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o o) = § o TUE) o) 2
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—Quantum Field

Summar Y ® We get:




Comparison Between the Classical and

Quantum Results

S— e C(lassical average over space-time (Flaschka,
:"r‘;l" McLaughlin, Forest):

Saddle Point

Conpe () = j{ Jimay( O(U(2) —Us)  dz
e o(u(z) + ux) T1(z = Mi)
e

s o We get:

(out|t)(0)[in) = C 7{ 6()288 J_rzidz

e [he measure of integration is different but the
object integrated over is the same
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