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KP-2 equation and algebraic geometry

Wikipedia

M.A. Ablowitz and D.E. Baldwin Phys. Rev E, v. 86 (2012)

KP — 2 equation [KP — 1970] : (—4u: + 6uux + Uxx)x+3u,, =0
is the first member of the most relevant 2 4 1 integrable hierarchy [ZS-1974].
Problem: investigate relations of spectral problems for real-regular finite-gap solutions

and real regular multi-line soliton solutions to solve problems in real algebraic
geometry and tropical geometry
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Tropicalization of (real) regular KP-2 finite-gap solutions

Real regular finite—gap KP-2 solutions <+  non-special divisors on regular M curves

Q,

<
[DN-1988]
tropicalization
(solitonic limit) l
F
KP-2 solitons < spectral data on reducible rational curves

[Nak-2018],[Nak-2019]: Tropicalization in the Sato Grassmannian in special cases

[ACSS-21], [AFMS-23], [FM-24]: Computational approach to tropicalization of
algebraic curves using KP theory

[lch-23] 1-dimensional families of M—curves degenerate to rational curves and
corresponding regular finite-gap solutions degenerate to soliton solutions
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Spectral problems for real regular KP-2 finite—gap solutions [AG-2018...]

Real regular multiline KP-2 solitons — spectral data on reducible spectral curve
fulfilling DN theorem [AG-2018...]

—
[AG-2018..]

<~
[DN-1988]

Q

Real regular finite—gap KP-2 solutions <>  spectral data on M—curves
fulfilling DN theorem

Real regular soliton data are points in Gr™N(k, n) encoded by planar bicolored
(plabic) networks in the disk.

[AG-2018a,AG-2018b,AG-2019,AG-2022c]: Use combinatorial structure of Gr™V(k, n)
to solve a degenerate spectral problem for real regular multiline KP solitons on tropical
M—curves: we prove that plabic graphs are dual to the topological model of such
tropical curve and consistently assign spectral data (divisor) solving a system of
relations on the graph.
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Intermezzo: two relevant families of KP solutions

e KP-2 regular finite gap solutions (Krichever 1976, Dubrovin-Natanzon 1988)

e KP-2 real regular multiline soliton solutions (Matveev 1979, Freeman and Nimmo
1983, Malanyuk 1991, Chakravarthy-Kodama 2009, Kodama-Williams 2013,2014,...)
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Finite-gap solutions for KP-2 (Krichever)

Algebraic geometric data:
(I'Po,9) {71 (Pp)=0

Families of regular quasi—periodic solutions on (T, Py), I non—singular genus g
algebraic curve with marked point Py, are parametrized by non special divisors
D= (P1,...,Pg) | Here X =(x,y,t).

There exists a unique normalized KP wave—function | W(P, X) | meromorphic on

M\{Po}, with poles in D and asymptotics at Py ((~1(Pp) = 0):
V(¢ X) = (1 — @ + O(C*Z))e<x+(2y+C3t+... (¢ = 00).

u(R) = 282 log O(xUM) + yU® + tUB) 4+ ¢
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Real Finite gap KP-2 solutions (Dubrovin-Natanzon)

[DN-1988]: Smooth, (quasi—)periodic KP-2 solutions u(x, y, t) correspond to

‘ real and regular divisors on smooth M—curves ‘:

e [ possesses an antiholomorphic involution which fixes the maximum number g + 1
of ovals, Qp,...,8;

® Py € Qp (infinite oval) and the divisor points P; € Q;, j = 1, ..., g (finite ovals).

Question: how to effectively construct such solutions? How to identify M—curves and
spectral data fulfilling DN theorem?

Idea: associate degenerate spectral problems on reducible M—curves to real-regular
KP-2 multi-line solitons solutions, check DN theorem for the degenerate problem and
open gaps
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KP-2 multi-line soliton solutions via the Wronskian method

. IS ]
= E gk E g ke

1 4 0
Left A=l

Rigm:A:{D %],k,::o‘kzzg,kgtzl

[Mat-1979], [FN-1983], [Mal-1991] A € Matg (k, n), K = {1 < - < rep}:

FO(x,y,t) = o0, Alexp(rjx + k2y + K3t), i€ [K]

T(X7y’ t): Wrx(f(l)"'~7f(k)): Z A[jl,m,jk](A)Ejl,...,jk(ny, t)
1Sh<--<jk<n

KP-2 soliton solution: u(x, y, t) = 202 log(T(x, y, t))

e same u(x, y, t) if recombine rows of A = [A] € Gr(k, n) = GLg(k)\Matgr(k, n)
e u is bounded for real (x,y,t) <= [A] € Gr"™"N(k, n) = GL{ (k)\Mat{""(k, n)
[KW-2013])

[} [ = =
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Direct spectral problem for KP-2 solitons [Mal-1991]

‘ Soliton data: (K,[A]) +—  Sato algebraic geometric data: (g, Po, C;D(Sk)) ‘

o copy of CP!, ¢ such that ¢~1(Pp) = 0 and ((k;) = ;.

