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Scaling Phenomena in Gravity
and Yang-Mills Theories, or

BH Formation and its Unitarization

Work in collaboration with
C. Gomez,  A. Sabio-Vera, 
A. Tavanfar, and M. Vazquez-Mozo
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General Considerations

More than fourty years have elapsed since the general theorems on 
singularities in GR and BH formation have been studied in detail

Most people (including Hawking) believe that the problem is basically 
solved within the AdS/CFT correspondence.  The question is how?, 
what when wrong in Hawking’s original argument?

Cosmic censorship?, no-hair theorems?, numerical relativity?...

Hawking went futher, and argued that thermal production of 
radiations in BH emission implied the fundamental loss of 
coherence in Quantum Mechanics.  We lose information and also 
unitarity

Apart from BH-Thermodynamics, we have learned throught the 
work of Bekenstein and Hawking that once QM is brought to bare, 
we find rather puzzling problems
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Proposed Analyses

Here we cannot be exhaustive, just a few highlights

Entropy counts: D5-D1-P systems 

Fuzzballs

Mathur’s program

ACV (Amati, Ciafaloni, Veneziano, et al)

Giddings et al
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Giddings et al

According to Giddings we should take the problem very 
seriously

The solution to the puzzle will contain deep messages 
about Quantum Gravity

There seems to be a clash between locality, Quantum 
Mechanics,  and Diff invariant General Relativity

The issue is:  how do we cut the Gordian knot?

Is string non-locality enough?  Do we need to advocate 
other types of non-localities, yet unknown at the level of 
the horizon?  Do BH in the classical sense really form?
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Mathur program and its variations

Perhaps trivializing a little, the idea is to construct the 
micro-states of a BH with configurations without horizons.
After coarse graining you may get a picture that simulates  
for all practical purposes the existence of a horizon.

You can construct fuzzballs (Skenderis Taylor)

Or the explicit constructions of Bena et al.

Or the holographic search of horizon of for instance 
Hubeny and Rangamany using Eddington-Finkelstein-like 
coordinates instead of Feffermann-Graham

Holographic renormalization group...
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ACV string, unitary S-Matrix

∆x ≥ !
∆p

+ α′ ∆p

They propose a unitarity S-matrix based on string theory 
computations, and in the eikonal approximation, leading to an 
effective action also proposed by Lipatov and his group.  
There are three regions to discuss:

Eikonal

Black Hole

Stringy

Their effective action contains non-local terms due to 
resummation of diagrams and also to string computations of 
graviton emission.  The S-matrix by construction is unitary, and 
they can see glimpses of BH formation, with properties that are 
analogous to expectations from more classical arguments.  
More work remains...
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A Basic Puzzle

The truly difficult thing to understand is to make 
compatible the picture of the outside and the 
incoming observers, if big BHs really form.  At the 
horizon of such an object, the curvature is not big, 
and the in-falling observer should not find anything 
unusual there according to standard (faulty?) 
reasoning.  What is the holographic description of the 
in-falling observer?

Since string theory presumably solves the singularity 
at the center,  what is the mechanism that emits the 
information carried by the in-falling person?
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A Missing Link

This is perhaps old fashioned, but one thing that is missing is 
the analogue of the Oppenheimer-Snyder solutions within 
String Theory

In the collapse of a pressureless fluid we can follow 
everthing analytically, see the formation of the horizon, and 
the fate of the collapsing matter in detail

Formulated differently, and at least in the context of AdS/
CFT we should try to relate holographically, situations on 
the boundary requiring unitarization from the field theory 
point of view, whose gravity duals exhibit, at least 
semiclassically the formation of a BH
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One of the most important lessons we have learned from the  
Maldacena conjecture is that the QCD string, is the  
fundamental string in some higher dimensional geometry.  
Accumulated evidence points to the relevance of  BH’s in the 
holographic  description

There are two approximations to YM theories where the  string  
picture  appears naturally.  One is the ‘t Hooft large-N limit.  For 
strong ‘t Hooft coupling, we have a geometric description, at 
least with enough supersymmetry

The Regge limit, historically  at the origin of string theory, with 
finite g and N, but with very  large Log s.  In this kinematic 
regime, resummation of diagrams in terms of (g2 Log s) leads to 
a stringy behavior of the form 
Is there a holographic interpretation of this behavior?

s
α(t)

General philosophy
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Basic aim

Scaling phenomena

Holography

Yang-MillsGravity

We believe that the Maldacena conjecture should be extended 
beyond supersymmetry

So far most scenarios explored have been static, i.e. thermal HP...

