
Lattice theory and algebraic models for deep learning based on mathematical morphology

Lattice theory and algebraic models for deep
learning based on mathematical morphology

Gustavo (Jesús) Angulo

Mines Paris, PSL University
CMM-Centre for Mathematical Morphology

CaLISTA'24 � 2nd Annual Meeting of COST Action CaLISTA

Institute of Mechanics of Bulgarian Academy of Sciences � So�a � May 27�31 2024



Lattice theory and algebraic models for deep learning based on mathematical morphology

�Work on deep learning or perish�: folklore wisdom
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Mathematical Models �to understand� Deep Learning
Neural Networks

Four recent paradigms

KAM: Kolmogorov�Arnold Networks (Liu et al., 2024): Limited
abstract representation, great numerical framework

Categorical Deep Learning: An Algebraic Theory of Architectures
(Gavranovi¢ et al., 2024): Highest abstraction

The Real Tropical Geometry of Neural Networks (Brandenburg et
al., 2024): ReLU networks and tropical geometry

PDE-based Group Equivariant Convolutional Neural Networks
(Smets et al., 2023): Networks layers as PDE-solvers

My goal is to propose a representation theory which inspires new
architectures and layers too



Lattice theory and algebraic models for deep learning based on mathematical morphology

Plan

1 Mathematical Morphology

2 A universal representation theorem for nonlinear (increasing) operators

3 Morphological activations

4 Convolution as an operator in an inf-semilattice

5 Morphological model of a CNN

6 Inf-semilattice of down/up-sampling and pyramids

7 Conclusions and Perspectives



Lattice theory and algebraic models for deep learning based on mathematical morphology

Mathematical Morphology

1 Mathematical Morphology

2 A universal representation theorem for nonlinear (increasing) operators

3 Morphological activations

4 Convolution as an operator in an inf-semilattice

5 Morphological model of a CNN

6 Inf-semilattice of down/up-sampling and pyramids

7 Conclusions and Perspectives



Lattice theory and algebraic models for deep learning based on mathematical morphology

Mathematical Morphology

What is mathematical morphology? (1/2)

An abstract algebraic formulation of the theory on complete lattices,
which requires very little assumptions to be instantiated into a
speci�c lattice structure of the space of interest

A common representation theory of operators for the Boolean and
the semicontinuous function cases, in which, for instance, any
translation-invariant increasing, upper semicontinuous operator can
be represented exactly as a minimal superposition of morphological
erosions or dilations

An intimate relationship with the random set theory via the notion
of Choquet capacity from stochastic geometry

Strong connections with idempotent mathematics (max-plus and
max-min algebra and calculus) and tropical geometry

Continuous models which correspond to Hamilton�Jacobi PDEs,
relevant also in optics and optimal control



Lattice theory and algebraic models for deep learning based on mathematical morphology

Mathematical Morphology

What is mathematical morphology? (2/2)

A powerful extension to the case of morphology on groups, which
bring a proper dealing with space symmetries and provide equivariant
operators to the groups of transforms relevant in computer vision

Multiscale operators and semigroups formulated in Riemannian,
metric and ultrametric spaces

Multiple morphological representations that provide a rich family of
shape-based and geometrical descriptions and decompositions:
skeletons, pattern spectra and size distributions, topological
description of functions using maxima-minima extinction values, etc.

A privileged mathematical tool for Lipschitz characterization and
regularization

A counterpart of the perceptron which yields to the scope of
morphological neural networks, morphological associative memories
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A universal representation theorem for nonlinear (increasing) operators

Dilation and Erosion

A lattice operator ψ is called increasing operator (or isotone) is if it is
order-preserving, i.e., ∀X ,Y

X ≤ Y =⇒ ψ(X ) ≤ ψ(Y )

Dilation δ and Erosion ε are increasing operators that which satisfy

δ

(∨
i∈J

Xi

)
=
∨
i∈J

δ (Xi ) ; ε

(∧
i∈J

Xi

)
=
∧
i∈J

ε (Xi )

Translation-invariant increasing set operators of set X by structuring element
Y

Dilation: δY (X ) = X ⊕ Y =
⋃

y∈Y Xy = {x + y : x ∈ X , y ∈ Y } ={
p ∈ E : X ∩ Y̌p ̸= ∅

}
Erosion: εY (X ) = X ⊖ Y =

⋂
y∈Y X−y = {p ∈ E : Yp ⊂ X} ={

x : ∀p ∈ Y̌ , x ∈ Xp

}
Opening: γY (X ) = X ◦ Y = (X ⊖ Y )⊕ Y

Closing: φY (X ) = X • Y = (X ⊕ Y )⊖ Y

Opening is idempotent and anti-extensive. Closing is idempotent and extensive
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A universal representation theorem for nonlinear (increasing) operators

Matheron, Maragos and Banon�Barrera - MMBB

Theorem (Matheron, 1975)

Consider set operators on P(E). Let Ψ : P(E) → P(E) be a
translation-equivariant (TE) increasing set operator. Then

Ψ(X ) =
⋃

A∈Ker(Ψ)

X ⊖ A =
⋂

B∈Ker(Ψ∗)

X ⊕ B̌

where the kernel is Ker(Ψ) = {A ⊆ E : 0 ∈ Ψ(A)}

Theorem (Maragos, 1989)

