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• Equilibrium of Stat-Mech and Cond-Mat
Integrable models is solved by TBA

Energy, Entropy, etc. may be obtained

• Non-equilibrium demands knoweldge of matrix
elements
〈in|e

∫
H(t′)dt′|out〉 ⇒ 〈a|O|b〉

• These may often be cast as Slavnov overlaps.
• e.g., 〈θout|ψ(0)|θin〉 =
∑

q2
〈θout|θin \ {θin

q2
}〉
∏

j 6=q2

θin
q2
−θin

j +ıc

θin
q2
−θin

j
.

• We want to compute at N → ∞, with
complexity not scaling with N .
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• Each overlap may be written as a Slavnov or
closely related determinant

• Closely related=Matsuo-Kostov determinant:

〈θ̃|θ〉 = e
ıL
2

∑
j θj−θ̃j det(1− K), Kij =

Ei

ui − uj + ıc

Ei ≡ e−ıLui

∏
k(ui − uk + ıc)
∏

k 6=i(ui − uk)
, u ≡ θ ∪ θ̃
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• We will compute the determinant at N → ∞

• We do so by converting the matrix into an
operator. det(1− K) → det(1 −K).

• We actually compute the resolvent and use:

log det(1− K) = N

∫ ∞

0
tr(1− e−NyK)−1dy − N

• We need to invert 1 − e−NyK, for K.
(We have yet to discuss K)
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• Kij = e−ıLui Qu(ui+ıc)
Q′
u(ui)

1
ui−uj+ıc

• ~ψ → ψ(x) =
∑ ψj

x−uj
, K ~ψ → Kψ =

∑ (K ~ψ)j

x−uj

• Then
∑

j
ψj

ui−uj+ıc = ψ(ui + ıc).

• e−ıLx Qu(x+ıc)
Qu(x) ψ(x + ıc) is a candidate for Kψ.

• More precisely:

(Kψ)(y) =

∮

u

e−ıLx

y − x

Qu(x + ıc)

Qu(x)
ψ(x + ıc)
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(Kψ)(y) =

∮

u

e−ıLx

y − x

Qu(x + ıc)

Qu(x)
ψ(x + ıc)

The K operator is just 1 + K with:

K = PeΦeıc∂

with

eΦ(x) = e−ıLxQu(x + ıc)

Qu(x)
, (Pf)(x) =

∮
f(y)

x − y
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Take:

Ry(λ, uj) ≡ [(1 − e−NyK)−1e(j)](λ).

The trace is given by:

tr(1− e−NyK)−1 =
∑

j

Res
λ→uj

(Ry(λ, uj)) =

=

∮ ∮
Ry(λ,w)

λ − w

dz

2πı

dw

2πı
,

where the w integral surrounds the λ integral.
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• Before showing an approach valid generally for
Thermodynamics let us discuss a limit.

• Semiclassics appears when η, or c (which is
often set to ı) vanishes c → 0.

• In this limit one can show the utility of the
functional approach and check its validity.

• I will briefly discuss two applications

1. The Sutherland limit
2. The Richardson model (equivalent to BCS)
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• The Sutherland limit occurs when a
macroscopic string appears in the spectrum

• The overlap between such states is written as:

〈u|v〉 =

∮
Li2

(
eıcΦ′(z)

)
+

+

∮ ∮
log
(
1 − eıcΦ′(z)

) (
1 − eıcΦ′(z′)

)

(z − z′)2
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• May be obtained by expanding tr log(1 −K)
with

(1 − αK)−1 1

z − w
=
∑

n

αn
(
PeΦeıc∂

)n 1

z − w

which gives

tr(1 − αK)−1 '
∑

n,i

αneıcnΦ′(z)

z − ui + ıcn

∣
∣
∣
∣
∣
z→ui

=

=

∮
log(1 − αeıcΦ′(z))

• Higer order terms gives rise to a Riemann
Hilbert problem.
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•
H =

∑

j,σ

εjc
†
j,σcj,σ −

∑

j,k

Gc†j,↑c
†
j,↓ck,↑ck,↓
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• H =
∑

j

2εjS
z
j − G

∑

j,k

S+
j S−

k

• Also a c → 0 limit with macroscopic strings
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• H =
∑

j

2εjS
z
j − G

∑
S+

j S−
j

•
• Semiclassically: Sz

j =
℘(u∞−uεj

)+℘(u∞+uεj
)+2 η

ω

2
√∏

k εj−λk

• Computing using the Bethe ansatz one obtains:

|〈in−j+p|cj|in〉|
255 =

π2 sin−2(uεj
− u∞ + pτ )

4ω2
√∏

k εj − λk

• Resolution of identity and
∑

p gives agreement.
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255 =

π2 sin−2(uεj
− u∞ + pτ )

4ω2
√∏

k εj − λk

• Resolution of identity and
∑

p gives agreement.
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• To invert the matrix 1− e−NyK, solve:

Ry(z, w) −
∮

eN(Φ(z′)−y)Ry(z
′ + ıc, w)

z − z′
=

1

z − w

with w ∈ u and eNΦ(x) = e−ıLx Qu(x+ıc)
Qu(x)
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The integral equation can be solved in the large N
by first applying a Fourier transform.

