Matrix Elements of Operators in the Thermodynamic Limit of Rational Integrable Models

E. Bettelheim

Hebrew University, Jerusalem

New mathematical methods in solvable models and gauge/string dualities

BAS, Varna, 19.08.2022

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

Summary

Statement of the Problem

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

Summary

 Equilibrium of Stat-Mech and Cond-Mat Integrable models is solved by TBA

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- Equilibrium of Stat-Mech and Cond-Mat Integrable models is solved by TBA Energy, Entropy, etc. may be obtained
- Non-equilibrium demands knoweldge of matrix elements

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- Equilibrium of Stat-Mech and Cond-Mat Integrable models is solved by TBA Energy, Entropy, etc. may be obtained
- Non-equilibrium demands knoweldge of matrix elements

$$\langle \operatorname{in}|e^{\int H(t')dt'}|\operatorname{out}\rangle \Rightarrow \langle a|\mathcal{O}|b\rangle$$

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- Equilibrium of Stat-Mech and Cond-Mat Integrable models is solved by TBA Energy, Entropy, etc. may be obtained
- Non-equilibrium demands knoweldge of matrix elements $\langle \text{in}|e^{\int H(t')dt'}|\text{out}\rangle \Rightarrow \langle a|\mathcal{O}|b\rangle$
- These may often be cast as Slavnov overlaps.

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- Equilibrium of Stat-Mech and Cond-Mat Integrable models is solved by TBA Energy, Entropy, etc. may be obtained
- Non-equilibrium demands knoweldge of matrix elements

$$\langle \operatorname{in}|e^{\int H(t')dt'}|\operatorname{out}\rangle \Rightarrow \langle a|\mathcal{O}|b\rangle$$

- These may often be cast as Slavnov overlaps.
- e.g., $\langle \boldsymbol{\theta}^{\text{out}} | \psi(0) | \boldsymbol{\theta}^{\text{in}} \rangle = \sum_{q_2} \langle \boldsymbol{\theta}^{\text{out}} | \boldsymbol{\theta}^{\text{in}} \setminus \{\theta_{q_2}^{\text{in}}\} \rangle \prod_{j \neq q_2} \frac{\theta_{q_2}^{\text{in}} \theta_j^{\text{in}} + ic}{\theta_{q_2}^{\text{in}} \theta_j^{\text{in}}}.$

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- Equilibrium of Stat-Mech and Cond-Mat Integrable models is solved by TBA Energy, Entropy, etc. may be obtained
- Non-equilibrium demands knoweldge of matrix elements

$$\langle \operatorname{in}|e^{\int H(t')dt'}|\operatorname{out}\rangle \Rightarrow \langle a|\mathcal{O}|b\rangle$$

- These may often be cast as Slavnov overlaps.
- e.g., $\langle \boldsymbol{\theta}^{\text{out}} | \psi(0) | \boldsymbol{\theta}^{\text{in}} \rangle = \sum_{q_2} \langle \boldsymbol{\theta}^{\text{out}} | \boldsymbol{\theta}^{\text{in}} \setminus \{\theta_{q_2}^{\text{in}}\} \rangle \prod_{j \neq q_2} \frac{\theta_{q_2}^{\text{in}} \theta_j^{\text{in}} + ic}{\theta_{q_2}^{\text{in}} \theta_j^{\text{in}}}.$
- We want to compute at $N \to \infty$, with complexity **not scaling with** N.

Problem

The Functional Approach

The Functional Approach

- -The Operator K
- -Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

Summary

The Functional Approach

Problem

The Functional Approach

The Functional Approach

- -The Operator K
- -Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

Summary

 Each overlap may be written as a Slavnov or closely related determinant

Problem

The Functional Approach

The Functional Approach

- -The Operator K
- -Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

- Each overlap may be written as a Slavnov or closely related determinant
- Closely related=Matsuo-Kostov determinant:

$$\langle \tilde{\boldsymbol{\theta}} | \boldsymbol{\theta} \rangle = e^{\frac{iL}{2} \sum_{j} \theta_{j} - \tilde{\theta}_{j}} \det(\mathbb{1} - K), \quad K_{ij} = \frac{E_{i}}{u_{i} - u_{j} + ic}$$

$$E_i \equiv e^{-iLu_i} \frac{\prod_k (u_i - u_k + ic)}{\prod_{k \neq i} (u_i - u_k)}, \qquad \boldsymbol{u} \equiv \boldsymbol{\theta} \cup \tilde{\boldsymbol{\theta}}$$