We want to find dynamical phenomena that could be related and 
also observable:

Weakly coupled gauge theories  vs  strong curvature gravity
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...continued

We compare universal properties of BH formation 
in the scaling region

with

The scaling properties of the Regge region in YM,
a weakly coupled, but non-perturbative regime.
The hard pomeron world

We will also consider trapped surface formation in 
the collision of gravitational shock waves

Perhaps too ambitious...
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Scaling in gravitational collapse

Studying rigorously gravitational collapse for a m=0 field coupled to gravity

to answer questions of black hole formation from regular initial conditions,

and also the possible appearance of naked singularities, Christodoulou asked:

Is it possible to create black holes with 

arbitrarily small mass?

The answer is yes: Type I,II collapse
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p=p

DSS

p>p

p<p

Black hole

space−time
Minkowski 

*
*

*

Critical behavior in phase space

Choptuik’s (93) showed the existence of
a co-dimension one critical surface.

For generic one parameter families of 
initial data, parameterized by p, there is a 
critical value p* where it crosses the  
critical surface.

There are two possible large time 
evolutions, or fixed points:  

A BH forms with arbitrarily small mass

Or the system bounces and it is radiated 
away to infinity leaving behind M4

The critical solution has an unstable 
mode, or relevant direction.  

The eigenvalue of the relevant direction 
leads to the  BH critical exponent.
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Basic results

For the spherical collapse of the massless scalar  field,
the metric takes the form:

ds2 = −α2(t, r)dt2 + a2(t, r)dr2 + r2dΩ2
d−2

By  looking at one-parameter families of initial conditions,
Choptuik found the existence of a critical solution.  There 
are two basic properties:

The critical solution is  independent of the initial conditions.
On the supercritical side, the size of the small BH satisfies a
universal scaling law.  The critical solution exhibits DSS:

rBH ∼ (p − p
∗)γ

Z∗(e
n∆ t, en∆ r) = Z∗(t, r);
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The numerical values obtained depend only on the type of matter 
considered, they are  “pure” numbers.  They do not depend on 
initial conditions.  The critical solution is characterized by having a 
single unstable direction.  Hence computing the Choptuik 
exponent is related to computing  the Liapounov exponent of the 
small perturbations around the critical  solution

Choptuik vs Liapounov

D ∆ γ

4 3.37 ± 2% 0.372 ± 1%

5 3.19 ± 2% 0.408 ± 2%

6 3.01 ± 2% 0.422 ± 2%

7 2.83 ± 2% 0.429 ± 2%

8 2.70 ± 2% 0.436 ± 2%

9 2.61 ± 2% 0.442 ± 2%

10 2.55 ± 3% 0.447 ± 3%

11 2.51 ± 3% 0.44 ± 3%

Zp(τ, ζ) ≈ Z∗(τ, ζ) +
∞∑

k=1

Ck(p)eλkτδkZ(τ, ζ)

γ = −

1

λ1
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Perfect fluid collapse

In the relevant scaling limit in YM, there is no 
echo parameter.

We want a similar symmetry in gravity.  This is 
achieved by studying the collapse of perfect 
fluids.

The critical solution will have CSS rather than 
DSS.  A region of the space time before the 
singularity forms has homothety, i.e. a conformal 
Killing vector of weight 2.

We choose comoving coordinates to describe 
the spherical collapse of the fluid.  The equations 
are simpler.