1

z − w
=

Ry(z, w) −
∮

eΦ(z′)−NyRy(z
′ + ıc, w)

z − z′
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The integral equation can be solved in the large N
by first applying a Fourier transform.

1

z − w
=

Ry(z, w) −
∮

eΦ(z′)−NyRy(z
′ + ıc, w)

z − z′

For P > 0 this becomes (eNΦ(z) → eıNϕ̃(P )) :

e−ıNPw =

eıNS(P,w) −
∫ ∞

0
eıN [S(Q,w)+ıcQ+ϕ̃(P−Q)]dQ
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e−ıNPw =

eıNS(P,w) −
∫ ∞

0
eıN [S(Q,w)+ıcQ+ϕ̃(P−Q)]dQ

Only one term on the right hand side dominates.

eıNS(P,w) =

{
−e−ıN(Φ(w)+(w+ıc)P ) P < −1

c Im(Φ(w))

e−ıNPw −1
cIm(Φ(w)) < P
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e−ıNPw ?
= −

∫ ∞

0
eıN [S(Q,w)+ıcQ+ϕ̃(P−Q)]dQ

with eıNS(P,w) = −e−ıN(Φ(w)+(w+ıc)P ).

Substitute:

e−ıNPw ?
= e−ıNΦ(w)−ıNPw

∫ ∞

0
eıN [w(P−Q)+ϕ̃(P−Q)]dQ
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e−ıNPw ?
= −

∫ ∞

0
eıN [S(Q,w)+ıcQ+ϕ̃(P−Q)]dQ

with eıNS(P,w) = −e−ıN(Φ(w)+(w+ıc)P ).
Substitute:

e−ıNPw !
= e−ıNΦ(w)−ıNPw

∫ ∞

0
eıN [w(P−Q)+ϕ̃(P−Q)]dQ

︸ ︷︷ ︸
eıNΦ(w)

Which is valid due to a saddle point justification.
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• We have a result for the resolvent for
intermediate c (c ∼ 1).

• One can then compute for example 〈in|ψ|out〉.

• In order to compare with known results we take
small c (but not c ∼ N−1) and compare with
semiclassics.
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• For small c the Bethe ansatz yields a
semiclassical solution.

• Classical inverse scattering deals with a spectral
surface of hyperelliptic type.

• The multi-gap spectral weight on the upper
sheet of an operator from inverse scattering
theory corresponds to density of Bethe roots.
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Consider an elliptic Riemann surface

ψ(x, t) = e
4ηua

π
u(x,t)σ(u(x, t) − ua)

σ(u(x, t) + ua)
, u(x, t) = k(x − vt)
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• Consider a Bethe solution where
ρp

ρs
= χ[λ1,λ2]∪[λ3,λ4] and c small.

• For this case one can solve the Bethe equations
to a given order in c (leading).

• The solution mirrors the classical solution.

• The function Φ(z) apearing in the resolvent:

Φ(z(u)) = ζ(u + u∞) + ζ(u − u∞) − αu,

with ζ(u) = ∂ log σ(u)•

〈out|ψ(0)|in〉 = C

∮
e

4ηua
π u(z)σ(u(z) − ua)

σ(u(z) + ua)
dz
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• Classical average over space-time (Flaschka,
McLaughlin, Forest):

〈ψ(x)〉 =

∮
e

4ηua
π u(z)σ(u(z) − u∞)

σ(u(z) + u∞)

dz
√∏

(z − λi)

• We get:

〈out|ψ(0)|in〉 = C

∮
e

4ηua
π

u(z)σ(u(z) − ua)

σ(u(z) + ua)
dz

• The measure of integration is different but the
object integrated over is the same
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• We compute the matrix elements of the field
operator of the Lieb-Liniger model in the
intermediate c regime.

• We approach the semiclassical limit (but do not
actually take it).

• The comparison is suggestive that the approach
is correct.
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