Problem

The Functional Approach

The Functional Approach

- -The Operator K
- -Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

Summary

• We will compute the determinant at $N \to \infty$

Problem

The Functional Approach

The Functional Approach

- -The Operator K
- -Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

- We will compute the determinant at $N \to \infty$
- We do so by converting the matrix into an operator. $\det(1-K) \to \det(1-K)$.

Problem

The Functional Approach

The Functional Approach

- -The Operator K
- -Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

- We will compute the determinant at $N \to \infty$
- We do so by converting the matrix into an operator. $\det(\mathbb{1}-K) \to \det(\mathbb{1}-K)$.
- We actually compute the resolvent and use:

$$\log \det(\mathbb{1} - K) = N \int_0^\infty \mathsf{tr}(\mathbb{1} - e^{-Ny}K)^{-1} dy - N$$

Problem

The Functional Approach

The Functional Approach

- –The Operator K
- -Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

Summarv

- We will compute the determinant at $N \to \infty$
- We do so by converting the matrix into an operator. $\det(\mathbb{1}-K) \to \det(\mathbb{1}-K)$.
- We actually compute the resolvent and use:

$$\log \det(\mathbb{1} - K) = N \int_0^\infty \text{tr}(\mathbb{1} - e^{-Ny}K)^{-1} dy - N$$

• We need to invert $1 - e^{-Ny}\mathcal{K}$, for \mathcal{K} . (We have yet to discuss \mathcal{K})

Problem

The Functional Approach

The Functional Approach

–The Operator K

-Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

$$\bullet \quad K_{ij} = e^{-iLu_i} \frac{Q_{\mathbf{u}}(u_i + ic)}{Q'_{\mathbf{u}}(u_i)} \frac{1}{u_i - u_j + ic}$$

Problem

The Functional Approach

The Functional Approach

-The Operator K

-Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

•
$$K_{ij} = e^{-iLu_i} \frac{Q_{\boldsymbol{u}}(u_i + ic)}{Q'_{\boldsymbol{u}}(u_i)} \frac{1}{u_i - u_j + ic}$$
•
$$\vec{\psi} \to \psi(x) = \sum_{i} \frac{\psi_j}{x - u_j},$$

•
$$\vec{\psi} \to \psi(x) = \sum \frac{\psi_j}{x - u_j}$$

Problem

The Functional Approach

The Functional Approach

-The Operator K

-Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

Summarv

$$\bullet \quad K_{ij} = e^{-\imath L u_i} \frac{Q_{\mathbf{u}}(u_i + \imath c)}{Q'_{\mathbf{u}}(u_i)} \frac{1}{u_i - u_j + \imath c}$$

•
$$K_{ij} = e^{-iLu_i} \frac{Q_{\boldsymbol{u}}(u_i+ic)}{Q'_{\boldsymbol{u}}(u_i)} \frac{1}{u_i-u_j+ic}$$
•
$$\vec{\psi} \to \psi(x) = \sum_{i} \frac{\psi_j}{x-u_j}, \quad K\vec{\psi} \to \mathcal{K}\psi = \sum_{i} \frac{(K\vec{\psi})_j}{x-u_j}$$

Problem

The Functional Approach

The Functional Approach

-The Operator K

-Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

$$\bullet \quad K_{ij} = e^{-\imath L u_i} \frac{Q_{\mathbf{u}}(u_i + \imath c)}{Q'_{\mathbf{u}}(u_i)} \frac{1}{u_i - u_j + \imath c}$$

•
$$\vec{\psi} \to \psi(x) = \sum \frac{\psi_j}{x - u_j}$$
, $K\vec{\psi} \to \mathcal{K}\psi = \sum \frac{(K\vec{\psi})_j}{x - u_j}$

• Then
$$\sum_{j} \frac{\psi_{j}}{u_{i}-u_{j}+\imath c} = \psi(u_{i}+\imath c)$$
.