Consider discrete set operators on P(Zn). Let Ψ : P(Zn) → P(Zn) be a TE,
increasing and upper semi-continuous set operator. Then

Ψ(X ) =
⋃

M∈Bas(Ψ)

X ⊖M =
⋂

N∈Bas(Ψ∗)

X ⊕ Ň

where the basis (minimal kernel) of Ψ is

Bas(Ψ) = {M ∈ Ker(Ψ) : [A ∈ Ker(Ψ) and A ⊆ M] =⇒ A = M}
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A universal representation theorem for nonlinear (increasing) operators

Matheron, Maragos and Banon�Barrera - MMBB

Let us de�ne a closed interval [A,B] ∈ P(E) by

[A,B] = {X ⊆ E : A ⊆ X ⊆ B} , A,B ⊆ E

Theorem (Bannon�Barrera, 1991)

Any TE set operator (not necessarily increasing) Ψ : P(E) → P(E) can be
represented as the union of sup-generating operators ⊼ by pairs of sets that
form closed intervals in its kernel:

Ψ(X ) =
⋃

[A,B]∈Ker(Ψ)

X ⊼ (A,B) =
⋃

[A,B]∈Ker(Ψ)

[(X ⊖ A) ∩ (X c ⊖ Bc)]

Further, Ψ can be represented as the intersection of inf-generating operators ⊻
by pairs of re�ected sets that form intervals in the kernel of its dual operator:

Ψ(X ) =
⋂

[A,B]∈Ker∗(Ψ)

X ⊻ (Ǎ, B̌) =
⋃

[A,B]∈Ker(Ψ)

[
(X ⊕ Ǎ) ∪ (X c ⊖ (B̌)c)

]
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A universal representation theorem for nonlinear (increasing) operators

Matheron, Maragos and Banon�Barrera - MMBB

Maragos Theorem for function operators

Theorem (Maragos, 1989)

Consider an upper semi-continuous operator Ψ acting on an upper
semi-continuous function f . Let Bas(Ψ) = {gi}i∈I be its basis and Bas(Ψ̄) =
{hj}j∈J the basis of the dual operator. If Ψ is a translation-equivariant and
increasing operator then it can be represented as

Ψ(f )(x) = sup
i∈I

(f ⊖ gi )(x) = sup
i∈I

inf
y∈Rn

{f (x + y)− gi (y)}

= inf
j∈J

(f ⊕ ȟj)(x) = inf
j∈J

sup
y∈Rn

{
f (x − y) + ȟj(y)

}
The converse is true. Given a collection of functions B = {gi}i∈I such that all
elements of it are minimal in (B,≤), the operator Ψ(f ) = supi∈I {f ⊖ gi} is a
translation-equivariant increasing operator whose basis is equal to B.
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Morphological activations

Nonlinearities in Deep Learning as Dilations

ReLU (Recti�ed Linear Unit) activation function:

ReLU(f (x)) = δReLU(f )(x) = max (0, f (x))

A variant (Qiu et al. 2018)

δReLUα (f )(x) = max (0, f (x) + α)

Max-pooling (pooling window = stride):

MaxPoolingR×R(f )(x) = δMaxPool
R (f )(x) = max

y∈WR×R (x)
{f (R · x − y)}

Max-plus layer (morphological perceptron):

δMaxPlus
b (ξ) = max

1≤i≤d
{ξi + bi}, ξ, b ∈ Rd

Also Maxout and others...
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Morphological activations

Nonlinearities in Deep Learning as Dilations

Why are dilations (with respect to the standard partial ordering ≤)?
Because they satisfy

Increasing:

f ≤ g =⇒ δReLU(f ) ≤ δReLU(g); δMaxPool
r (f ) ≤ δMaxPool

r (g)

ξ ≤ η =⇒ δMaxPlus
b (ξ) ≤ δMaxPlus

b (η)

Commutation with supremum:

δReLU(f ∨g) = δReLU(f )∨δReLU(g); δMaxPool
R (f ∨g) = δMaxPool

R (f )∨δMaxPool
r (g)

δMaxPlus
b (ξ ∨ η) = δMaxPlus

b (ξ) ∨ δMaxPlus
b (η)

The operators are also extensive, i.e., f ≤ δ(f ). ReLU is also
idempotent, i.e., δReLUδReLU(f ) = δReLU(f ) : δReLU is a dilation and
a closing
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Morphological activations

Morphological Activations (Velasco�Forero and A., 2000)

Proposition

Any increasing nonlinear activation function σ : R → R in a neural network can
be universally expressed as

σ(z) = min
j∈J

[
max
i∈I

{
βj
i z + αj

i

}]
= min

j∈J
pj(z)

where pj = maxi∈I

{
βj
i z + αj

i

}
is a PWL convex function.