Cahill-Taub, Bicknell-Henriksen,  Coleman-Evans, 
Hara-Koike-Adachi, Harada-Maeda. We follow 
and complete these authors in any d

ds2 = −α(t, r)2dt2 + a(t, r)2dr2 + R(t, r)2dΩ2

d−2

Tµν = (ρ + p)uµuν + p gµν

p = k ρ, 0 ≤ k ≤ 1
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Equations of motion

2m,r =
16π

d − 2
ρR,rR

d−2,

2m,t = −

16π

d − 2
pR,tR

d−2,

2GNm = Rd−3

(

1 +
R2

,t

α2
−

R2
,r

a2

)

, (1)

α,r

α
= −

p,r

ρ + p
,

a,t

a
= −

ρ,t

ρ + p
− (d − 2)

R,t

R
,

It is easy to understand physically each of these equations
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τ = − log(−t), z = −

r

t

η(τ, z) = 8πr2ρ(t, r),

S(τ, z) =
R(t, r)

r
,

m(t, r) = rd−3M(t, r),

M ′

M
+ (d − 3) =

d − 3

y

(

1 +
S′

S

)

Ṁ

M
+

M ′

M
= −

(d − 3)k

y

(

S′

S
+

S′

S

)

a2S−2

(

2M

Sd−3
− 1

)

= V 2

z

(

Ṡ

S
−

S′

S

)2

−

(

1 +
S′

S

)2

CSS conditions

y = (d − 2)(d − 3)
M

ηSd−1

α = cα(τ)

(

z2

η

)

k

k+1

, a = η−

1
k+1 S2−d Vz = −

a z

α
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d log M

d log z
=

(d − 3)k

k + 1

(

1

y
− 1

)

d log S

d log z
=

1

k + 1
(y − 1)

d log η

d log z
=

1

V 2
z − k

[

(1 + k)2

d − 2
η

k−1
k+1 S4−2d

− (d − 2)(y − 1)V 2

z − 2k

]

y(0+) =
d − 3

d − 1

M(z) !

(2D)
k

k+1

(d − 2)

[

k + 1

(d − 1)k + d − 3

]

z
2k

k+1

S(z) !

[

(2D)
1

k+1

k + 1

(

k +
d − 3

d − 1

)

]
1

1−d

z
−

2
(d−1)(k+1)

Regularity  conditions

Analyticity at the  origin and sonic surface determines a discrete  set of D’s only functions of k,d.  For each such  
D we can uniquely determine the Choptuik exponent by  analyzing the perturbations. Here we have gone beyond 
what is in the literature, where a crucial equation is missing
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Plot of the critical solution for k=.05, d=5, D=80.62
In the analysis of the perturbations, and the computation of exponents, it 
is important also to take into account analyticity at the  sonic point

Sample numerics
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BFKL is an equation which describes the high-energy limit of weakly coupled YM 

BFKL the Regge limit of YM

A(s, t) ∼ sα(t) ; s >> 1 σtotal ∼ sα(0)−1

α(0) = 1 + (4 log 2) αs + O[α2
s]

Unitarity violation, Froissart-Martin bound.  We will be looking at weak 
coupling.  Reggeization processes have also been studied at strong coupling by 
Brower, Polchinski, Strassler and Tan
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Reggeized particles

The notion of  reggeization is crucial in the soft pomerons, 
and it is fundamenal in the BFKL and BK equations

A particle of spin j and mass m reggeizes if  when exchanged
in the t-channel, the amplitude behaves as      
  

where in the  exponent we have the corresponding Regge 
trajectory.

A substantial amount of work shows that the gluon reggeizes  
in the Regge limit 

Use of the cutting rules is crucial.  In the next few pages we 
assume  that we are computing the absorptive part, and later 
one can discuss the real part as well

s
α(t)
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Graphs contributing to  the effective vertex
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Generalizes to all order in 
the leading log approximation 
as is the case in simpler 
examples keeping the original 
vertices

Effective ladder graphs

Using l arge amounts o f 
a l gebra , one c an p rove 
reggeization of the gluon.  Each 
vertex is replaced by the  
effective vertex.

It can be shown that effective 
planarity is recovered, but now 
the effective N is related to 
the original N, and  log s
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εG(q2) = −

αsCA

4π2

∫
d
2k

q2

k2(k − q)2

Reggeized gluon
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Like a Bethe-Salpeter equation at leading log

Th i s i s s im i l a r to 
integrating out the fast, 
longitudinal degrees of 
freedom and working 
w i th the e f fec t i ve 
transverse hamiltonian.