Problem

The Functional Approach

The Functional Approach

-The Operator K

-Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

$$\bullet \quad K_{ij} = e^{-iLu_i} \frac{Q_{\mathbf{u}}(u_i + ic)}{Q'_{\mathbf{u}}(u_i)} \frac{1}{u_i - u_j + ic}$$

•
$$\vec{\psi} \to \psi(x) = \sum \frac{\psi_j}{x - u_j}$$
, $K\vec{\psi} \to \mathcal{K}\psi = \sum \frac{(K\vec{\psi})_j}{x - u_j}$

• Then
$$\sum_{j} \frac{\psi_{j}}{u_{i}-u_{j}+\imath c} = \psi(u_{i}+\imath c)$$
.

•
$$e^{-\imath Lx} \frac{Q_{\boldsymbol{u}}(x+\imath c)}{Q_{\boldsymbol{u}}(x)} \psi(x+\imath c)$$
 is a candidate for $\mathcal{K}\psi$.

Problem

The Functional Approach

The Functional Approach

-The Operator K

-Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

$$\bullet \quad K_{ij} = e^{-iLu_i} \frac{Q_{\mathbf{u}}(u_i + ic)}{Q'_{\mathbf{u}}(u_i)} \frac{1}{u_i - u_j + ic}$$

•
$$\vec{\psi} \to \psi(x) = \sum \frac{\psi_j}{x - u_j}$$
, $K\vec{\psi} \to \mathcal{K}\psi = \sum \frac{(K\vec{\psi})_j}{x - u_j}$

- Then $\sum_{j} \frac{\psi_{j}}{u_{i}-u_{j}+\imath c} = \psi(u_{i}+\imath c)$.
- $e^{-\imath Lx} \frac{Q_{\boldsymbol{u}}(x+\imath c)}{Q_{\boldsymbol{u}}(x)} \psi(x+\imath c)$ is a candidate for $\mathcal{K}\psi$.
- More precisely:

$$(\mathcal{K}\psi)(y) = \oint_{\mathbf{u}} \frac{e^{-\imath Lx}}{y - x} \frac{Q_{\mathbf{u}}(x + \imath c)}{Q_{\mathbf{u}}(x)} \psi(x + \imath c)$$

Problem

The Functional Approach

The Functional Approach

-The Operator K

-Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

Summary

$$(\mathcal{K}\psi)(y) = \oint_{\mathbf{u}} \frac{e^{-\imath Lx}}{y - x} \frac{Q_{\mathbf{u}}(x + \imath c)}{Q_{\mathbf{u}}(x)} \psi(x + \imath c)$$

The K operator is just 1 + K with:

$$\mathcal{K} = \mathcal{P}e^{\Phi}e^{\imath c\partial}$$

with

$$e^{\Phi(x)} = e^{-iLx} \frac{Q_{\mathbf{u}}(x+ic)}{Q_{\mathbf{u}}(x)}, \quad (\mathcal{P}f)(x) = \oint \frac{f(y)}{x-y}$$

Taking the Trace of the Resolvent

Problem

The Functional Approach

The Functional Approach

-The Operator K

-Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

Summary

Take:

$$R_y(\lambda, u_j) \equiv [(1 - e^{-Ny}K)^{-1} \boldsymbol{e}^{(j)}](\lambda).$$

Taking the Trace of the Resolvent

Problem

The Functional Approach

The Functional Approach

-The Operator K

-Trace

Semiclassica

Saddle Point

Comparison to Semiclassics

Summary

Take:

$$R_y(\lambda, u_j) \equiv [(1 - e^{-Ny}K)^{-1} \mathbf{e}^{(j)}](\lambda).$$

The trace is given by:

$$\operatorname{tr}(\mathbb{1} - e^{-Ny}K)^{-1} = \sum_{j} \operatorname{Res}_{\lambda \to u_{j}}(R_{y}(\lambda, u_{j})) =$$

$$= \oint \oint \frac{R_{y}(\lambda, w)}{\lambda - w} \frac{dz}{2\pi i} \frac{dw}{2\pi i},$$

where the w integral surrounds the λ integral.