Proposition

Any increasing nonlinear pooling operator π : Rn → Rn/R can be universally
expressed as

π(f )(x) = min
j∈J

[(f ⊕ bj)] (R · x),

where {bj}j∈J is a family of structuring functions de�ning by transposition the
basis of the dual operator to π.
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Morphological activations

Morphological Activations (Velasco�Forero and A., 2000)

Tropical polynomial interpretation

The max-a�ne function pj = maxi∈I

{
βj
i z + αj

i

}
is a tropical

polynomial such that in that geometry, the degree of the polynomial
corresponds to the number of pieces of the PWL convex function

The set of such polynomials constitutes the semiring Rmax of
tropical polynomials

Tropical geometry in the context of lattice theory and neural
networks is an active area of research, however those previous works
have not considered the use of minimal representation of tropical
polynomials as generalized activation functions
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Morphological activations

Morphological Activations (Velasco�Forero and A., 2000)

Two alternative architectures of the MorphoActivation layer (Activation
and Pooling Morphological Operator) f 7→ ΨMorpho : Rn → R(n/R) either
by composition [π ◦ σ(f )](x) or [σ ◦ π(f )](x) as follows:

ΨMorpho
1 (f ) = min

1≤j≤M

{
δMaxPool
R,bj

(
max
1≤i≤N

(βj
i f + αj

i )

)}
,

ΨMorpho
2 (f ) = min

1≤i≤N

{
max

1≤j≤M

(
βj
i δ

MaxPool
R,bi (f ) + αj

i

)}
,

where 
δMaxPool
R,bj

(f )(x) = δbj (f )(R · x), with

δbj (f )(x) = (f ⊕ bj)(x) = supy∈W {f (x − y) + bj(y)}
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Morphological activations

Morphological Activations (Velasco�Forero and A., 2000)

Left: Random Initialization with (14%) of performance on the test set, We use

a simpli�ed version of proposed activation

min(max(β0x + α0, β1x + α1, α2), α3), with initialization

max(min(ReLU(x), 6),−6) Center: Training only activations (92.38%), Right:

Training Full Network (98,58%). Second Row: t-SNE visualization of last layer

is the 10-classes MNIST prediction for a CNN.



Lattice theory and algebraic models for deep learning based on mathematical morphology

Morphological activations

Morphological Activations (Velasco�Forero and A., 2000)

Fashion MNIST CIFAR10 CIFAR100

MaxPool(ReLU) 93.11 78.04 47.57

MorphoActivation 1 N=2 N=3 N=4 N=2 N=3 N=4 N=2 N=3 N=4

M=2 -0.06 -0.05 -0.1 -0.42 0.02 -0.02 0.44 0.7 0.4

M=3 -0.14 -0.14 -0.06 -0.57 -0.4 -0.35 0.56 0.49 0.61

M=4 -0.02 -0.08 -0.01 0.05 -0.62 -0.5 0.41 0.35 0.73

MorphoActivation 2 N=2 N=3 N=4 N=2 N=3 N=4 N=2 N=3 N=4

M=2 0.04 -0.16 -0.12 1.84 2.02 1.49 3.31 3.5 3.45

M=3 0.08 -0.09 0.12 2.39 1.96 1.82 3.48 3.55 3.86

M=4 -0.02 0.09 -0.03 2.49 2.25 2.13 3.47 3.73 3.58

Relative di�erence with respect to our baseline (ReLU followed by a MaxPool).

Architecture used is a CNN with two layers. ADAM optimizer with an early

stopping with patience of ten iterations. Only Random Horizontal Flip has

been used as image augmentation technique for CIFARs. The results are the

average over three repetitions of the experiments.



Lattice theory and algebraic models for deep learning based on mathematical morphology

Convolution as an operator in an inf-semilattice

1 Mathematical Morphology

2 A universal representation theorem for nonlinear (increasing) operators

3 Morphological activations

4 Convolution as an operator in an inf-semilattice

5 Morphological model of a CNN

6 Inf-semilattice of down/up-sampling and pyramids

7 Conclusions and Perspectives



Lattice theory and algebraic models for deep learning based on mathematical morphology

Convolution as an operator in an inf-semilattice

Signal processing viewed as morphological operators
(Keshet, 2000)1 (1/2)

The aim of a signal processing task is to address �simpler versions�
of a given signal: the concept of simplicity varies with the approach
but is generally associated to a partial ordering in the set of signals

The partial ordering is usually related to some signal measure:
spectral energy, entropy, information, SNR, smoothness,
compressibility, etc.

Either a least or greatest element exists, but not both: In many
situations, one can �nd a signal that is the �simplest� one according
to some given measure, e.g., the signal with least energy is the null
function which also have the greatest compressibility. However,
there is no single signal that corresponds to the greatest energy or
the lowest compressibility

1R. Keshet. Traditional Signal Processing See From the Morphological
Poset-Theoretical Point of View. Hewlett Packard Report, HPL-1999-39(R.1), 2000.
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Convolution as an operator in an inf-semilattice

Signal processing viewed as morphological operators
(Keshet, 2000)2 (2/2)

The corresponding partial ordering induces a complete semilattice
structure to the signal poset: in general, it would be a inf-semilattice
(simpli�cation = is a loss of a magnitude)

Erosion is naturally de�ned in the inf-semilattice: it is the increasing
operator which commutes (distributes) over the in�mum associated
to the partial ordering

Dilation, as a �generalized inverse�, appears only as the adjoint
operator to the erosion.Opening is by adjunction the compostion of
the erosion followed by its adjoint dilation

Operators based on erosion and opening, like residue by opening,
semigroups and skeleton, are naturally de�ned too

2R. Keshet. Traditional Signal Processing See From the Morphological
Poset-Theoretical Point of View. Hewlett Packard Report, HPL-1999-39(R.1), 2000.
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Convolution as an operator in an inf-semilattice