T h i s h a m i l t o n i a n 
exhibits scale (SL(2,C)) 
invariance

Some details, and RG
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Eigenfunctions and eigenvalues 
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Therefore BFKL is valid up to a “saturation scale’’ 
after which nonlinear effects  from overlapping 
wave function of gluons and partons cannot be 
neglected.

The BFKL can be modified to introduce nonlinear 
effects to  restore unitarity.  These lead to the 
saturation phenomena, easier to explain in terms 
of pictures.  This is the BK behavior of the gluon 
distribution function
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A pictorial description

1 2 3 4

〈n〉

· · ·

1 2 3 4

〈n〉

· · ·

Dilute to dense transition, with a fractal dim equal to  the BFKL exponent



Lu
is

 A
lv

ar
ez

-G
au

m
e 

Va
rn

a 
13

th
 2

00
8

31

2lnQ
DGLAP

B
FK
L

Y
s eYQQ λ∝= )(22

x
Y 1ln=

Saturation momentum

Saturation in QCD

Color Glass 
Condensate

Extended scaling
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σtot
|γ∗ P

(Y, Q) = σtot
|γ∗ P

(τ) ; τ =
Q2

Q2
s(Y )

= Q2xλs

Geometric scaling

HERA data for σγ∗pwith x < 0.01versus τ
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Some more  speculation

BFKL to BK is like going from single particle Hilbert space to the Fock space

Klein paradox in RQM

Horowitz-Pochinski transition for small BHs

The unitarization in the  Regge region may 
help, through holography to understand 
what happens at least with small BHs

γcr = .6275 λcr = χ′(γcr)/2 = 2.44...



Lu
is

 A
lv

ar
ez

-G
au

m
e 

Va
rn

a 
13

th
 2

00
8

34

(t, r)( αsNcY , log Q2 )

4D YM

Weakly coupled

Large s

Geometric Scaling

Scaling symmetry of
BFKL/BK

Rough dictionary

5D Gravity

Strongly coupled

Large velocities

CSS perfect fluid

Conformal perfect 
fluid

k=1/4
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Some comments
Effective planarity at leading order in the 
Regge or multi-regge region

Robustness based on the  fact that we 
compute critical exponents,  replaces 
BPS and holomorphy  Not as robust but 
reasonably strong

The corresponding exponents of 
geometr ic sca l ing and CSS are 
reasonably  close.

The LHC w i l l beg i n exp lor i n g 
systematically the Regge region, the 
exponents will be measured accurately

The fate of the BH singularity. SHP 
transitions one-to-multi string transition

More work needed...

Neff ∼

αN

4π
log s

λBFKL ≈ 2.44 ≈ λ
d=5,k=1/4

Ch

λSBH = 2.58
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Speculation galore...

Our computation relied on spherical symmetry

There are better ways to look at holographic representations
of Regge collisions, like the collision of plane gravitational waves
(Abraham and Evans)

In the BK equation we have two fixed points, one at low density
is described by the BFKL equation with an unstable direction

At high densities we have a stable fixed point that restores unitarity and energy 
conservation. This is the saturation region.

In the gravitational context we have also two fixed points:

The Choptuik critical solution with a single unstable direction

and the AdS BH that becomes static after all available energy has been absorbed.

There is a cross over between the two, where scaling should show up.
The analogy is irresistible
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....Continued

Type IIB collapse

Small vs big AdS black holes

Horowitz-Hubeny Solution

........
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The previous work is a bit too hard.  Perhaps it pays to look at a 
simpler scenario.

Recently Gubser et al. have analyzed a holographic dual of 
entropy generation in heavy ion collisions in terms of shock wave 
collisions.  Although the analysis is still in preliminary stages, 
we can use their approach to study critical phenomena in the 
formation of trapped surfaces.  This is a far simpler analysis, and 
has lead to some interesting early results to be published soon.

In the Regge region, both in the boundary and the bulk, we can 
describe soft emission in terms of relatively simple, but non-local 
Hamiltonians with very similar properties.

There are several types of duality that can be called upon: open-
close string duality,  gravity=|gauge|^2,  AdS/CFT, ...  Perhaps a 
combination of them will give us a glimpse of the correct 
unitarity description in the formation of BHs

A promising perspective
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Enough!

Thank you for your patience