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland

Richardson

Saddle Point

Comparison to Semiclassics

Summary

Semiclassical limit

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland Richardson

Saddle Point

Comparison to Semiclassics

Summary

 Before showing an approach valid generally for Thermodynamics let us discuss a limit.

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland Richardson

Saddle Point

Comparison to Semiclassics

- Before showing an approach valid generally for Thermodynamics let us discuss a limit.
- Semiclassics appears when η , or c (which is often set to i) vanishes $c \to 0$.

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland Richardson

Saddle Point

Comparison to Semiclassics

- Before showing an approach valid generally for Thermodynamics let us discuss a limit.
- Semiclassics appears when η , or c (which is often set to i) vanishes $c \to 0$.
- In this limit one can show the utility of the functional approach and check its validity.

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland Richardson

Saddle Point

Comparison to Semiclassics

- Before showing an approach valid generally for Thermodynamics let us discuss a limit.
- Semiclassics appears when η , or c (which is often set to i) vanishes $c \to 0$.
- In this limit one can show the utility of the functional approach and check its validity.
- I will briefly discuss two applications

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland Richardson

Saddle Point

Comparison to Semiclassics

- Before showing an approach valid generally for Thermodynamics let us discuss a limit.
- Semiclassics appears when η , or c (which is often set to i) vanishes $c \to 0$.
- In this limit one can show the utility of the functional approach and check its validity.
- I will briefly discuss two applications
 - 1. The Sutherland limit

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland Richardson

Saddle Point

Comparison to Semiclassics

- Before showing an approach valid generally for Thermodynamics let us discuss a limit.
- Semiclassics appears when η , or c (which is often set to i) vanishes $c \to 0$.
- In this limit one can show the utility of the functional approach and check its validity.
- I will briefly discuss two applications
 - 1. The Sutherland limit
 - 2. The Richardson model (equivalent to BCS)

The Sutherland limit

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland

Richardson

Saddle Point

Comparison to Semiclassics

Summary

 The Sutherland limit occurs when a macroscopic string appears in the spectrum

The Sutherland limit

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland

Richardson

Saddle Point

Comparison to Semiclassics

Summary

 The Sutherland limit occurs when a macroscopic string appears in the spectrum

• The overlap between such states is written as:

$$\langle u|v\rangle = \oint \operatorname{Li}_{2}\left(e^{ic\Phi'(z)}\right) +$$

$$+ \oint \oint \frac{\log\left(1 - e^{ic\Phi'(z)}\right)\left(1 - e^{ic\Phi'(z')}\right)}{(z - z')^{2}}$$

Technique for Sutherland case

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland

Richardson

Saddle Point

Comparison to Semiclassics

Summary

• May be obtained by expanding $\operatorname{tr} \log (1 - \mathcal{K})$ with

$$(1 - \alpha \mathcal{K})^{-1} \frac{1}{z - w} = \sum_{n} \alpha^{n} \left(\mathcal{P} e^{\Phi} e^{ic\partial} \right)^{n} \frac{1}{z - w}$$

Technique for Sutherland case

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland

Richardson

Saddle Point

Comparison to Semiclassics

Summary

• May be obtained by expanding $\operatorname{tr} \log (1 - \mathcal{K})$ with

$$(1 - \alpha \mathcal{K})^{-1} \frac{1}{z - w} = \sum_{n} \alpha^{n} \left(\mathcal{P} e^{\Phi} e^{ic\partial} \right)^{n} \frac{1}{z - w}$$

which gives

$$\operatorname{tr}(1 - \alpha \mathcal{K})^{-1} \simeq \left. \sum_{n,i} \frac{\alpha^n e^{icn\Phi'(z)}}{z - u_i + icn} \right|_{z \to u_i} =$$

Technique for Sutherland case

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland

Richardson

Saddle Point

Comparison to Semiclassics

Summary

• May be obtained by expanding $\operatorname{tr} \log (1 - \mathcal{K})$ with

$$(1 - \alpha \mathcal{K})^{-1} \frac{1}{z - w} = \sum_{n} \alpha^{n} \left(\mathcal{P} e^{\Phi} e^{ic\partial} \right)^{n} \frac{1}{z - w}$$

which gives

$$\operatorname{tr}(1 - \alpha \mathcal{K})^{-1} \simeq \sum_{n,i} \frac{\alpha^n e^{icn\Phi'(z)}}{z - u_i + icn} \bigg|_{z \to u_i} = \int \log(1 - \alpha e^{ic\Phi'(z)})$$