Inf-semilattice of linear �ltering (1/3)

Convolution of a function f ∈ Ln = Fun(Rn,R) by a kernel k ∈ Ln

εConvk (f )(x) = (f ∗ k)(x)
Fourier transform of a function: F (ω) = F(f )(ω) =
|F (ω)| exp (j∠F (ω)), with modulus |F (ω)| and phase ∠F (ω) and
convolution theorem

εConvk (f )(x) = F−1 {F (ω)K (ω)} (x)

Spectral partial ordering ≤F : For all pairs f , g ∈ Ln

f ≤F g ⇐⇒ ∀ω ∈ Rn,

{
|F (ω)| ≤ |G (ω)|, and
∠F (ω) = ∠G (ω)

Poset (Ln,≤F ) is a complete inf-semilattice: The least element is
the null function and the in�mum f ∧F g is de�ned as

(f ∧F g) (x) =

 F−1 {min (|F (ω)|, |G (ω)|) exp (j∠F (ω))} , if
∠F (ω) = ∠G (ω)

0, otherwise
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Convolution as an operator in an inf-semilattice
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Convolution as an operator in an inf-semilattice

Inf-semilattice of linear �ltering (1/3)
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Convolution as an operator in an inf-semilattice

Inf-semilattice of linear �ltering (2/3)

Proposition (Keshet, 2000)

Linear convolution εConvk (f ) is an erosion in (Ln,≤F ), i.e.,

(increasing) ∀f , g ∈ Ln, f ≤F g =⇒ εConvk (f ) ≤F εConvk (g)

(commutation with in�mum) εConvk (f ∧F g) = εConvk (f ) ∧F εConvk (g)

Proposition (Keshet, 2000)

The adjoint dilation of a linear convolution �ltering δ∗,Convk in (Ln,≤F ) is
its generalized-inverse �ltering operation, i.e.,

δ∗,Convk (f ) = F−1 {F (ω)K∗(ω)} (x), where

K∗(ω) =

{
K (ω)−1, if |K (ω)| > 0
0, otherwise

and by adjunction de�nition satis�es ∀f ∈ Ln

δ∗,Convk (f ) =
∧
F

{
g ∈ Ln : f ≤F εConvk (g)

}
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Convolution as an operator in an inf-semilattice

Inf-semilattice of linear �ltering (3/3)

Proposition (Keshet, 2000)

The morphological opening associated to linear convolution �ltering,
γConvk (f ) = δ∗,Convk εConvk (f ), is an ideal linear �ltering operator, i.e.,
idempotent γConvk γConvk (f ) = γConvk (f ), anti-extensive γConvk (f ) ≤L f

The magnitude activation of the �feature map� associated to the
kernel k follows an order structure based on the energy selection by
k in the frequency domain
If the spectral erosion in (Ln,≤F ) is anti-extensive, i.e., ∀f ∈ Ln

εConvk (f ) ≤F f

the composition is ordered too, i.e.,

εConvk2 εConvk1 (f ) ≤F εConvk1 (f ) ≤F f

E�ect of successive erosions: the signal becomes simpler and simpler
by removing frequency information
Obviously, semigroup property of kernels provides a semigroup of
erosion. For instance, Gaussian convolution with kernel gσ

εConvgσ1 ε
Conv
gσ2 (f ) = εConvgσ1+σ2

(f ) ≤F f
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Convolution as an operator in an inf-semilattice
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Convolution as an operator in an inf-semilattice

Convolutions in DL (1/2)

For the DL framework, a feature map input at a layer is typically a
set of K scalar images fi in L2. The convolution involves in general
a 3D convolution: the K features maps are concatenated as a 3D
image f = (f1, · · · , fK ), f ∈ L3 and the kernel k ∈ L3. Then, the
output 3D feature maps are contracted by linear combination to get
a single 2D image as one of the new feature maps. The 3D
convolution can be decomposed into separable 2D × 1D convolutions

For the sake of simplicity of the notation, without implying any
change on the mathematical modelling, we consider here the case
with a scalar image to the entry f which provided K maps (result of
2D convolutions), then combined using a neural network unit
(perceptron without bias for now), i.e., f and ki typically in L2

f 7→
K∑
i=1

wi (f ∗ ki ) =
K∑
i=1

wiε
Conv
ki (f ) =

K∑
i=1

εConvwiki (f ), wi ∈ R
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Convolution as an operator in an inf-semilattice

Convolutions in DL (2/2)

This spectral operator in the inf-semilattice (Ln,≤F ) is increasing:

∀f , g ∈ Ln, f ≤F g =⇒
K∑
i=1

wiε
Conv
ki (f ) ≤F

K∑
i=1

wiε
Conv
ki (g)

and anti-extensive if the coe�cients normalized to sum 1:

∀f ∈ Ln,

K∑
i=1

wiε
Conv
ki (f ) ≤F f

Supremum of spectral erosions : It should be notice the
corresponding supremum in the spectral partial ordering

∨
F

becomes standard summation only when the signal involved have
disjoint Fourier spectra, i.e. ∩i1|Ki (x)|>0 = ∅. Therefore, in general

K∑
i=1

wiε
Conv
ki (f ) ̸=

∨
F
εConvwiki (f )