D= 0 — i (35— (1) = Wk | D (X
W = Dressing operator in Sato Grassmannian for (K, [A])!

Sato divisor Ds r, = {; : 'yf( — ml(”o)wjkfl — o —wy_1(X0)y — wi (%) = 0}

vj € [k1,kn], j € [K] and for a.a. Xp ~; are distinct.

’ Incompleteness of Sato algebraic—geometric data: ‘

k= deg (Dsr,) < dim (Gr™N(k,n)) = k(n— k)

Conclusion: it is not possible to reconstruct the soliton solution from the degree k
divisor Ds r, !
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The degenerate spectral problem associated to KP-2 solitons [AG2018,...]

Recap:
e KP-2 multi-line soliton solutions are represented by points [A] € Gr™V(k, n)

Direct spectral problem [Mal-1991]: (I'g = CP?, Py) and divisor Py, ..., Py € [K1, n]

[AG-2018, AG-2019, AG-2022c]: Complete Sato divisor using Krichever approach to
degenerate finite—gap solutions !!!!
Step 1) Construct a rational reducible M—curve I such that Iy is a component.

Question: how to choose the curve? We had the idea to use the planar graphs
classifying the soliton data in Gr™N(k, n) to get the topological model of the curve

Step 2) Extend KP-2 wave function from g to ' so that DN thm holds true (need to
control the value of the wave-function at nodes and intersection of rational
components)

We had the idea to use systems of relations on the graph since the edges represent
nodes and intersection points of the rational components

¢ Total non—negativity = reality and regularity DN conditions: one divisor point in
each finite oval
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Intermezzo: totally non-negative Grassmannians

¢ [Lusz-1990s] generalizes the classical notion of total positivity in GL, to reductive
Lie groups and generalized partial flag varietes; cell decomposition of (G/P)>g
(Rietsch, Ph.D. thesis).

© [Pos-2006] characterizes the cell decomposition of Gr™N(k, n) combinatorially and
using graph theory:

A positroid cell SJI" in Gr™N(k, n) is the equivalence class of the totally
non—negative k X n matrices sharing the same matroid (=the same list of positive
maximal minors, all other maximal minors are zero). S}V is represented by a Young
diagram filled with the Le—rule.

S}V is represented by an equivalence class of perfectly orientable planar bicolored
graphs in the disk (real positive weights on edges of the graph) :

@ n univalent vertices on the boundary of the disk and k of them are sources in
each perfect orientation;
@ At each internal black vertex, exactly one edge oriented outward;

@ At each internal white vertex, exactly one edge oriented inward.
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Representation of S}{' via Le—diagrams [Pos-2006]

Postnikov constructs a bijection between SN\" C Gr™N(k, n) and { Le-diagrams } in
k X n boxes.

A Le-diagram is a filling of Young diagram with 0's and 1's s.t. for any 3 boxes (i, j),
G,4'), (i), with i < i, j<j/ a,c=1 = b=1:

Vio tiy Vietis Vis tis

tio| 0 [tis|tss [ 0 Il tas ta3

0| 00 |t ‘23|Z

ot Yaeytis | by
0 [tre |7 I

trs 6 bs
by

by bg

4 S— |

Pos-2006]: Classification of planar networks in the disk representing the same point
p
Al € SN using moves and reductions
M 3
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Step 1: T rational degeneration of M—curve [AG-2019,AG-2022]

e Take soliton data in ST\N

and choose a graph in the disk G representing SHN in
Postnikov classification.

e G is dual to the reducible rational curve I':

g r
Boundary of disk Sato component g
Boundary vertex b, Marked point x; on g

Internal black vertex V! | Copy of CP! denoted ¥
Internal white vertex V| Copy of CP! denoted I
Edge e Double point
Face f Oval

e Perturb I to I'c opening gaps so that ¢ is an M—curve of genus g = F — 1, where F
is the number of faces of the graph (g > dim S}V, [AG-2019]: have = for the
Le—graph)
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Soliton lattices of KP-2 and desingularization of spectral curves in
Gr™*(2,4) [AG-2018b]

AN
0="Po\pu) =p-(n—A=r1)) (bt =r2) (n—(A—=r3)) (u+ (A= ra)).
Genus 4 M—curve after desingularization:

M)« P\ p)=Po(hp)+e(f’ —p?) =0,
B =azr 4 % max {K2 — K1, K3 — K2, K4 — K3},
k1 = —1.5, Ky = —0.75,

k3 = 0.5,

0<exkl,
kg = 2.