Technique for Sutherland case

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland

Richardson

Saddle Point

Comparison to Semiclassics

Summary

• May be obtained by expanding $\operatorname{tr} \log (1 - \mathcal{K})$ with

$$(1 - \alpha \mathcal{K})^{-1} \frac{1}{z - w} = \sum_{n} \alpha^{n} \left(\mathcal{P} e^{\Phi} e^{ic\partial} \right)^{n} \frac{1}{z - w}$$

which gives

$$\operatorname{tr}(1 - \alpha \mathcal{K})^{-1} \simeq \sum_{n,i} \frac{\alpha^n e^{icn\Phi'(z)}}{z - u_i + icn} \bigg|_{z \to u_i} = \int \log(1 - \alpha e^{ic\Phi'(z)})$$

• Higer order terms gives rise to a Riemann Hilbert problem.

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland

Richardson

Saddle Point

Comparison to Semiclassics

$$H = \sum_{j,\sigma} \varepsilon_j c_{j,\sigma}^{\dagger} c_{j,\sigma} - \sum_{j,k} G c_{j,\uparrow}^{\dagger} c_{j,\downarrow}^{\dagger} c_{k,\uparrow} c_{k,\downarrow}$$

The Functional Approach

Semiclassica

Semiclassics

Sutherland

Richardson

Saddle Point

Comparison to Semiclassics

$$H = \sum_{j} 2\varepsilon_{j} S_{j}^{z} - G \sum_{j,k} S_{j}^{+} S_{k}^{-}$$

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland

Richardson

Saddle Point

Comparison to Semiclassics

$$H = \sum_j 2\varepsilon_j S_j^z - G \sum_{j,k} S_j^+ S_k^-$$
 Also a $c \to 0$ limit with macroscopic strings

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland

Richardson

Saddle Point

Comparison to Semiclassics

Summary

$$H = \sum_{i} 2\varepsilon_{j} S_{j}^{z} - G \sum_{i} S_{j}^{+} S_{j}^{-}$$

 $\bullet \quad \text{Semiclassically:} \ S_j^z = \frac{\wp(u_\infty - u_{\varepsilon_j}) + \wp(u_\infty + u_{\varepsilon_j}) + 2\frac{\eta}{\omega}}{2\sqrt{\prod_k \varepsilon_j - \lambda_k}}$

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland

Richardson

Saddle Point

Comparison to Semiclassics

$$H = \sum_{i} 2\varepsilon_{j} S_{j}^{z} - G \sum_{i} S_{j}^{+} S_{j}^{-}$$

- Semiclassically: $S_j^z = \frac{\wp(u_\infty u_{\varepsilon_j}) + \wp(u_\infty + u_{\varepsilon_j}) + 2\frac{\eta}{\omega}}{2\sqrt{\prod_k \varepsilon_j \lambda_k}}$
- Computing using the Bethe ansatz one obtains:

$$|\langle \operatorname{in} - j + p | c_j | \operatorname{in} \rangle|^2 55 = \frac{\pi^2 \sin^{-2} (u_{\varepsilon_j} - u_{\infty} + p\tau)}{4\omega^2 \sqrt{\prod_k \varepsilon_j - \lambda_k}}$$

Problem

The Functional Approach

Semiclassica

Semiclassics

Sutherland

Richardson

Saddle Point

Comparison to Semiclassics

Summary

$$H = \sum_{i} 2\varepsilon_{j} S_{j}^{z} - G \sum_{i} S_{j}^{+} S_{j}^{-}$$

- $\bullet \quad \text{Semiclassically:} \ S_j^z = \frac{\wp(u_\infty u_{\varepsilon_j}) + \wp(u_\infty + u_{\varepsilon_j}) + 2\frac{\eta}{\omega}}{2\sqrt{\prod_k \varepsilon_j \lambda_k}}$
- Computing using the Bethe ansatz one obtains:

$$|\langle \operatorname{in} - j + p | c_j | \operatorname{in} \rangle|^2 55 = \frac{\pi^2 \sin^{-2} (u_{\varepsilon_j} - u_{\infty} + p\tau)}{4\omega^2 \sqrt{\prod_k \varepsilon_j - \lambda_k}}$$

• Resolution of identity and \sum_{p} gives agreement.