(taking the supremum will lead an universal approximation of
operators in (Ln,≤F ) using MMBB)
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Morphological model of a CNN

Morphological view of a Convolutional Neural Network
(1/2)

Typical one-layer architecture with K �lters: a given feature map is
obtained as

f →

(
K∑
i=1

wi (f ∗ ki ) + α

)
→ ReLU → MaxPoolingR×R

Rewritten as a morphological composition of operators

δMaxPool
R δReLU

(
K∑
i=1

wiε
Conv
ki (f ) + α

)
= δMaxPool

R δReLUα

(
K∑
i=1

wiε
Conv
ki (f )

)

Alternative architecture using a max-plus layer

δMaxPool
R δReLU

(
max
1≤i≤K

{εConvki (f ) + bi}
)

= δMaxPool
R δReLUδMaxPlus

b

({
εConvki (f )

})
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Morphological model of a CNN

Morphological view of a Convolutional Neural Network
(1/2)

Typical one-layer architecture with K �lters: a given feature map is
obtained as

f →

(
K∑
i=1

wi (f ∗ ki ) + α

)
→ ReLU → MaxPoolingR×R

Rewritten as a morphological composition of operators

δMaxPool
R δReLU

(
K∑
i=1

wiε
Conv
ki (f ) + α

)
= δMaxPool

R δReLUα

(
K∑
i=1

wiε
Conv
ki (f )

)

Alternative architecture using a max-plus layer

δMaxPool
R δReLU

(
max
1≤i≤K

{εConvki (f ) + bi}
)

= δMaxPool
R δReLUδMaxPlus

b

({
εConvki (f )

})



Lattice theory and algebraic models for deep learning based on mathematical morphology

Morphological model of a CNN

Morphological view of a Convolutional Neural Network
(1/2)

Typical one-layer architecture with K �lters: a given feature map is
obtained as

f →

(
K∑
i=1

wi (f ∗ ki ) + α

)
→ ReLU → MaxPoolingR×R

Rewritten as a morphological composition of operators

δMaxPool
R δReLU

(
K∑
i=1

wiε
Conv
ki (f ) + α

)
= δMaxPool

R δReLUα

(
K∑
i=1

wiε
Conv
ki (f )

)

Alternative architecture using a max-plus layer

δMaxPool
R δReLU

(
max
1≤i≤K

{εConvki (f ) + bi}
)

= δMaxPool
R δReLUδMaxPlus

b

({
εConvki (f )

})



Lattice theory and algebraic models for deep learning based on mathematical morphology

Morphological model of a CNN

Morphological view of a Convolutional Neural Network
(2/2)

The composition of dilations in the same complete lattice can often
be factorized into a single operation

Activation and Pooling Dilation (APD):

δActPoolR;α (f )(x) = max
y∈WR×R (x)

{max (0, f (R · x − y) + α)}

A multilayer CNN will therefore be seen as the hierarchical
composition (let's consider r = 2):

L1 = δActPool2;α1

(
K1∑
i1=1

wi1ε
Conv
ki1

(f )

)

Ln = δActPool2;αn

(
Kn∑
in=1

winε
Conv
kin

(Ln−1)

)

= δActPool2;αn

 Kn∑
in=1

winε
Conv
kin

δActPool2;αn−1

 Kn−1∑
in−1=1

win−1ε
Conv
kin−1

(Ln−2)
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Morphological model of a CNN

Fundamental fact: same partial ordering on two spaces
(1/2)

Let us consider two complex numbers z1 and z2 and let us introduce
the following partial ordering in C

z1 ≤C z2 ⇐⇒
{

|z1| ≤ |z2|, and
∠z1 = ∠z2

Same order than the spectral one in the Fourier transform domain

Let us consider that for any zk = ak + ibk that the imaginary part is
zero, bk = 0, the previous partial ordering becomes

z1 ≤C,ℑ=0 z2 ⇐⇒
{

|z1| ≤ |z2|, and
sign(z1) = sign(z2)

which is equivalent to median partial ordering z1 ⪯ z2
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Morphological model of a CNN

Fundamental fact: same partial ordering on two spaces
(2/2)

Let us consider that for any zk = ak + ibk one has bk = 0 and
ak ≥ 0 thus sign(zk) = +, i.e., positive real value line R+, the
complex partial ordering z1 ≤C,ℑ=0,ℜ≥0 z2 becomes the standard
partial ordering z1 ≤ z2

The erosion εb in (Ln,≤) is algebraically similar to the spectral
erosion εConvk in (Ln,≤F )

Fundamental fact. The same partial ordering ≤C is always applied:

In the linear convolution operators, the poset structure is de�ned on
the spectral space (i.e., d−dimensional complex-valued Fourier
space)
In classical morphological operators or self-dual morphological
operators, the poset structure is de�ned on the morphological space
(i.e., d−dimensional (positive) real-valued intensity space)
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Exploring advanced new nonlinear operators (1/2)

Fourth observation: ReLU and max-pooling can be replaced by a
more general nonlinear operator de�ned by a morphological
combination of activations, dilations and downsampling, using
max-plus layer or its dual