<

{ :
=

Level plots for KP-2 finite gap solutions: € = 1072 [left], ¢ = 1078 [right].
Horizontal axis is —60 < x < 60, vertical axis is 0 < y <120, t = 0.
White (black) = lowest (highest) value of u.
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Intermezzo: Dimer models and Gr™"(k, n)

e Dimer models were introduced in [Kas-1961] and [TF-1961] to describe crystal
surfaces at equilibrium like partially dissolved salt crystals.

[PSW-2009]: Dimer configuration on G = (V = BUW, E) is a collection M of edges
of G that contains exactly once internal vertices, and at most once the n boundary
vertices.
k=0M = {i € [n] : black boundary vertex b € M} U
{i € [n] : white boundary vertex b; ¢ M}.

Perfect orientations <= dimer configurations

Example: Gr'P(3,6):

be bs by by b, by 'bs bs by by by "by
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Boundary measurement maps in Gr™"(k, n) and dimer partition functions

[Pos-2006]: [A] € Gr™N(k, n):
A= (-1)7 3 (~)WVindPlue(p)

P:bj, —>b;
0j,j = #{ sources between i, and j};
wt(P) = ] te
eeP

[Lam-2016]: Weight of dimer state M:

wt(M) = ] te
eeM
The partition function Z(G, t; OM)
relative to OM = [ is the /-th
e bs b, bs b, "By Pliicker coordinate of [A] € Gr™N(k, n):

Z(G,wt; OM) = > wt(M) = Di(A)
M : OM=I
[AG-2022a, AG-2022b]: [A] can be computed solving a geometric system of relations
[AG-2022c]: these relations provide the value of the KP-2 wavefunction at the double
points of [ (Step 2)
[A-2021]: the system of relations is associated to a Kasteleyn sign matrix in the case
of bipartite graphs
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The Kasteleyn matrix on planar bipartite graphs in the disk

Classical Kasteleyn theorem: count dimer configurations in a planar bipartite graph as
the determinant of a |[W| x |B| square matrix K whose entries K} are £1 if there is
an edge joining b € B and w € W, and 0 otherwise.

[Speyer 2016]: G = (BU W, &) planar bipartite graph in the disk representing
S € Gr™N(k, n) with black boundary vertices: [W| = N+ k, |B| = N + n.

Label black vertices s.t. boundary vertices are labeled clockwise in increasing order
bp41,-- -5 Bnn. Then there exists o : € — {+1} such that, given the Kasteleyn
matrix KWt:
(K™ — { Obwtbw, if (b,w) is an edge ;
b= 0, otherwise,
then | det(K"!),| are the Pliicker coordinates of [A] in Postnikov parametrization of
Gr™N(k, n), and

The proof of Speyer is topological. In our construction we provide an explicit
characterization of such signatures
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Kasteleyn signature on bipartite graphs [A-2021]

G =(V=BUW,E) with boundary vertices of equal color. A function o : & — {£1}
is a Kasteleyn signature in the sense of Speyer if and only if, for any finite face €, the
total signature of the face fulfills

2]
[1 ote) = (1%,
eco
where |Q| = number of edges bounding the face Q,

[A-2021] There is a unique equivalence class of Kasteleyn signatures on G and it
coincides with the geometric signature constructed in [AG-2022a, AG-2022b] in the
case of bipartite graphs
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Step 2: Kasteleyn system of relations and KP wave function

e K"t Kasteleyn matrix V' a vector space

Kasteleyn system of relations (v = {v, : b € B}, Ry):
> v, is an element in V assigned to the black vertex b € B;

> At white vertex w € W: 0=Ru(v)= X (K"™)¥ Vb= > Obw tow Vb-
beB beB
N n
Y KW: — IdN *
k 0 A
o ’ KP soliton wave function on g: 0=Df(X) = 307, Aj’: P(kj, X, ¥, t)

If assign at boundary vertex b;: vy, = (kj, x,y,t), then the system R, (v) =0is
solvable and gives 1)(k, x, y, t) at the intersection/nodal points of the reducible curve
dual to the graph!

[AG-2022a, AG-2022b]: explicit solution to the linear system at internal vertices
(generalization of Talaska's formula)
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Kasteleyn relations and KP divisor [AG-2022c]

e Generalized Talaska formula gives the value of the KP wave function at the double
points:

¥(Q, %) = 2 (Ee); (i3, %)

e Kasteleyn relations at white trivalent vertices rule the position of the KP divisor in
the ovals:

SIV,TT#(QLXO)
Koo (Qu%0) + K (@2, %0)

w, by

Tw = C(Pw)

e Kasteleyn face signature implies one divisor point in each finite oval
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