The Kasteleyn matrix on planar bipartite graphs in the disk

Classical Kasteleyn theorem: count dimer configurations in a planar bipartite graph as
the determinant of a |W| × |B| square matrix K whose entries Kw

b are ±1 if there is
an edge joining b ∈ B and w ∈ W, and 0 otherwise.

[Speyer 2016]: G = (B ∪W, E) planar bipartite graph in the disk representing
STNN
M ∈ GrTNN(k, n) with black boundary vertices: |W| = N + k, |B| = N + n.

Label black vertices s.t. boundary vertices are labeled clockwise in increasing order
bN+1, . . . , bN+n. Then there exists σ : E 7→ {±1} such that, given the Kasteleyn
matrix Kwt :

(Kwt)wb =

{
σbw tbw , if (b,w) is an edge ;
0, otherwise,

then | det(Kwt)I | are the Plücker coordinates of [A] in Postnikov parametrization of
GrTNN(k, n), and

Kwt 7→

N n( )
N IdN ∗
k 0 A

The proof of Speyer is topological. In our construction we provide an explicit
characterization of such signatures
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Kasteleyn signature on bipartite graphs [A-2021]

𝒃𝟒

𝒃𝟔𝒃𝟏𝟎𝒃𝟏𝟏 𝒃𝟗 𝒃𝟖 𝒃𝟕

𝒘𝟏

𝒘𝟑

𝒘𝟐 +
+

+

+

_++

_

𝒘𝟒
𝒘𝟓

𝒘𝟔 𝒃𝟑
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𝒘𝟖
𝒃𝟏

𝒘𝟕

++

+

+ +

+

+ +

+++
_

_
𝒃𝟓

G = (V = B ∪W, E) with boundary vertices of equal color. A function σ : E 7→ {±1}
is a Kasteleyn signature in the sense of Speyer if and only if, for any finite face Ω, the
total signature of the face fulfills∏

e∈∂Ω

σ(e) = (−1)
|Ω|
2

+1,

where |Ω| = number of edges bounding the face Ω,

[A-2021] There is a unique equivalence class of Kasteleyn signatures on G and it
coincides with the geometric signature constructed in [AG-2022a, AG-2022b] in the
case of bipartite graphs
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Step 2: Kasteleyn system of relations and KP wave function

• Kwt Kasteleyn matrix V a vector space

Kasteleyn system of relations (v = {vb : b ∈ B},Rw ):

▷ vb is an element in V assigned to the black vertex b ∈ B;
▷ At white vertex w ∈ W: 0 = Rw (v) ≡

∑
b∈B

(Kwt)wb vb ≡
∑
b∈B

σbw tbw vb.

𝒃𝟒

𝒃𝟔𝒃𝟏𝟎𝒃𝟏𝟏 𝒃𝟗 𝒃𝟖 𝒃𝟕

𝒘𝟏

𝒘𝟑

𝒘𝟐 +
+

+

+

_++

_

𝒘𝟒
𝒘𝟓

𝒘𝟔 𝒃𝟑

𝒃𝟐

𝒘𝟖
𝒃𝟏

𝒘𝟕

++

+

+ +

+

+ +

+++
_

_
𝒃𝟓

Kwt =

N n( )
N IdN ∗
k 0 A

⋄ KP soliton wave function on Γ0: 0 ≡Dfi (x⃗) ≡
∑n

j=1 A
i
j ψ(κj , x , y , t)

If assign at boundary vertex bj : vbj = ψ(κj , x , y , t), then the system Rw (v) = 0 is

solvable and gives ψ(κ, x , y , t) at the intersection/nodal points of the reducible curve
dual to the graph!

[AG-2022a, AG-2022b]: explicit solution to the linear system at internal vertices
(generalization of Talaska’s formula)
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Kasteleyn relations and KP divisor [AG-2022c]
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• Generalized Talaska formula gives the value of the KP wave function at the double
points:

ψ(Q, x⃗) =
n∑

j=1
(Ee)j ψ(κj , x⃗)

• Kasteleyn relations at white trivalent vertices rule the position of the KP divisor in
the ovals:

γw ≡ ζ(Pw ) =
Kσ,wt
w,b1

ψ(Q1, x⃗0)

Kσ,wt
w,b1

ψ(Q1, x⃗0) + Kσ,wt
w,b2

ψ(Q2, x⃗0)

• Kasteleyn face signature implies one divisor point in each finite oval
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