Morphological Activation of L structuring functions

f 7→ ΨMorpho(f ) = min
1≤j≤J

{
δMaxPool
R,bj (max(0, βj f )) + αj

}
where

δMaxPool
R,b (f )(x) = δb(f )(R · x), with

δb(f )(x) = (f ⊕ b)(x) = maxy∈W {f (x − y) + b(y)}

The learnable structuring functions bj play the same role as the
kernels ki in the convolutions. Note that one can have R = 1
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Morphological model of a CNN

Exploring advanced new nonlinear operators (2/2)

Let us note the linear �ltering part of the processing as

f 7→ ΣSpectral(f ) =
K∑
i=1

wiε
Conv
ki (f )

A typical one-layer architecture with K �lters in convolution and J
structuring functions in APMO

Ln = ΨMorpho
n ◦ ΣSpectral

n (Ln−1)

= min
1≤jn≤Ln

{
δMaxPool
Rn,bjn

[
max

(
0, βjn

Kn∑
in=1

winε
Conv
kin

(Ln−1)

)]
+ αjn

}
= ΨMorpho

n ◦ ΣSpectral
n ◦ΨMorpho

n−1 ◦ ΣSpectral
n−1 (Ln−2)

The alternate processing between the feature detection by learning
convolution kernels and the feature enhancement and selection
(sparsity) by (learning) morphological parameters and structuring
functions is probably the key in CNN...
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More advanced DL architectures...

UNet (pyramidal fully convolutional network for segmentation)

But also ResNet (residual network)
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Inf-semilattice of down/up-sampling and pyramids (1/5)

Consider the set of discrete 2D real-valued images of M × N pixels,
denoted by LM×N

Consider a dicrete version of the spectral partial ordering ≤F

f ≤F g ⇐⇒ ∀i , j ,
{

|F (i , j)| ≤ |G (i , j)|, and
∠F (i , j) = ∠G (i , j)

where F and G are the discrete Fourier transforms (DFT) of f and g

Given integer R > 1, the decimation operator of f by factor R is the
mapping ε↓R,Conv

k : LR·M×R·N → LM×N de�ned as

ε↓R,Conv
k (f )(m, n) =

M−1∑
i=0

N−1∑
j=0

f (R ·m − i ,R · n − j)k(i , j)

where k(i , j) is the set of coe�cients of the ideal π/R-cuto� low-pass
�lter
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Inf-semilattice of down/up-sampling and pyramids (2/5)

Proposition (Keshet, 2000)

The decimation operator ε↓R,Conv
k is an erosion between the complete

inf-semilattices (LR·M×R·N ,≤F ) and (LM×N ,≤F ).

The adjoint dilation δ∗↑R,Conv
k : (LM×N ,≤F ) → (LR·M×R·N ,≤F ) is the

interpolation given by the up-sampling, followed by �ltering with the
same ideal π/R-cuto� low-pass �lter k

Proposition (Keshet, 2000)

The corresponding morphological opening, i.e.,

γ↓R↑,Conv
k (f ) = δ∗↑R,Conv

k ε↓R,Conv
k (f ),

is the linear �ltering of f by k , i.e., (f ∗ k)(x) is the �best reconstruction�
of f by (inverse) adjoint dilation after erosion.
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Inf-semilattice of down/up-sampling and pyramids (3/5)

Morphological skeleton: Consider a series of erosions of increasing size {εi},
εi (X ) = X ⊖ iB and εi (X ) = ε1εi−1(X ). Given a set X , the skeleton Skel(X ) is

the union of the set of elements Si (X ), seen as a decompostion/multiscale

representation, de�ned as follows: Si (X ) = εi (X )− γ1εi (X ) =

εi (X )− δ1εi+1(X ). Then, the reconstruction of the original set X from its

skeleton is given by X =
⋃

i δi (Si (X )), also γm(X ) =
⋃

n≥m δn (Si (X )).

Proposition (Keshet, 2000)

The Laplacian pyramid {Lapli} associated to f is a morphological
skeleton in the complete inf-semilattices (L2i×2i ,≤F ), i = 0, · · · , imax.
Formaly it is given by

Lapli (f ) = Gaussi (f )− δ∗↑2,Convgσ (Gaussi+1(f ))

= Gaussi (f )− δ∗↑2,Convgσ ε↓2,Convgσ (Gaussi (f ))

= ε↓2,Convgσ Gaussi−1(f )− γ↓R↑,Conv
gσ ε↓2,Convgσ Gaussi−1(f )

where the Gaussian pyramid {Gaussi (f )} is given by
Gaussi (f ) = ε↓2,Convgσ Gaussi−1(f ).
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Inf-semilattice of down/up-sampling and pyramids (4/5)

In that case, we have in addition (identifying supremum ∨F by
standard sum):[

Gaussi (f )− γ↓R↑,Conv
gσ (Gaussi (f ))

]
∨F

[
γ↓R↑,Conv
gσ (Gaussi (f ))

]
=[

Gaussi (f )− γ↓R↑,Conv
gσ (Gaussi (f ))

]
+
[
γ↓R↑,Conv
gσ (Gaussi (f ))

]
= Gaussi (f )

Let us consider the morphological residue by opening (aka top-hat):

Γ(f ) = f − γ(f ),

note that f ≥ γ(f ), therefore Γ(f ) ≥ 0 (potentially no activation is
required associated to the corresponding partial ordering).
For the skeleton, we can write Si (X ) = Γ1 (εi (X ))

In the Laplacian pyramid, one gets the residue by opening of the
Gaussian pyramid:

Lapli (f ) = Γ↓R↑,Conv
gσ (Gaussi (f ))
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Inf-semilattice of down/up-sampling and pyramids (5/5)

In DL state-of-the-art, the decimation operator ε↓R,Conv
k is related to

the (pooling) convolution with stride and the interpolation operator

δ∗↑R,Conv
k with the (unpooling) dilated convolution

In practice, one doesn't consider the ideal low-pass �lter, i.e., in the
spatial domain to the sinc(x) function. The Gaussian kernel gσ is a
good approximation to an ideal low-pass �lter:

But, γ↓R↑,Conv
gσ (f ) ̸= (f ∗ gσ)

With the semigroup (gσ1 ∗ gσ2) = gσ1+σ1 , scale-space property in
Gaussian pyramid, i.e., Gaussi (f ) = ε↓2,Convgσ Gaussi−1(f ), with
Gauss0(f ) = f

In the general case where k is not a low-pass �lter in the decimation
operator ε↓R,Conv

k , the interpolation adjoint operator δ∗↑R,Conv
k

requires the generalized-inverse �ltering in the convolution part
(related to the deconvolution and transpose convolution in DL)
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Morphological down/up-sampling and pyramids (1/5)

Abstract pyramid structure:
Decomposition pyramid: From an initial signal f0, approximations fj
of increasingly reduced size are computed by the analysis operator ψ↓

fj = ψ↓(fj−1), j = 1, 2, · · · , L

Residue and detail pyramid: An approximation error associated to
fj+1 may be de�ned by taking the di�erence between fj and an
expanded version by the syntesis operator ψ↑

dj = fj − ψ↑(fj+1), j = 0, 2, · · · , L

Iterative reconstruction: Original f0 can be exactly reconstructed by
the recursion

fj = ψ↑(fj+1) + dj

Approximation: The reconstruction approximation to fj is

f̃j = ψ↑
(
ψ↓(fj)

)
Pyramid condition: To guarantee that information lost during
analysis can be recovered in the synthesis phase in a nonredundant
way: ψ↓ (ψ↑(f )

)
= f
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Morphological down/up-sampling and pyramids (2/5)

We now consider the general class of pyramids whose
analysis/synthesis operator pairs have the form

ψ↓(f ) = σ↓ (η(f ))

ψ↑(f ) = ξ
(
σ↑
c (f )

)
and σ↓ and σ↑

c denote downsampling and upsampling by a factor of
R in each spatial dimension, i.e.,

σ↓(f )(n) = f (R · n)

σ↑
c (f )(m) =

{
f (n), if m = R · n
c , otherwise

Adjoint pyramid by adjoint operators

Proposition (Goutsias and Heijmans, 2000)

If η and ξ are adjoint operators, the pair (ψ↓, ψ↑) forms an adjunction too
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Morphological down/up-sampling and pyramids (3/5)

�Increasing� equivariance to translation τ = τy by pooling, where
(τy f )(x) = f (x − y)

Proposition (Goutsias and Heijmans, 2000)

If the pair of adjoint operators η and ξ are equivariant to translation, i.e.,
ητ = τη and ξτ = τξ, one has for R = 2

ψ↓τ2 = τψ↓ ψ↑τ = τ2ψ↑

where τ2 = ττ denotes translation two times
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Morphological down/up-sampling and pyramids (4/5)

Goutsias�Heijmans morphological pyramid: A natural choice for the
adjunction is η = εb and ξ = δ∗b , so ψ

↓R is an erosion followed by
decimation and ψ↑R is an interpolation, with c = ⊥ (minimum
value) in σ↑R

c , followed by a dilation. The structuring function b is
centred

Analysis (decimation) erosion by factor R ε↓Rb (f )(x) = σ↓R (εb(f )) (x), with

εb(f )(x) = miny∈W {f (y)− b(y − x)}

Synthesis (interpolation) adjoint dilation by factor R
δ∗↑Rb (f )(x) = δ∗b

(
σ↑R
⊥ (f )

)
(x), with

εb(f )(x) = maxy∈W {f (y) + b∗(y − x)}

where b∗(x) = b(−x), and W is its support
Reconstruction is an opening: γ↓R↑

b (f ) = δ∗bσ
↑R
⊥ σ↓Rεb(f )

Sun�Maragos moprhological pyramid: analysis by η = δ∗bεb = γb and
synthesis by ξ = δ∗b



Lattice theory and algebraic models for deep learning based on mathematical morphology

Inf-semilattice of down/up-sampling and pyramids

Morphological down/up-sampling and pyramids (5/5)

Heijmans morphological pyramid: analysis by η = δb and synthesis
by ξ = ε∗b, with c = ⊤ (maximum value) in interpolation

Analysis (decimation) dilation by factor R δ↓Rb (f )(x) = σ↓R (δb(f )) (x), with

δb(f )(x) = maxy∈W {f (y) + b(x − y)}

Synthesis (interpolation) adjoint erosion by factor R
ε∗↑Rb (f )(x) = ε∗b

(
σ↑R
⊤ (f )

)
(x), with

εb(f )(x) = miny∈W {f (y)− b∗(y − x)}

Reconstruction is a closing: φ↓R↑
b (f ) = ε∗bσ

↑R
⊤ σ↓Rδb(f )

Max-pooling: δMaxPool
R (f ) = δ↓Rb (f ), with a �at structuring function

b(z) = 0 if z ∈ WR×R



Lattice theory and algebraic models for deep learning based on mathematical morphology

Inf-semilattice of down/up-sampling and pyramids

Morphological view of UNet

Original architecture

L
↓
0 = f −→ L

↑
n+1 = δReLU

∑K′
n+1

i′n+1=1
w
i′n+1

εConvk
i′n+1

([
δ
∗↑2,Conv
2×2 (L

↑
n ) , L

↓
0

])
↓ ↑

L
↓
1 = δActPool2;α1

(∑K1
i1=1

wi1
εConvki1

(f )

)
−→ L

↑
n = δReLU

(∑K′
n

i′n=1
w
i′n

εConvki′n

([
δ
∗↑2,Conv
2×2 (L

↑
n−1) , L

↓
1

]))
↓ ↑

L
↓
2 = δActPool2;α2

(∑K2
i2=1

wi2
εConvki2

(
L
↓
1

))
−→ L

↑
n−1 = δReLU

∑K′
n−1

i′
n−1=1

w
i′
n−1

εConvk
i′
n−1

([
δ
∗↑2,Conv
2×2 (L

↑
n−2) , L

↓
2

])
↓ ↑

· · · −→ · · ·
↓ ↑

L
↓
n = δActPool2;αn

(∑Kn
in=1

win
εConvkin

(
L
↓
n−1

))
−→ L

↑
1 = δReLU

∑K′
1

i′1=1
w
i′1

εConvk
i′1

([
δ
∗↑2,Conv
2×2 (L

↑
0 ) , L

↓
n

])
↓ ↑

L
↓
n+1 = L

↑
0 = δReLU

∑K0
i0=1

wi0
εConvki0

(
L
↓
n

)
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Morphological view of UNet

More consistent architectures

Linear down/up-sampling adjoint operators:
L↓n = δReLU ε↓2,Convkn

(∑Kn

in=1
winε

Conv
kin

(
L↓n−1

))
L↑1 = δReLU

(∑K ′
1

i ′1=1
wi ′1
εConvki′1

([
δ∗↑2,Convkn

(L↑0) , L
↓
n

]))
Morphological down/up-sampling adjoint operators:

L↓n = δ↓2bn δ
ReLU

(∑Kn

in=1
winε

Conv
kin

(
L↓n−1

))
L↑1 = δReLU

(∑K ′
1

i ′1=1
wi ′1
εConvki′1

([
ε∗↑2bn

(L↑0) , L
↓
n

]))
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Morphological view of ResNet

Canonical form of a residual neural network. A layer Ln−1 is skipped over
activation from Ln−2

Wikipedia Doc Keras

L = ΨMorpho
2

(
ΣSpectral
2 ΨMorpho

1 ΣSpectral
1 (f ) + f

)
if here we consider ΣSpectral

2 is just a scalar −w , i.e.,

L = ΨMorpho
2

(
f − w ΨMorpho

1 ΣSpectral
1 (f )

)
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Morphological view UNet and a proposal of UResNet

Let us note ΣSpectral =
∑Kn

in=1
winε

Conv
kin

, ΨMorpho = δReLU,

ΨMorpho ↓ = δ↓2bn δ
ReLU and ΨMorpho ↑ = ε∗↑2bn

Variant of standard UNet
L↓
n = δ↓2bn ΨMorpho ΣSpectral

n

(
L↓
n−1

)
= ΨMorpho ↓

n ΣSpectral
n

(
L↓
n−1

)
L↑
1 = ΨMorpho ΣSpectral

1′

([
ε∗↑2bn

(L↑
0), L

↓
n

])
= ΨMorpho ΣSpectral

1′

([
ΨMorpho ↑
1′ (L↑

0), L
↓
n

])
Residual UNet (UResNet)

L↓n = ΨMorpho ↓
n ΣSpectral

n

(
L↓n−1

)
L↑1 = ΨMorpho

(
L↓n − ΣSpectral

1′

(
ΨMorpho ↑
1′ (L↑0)

))
= ΨMorpho

(
ΨMorpho ↓

n ΣSpectral
n

(
L↓n−1

)
− ΣSpectral

1′

(
ΨMorpho ↑
1′ (L↑0)

))
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Conclusions and Perspectives

Integrated mathematical model of DL from mathematical
morphology viewpoint: better algebraic theoretical understanding of
operators helps to know

which ones can be �factorized� together
which are their �inverses�
which �composition rules� are algebraically consistent
which operators ones can be �switched� between linear and
morphological, etc.

We can study (and potentially) and improve some of the
well-established DL architectures

We can explore new architectures inspired from well-established
morphological image processing pipelines

We did not consider here the optimization viewpoint: which
parameters are more e�ectively learned and in which optimization
framework (optimizers, learning rate, etc.)?
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A few open questions

How e�ective MMBB networks would be to learn the minimal
basis of structuring functions approximating any nonlinear image
transform? How the idea of hierarchical architectures from deep
learning can be used in the case of MMBB networks?

Is there any information on order continuity, on invariance and
�xed points, on decomposition and simpli�cation, etc., which can
be inferred from these uni�ed algebraic models?

What is the expressiveness of deep spectral-morphological
MMBB networks?
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