Problem

The Functional Approach

Semiclassica

Saddle Point

- -Fourier Transform
- -Ansatz
- -Substitution

Comparison to Semiclassics

Summary

Solution through Saddle Point

Solution through Saddle Point

Problem

The Functional Approach

Semiclassica

Saddle Point

- -Fourier Transform
- -Ansatz
- -Substitution

Comparison to Semiclassics

Summary

• To invert the matrix $1 - e^{-Ny}K$, solve:

$$R_y(z, w) - \oint \frac{e^{N(\Phi(z')-y)}R_y(z'+ic, w)}{z-z'} = \frac{1}{z-w}$$

with
$$w \in \boldsymbol{u}$$
 and $e^{N\Phi(x)} = e^{-\imath Lx} \frac{Q_{\boldsymbol{u}}(x+\imath c)}{Q_{\boldsymbol{u}}(x)}$

Solution through Saddle Point

Problem

The Functional Approach

Semiclassica

Saddle Point

- -Fourier Transform
- -Ansatz
- -Substitution

Comparison to Semiclassics

Summary

• To invert the matrix $1 - e^{-Ny}K$, solve:

$$R_y(z, w) - \oint \frac{e^{N(\Phi(z')-y)}R_y(z'+ic, w)}{z-z'} = \frac{1}{z-w}$$

with
$$w \in u$$
 and $e^{N\Phi(x)} = e^{-\imath Lx} \frac{Q_{\boldsymbol{u}}(x+\imath c)}{Q_{\boldsymbol{u}}(x)}$

Solution through Saddle Point

Problem

The Functional Approach

Semiclassica

Saddle Point

- -Fourier Transform
- -Ansatz
- -Substitution

Comparison to Semiclassics

Summary

• To invert the matrix $1 - e^{-Ny}K$, solve:

$$R_y(z, w) - \oint \frac{e^{N(\Phi(z')-y)}R_y(z'+ic, w)}{z-z'} = \frac{1}{z-w}$$

with
$$w \in u$$
 and $e^{N\Phi(x)} = e^{-\imath Lx} \frac{Q_{\boldsymbol{u}}(x+\imath c)}{Q_{\boldsymbol{u}}(x)}$

Fourier Transformed Integral Equation

Problem

The Functional Approach

Semiclassica

Saddle Point

-Fourier Transform

- -Ansatz
- -Substitution

Comparison to Semiclassics

Summary

The integral equation can be solved in the large N by first applying a Fourier transform.

$$\frac{1}{z-w} = R_y(z,w) - \oint \frac{e^{\Phi(z')-Ny}R_y(z'+\imath c,w)}{z-z'}$$

$$\oint e^{-NiPz} R_y(z, w) = e^{NS(P, w)}$$

$$\oint e^{N(\Phi(z) - iPz)} = e^{N\tilde{\varphi}(P)}$$

Fourier Transformed Integral Equation

Problem

The Functional Approach

Semiclassica

Saddle Point

-Fourier Transform

- -Ansatz
- -Substitution

Comparison to Semiclassics

Summary

The integral equation can be solved in the large N by first applying a Fourier transform.

$$\frac{1}{z-w} = R_y(z,w) - \oint \frac{e^{\Phi(z')-Ny}R_y(z'+\imath c,w)}{z-z'}$$

For
$$P>0$$
 this becomes $(e^{N\Phi(z)} \to e^{\imath N\tilde{\varphi}(P)})$:

$$e^{-iNPw} =$$

$$e^{iNS(P,w)} - \int_0^\infty e^{iN[S(Q,w) + icQ + \tilde{\varphi}(P-Q)]} dQ$$

Ansatz for Solving the Integral Equation

Problem

The Functional Approach

Semiclassica

Saddle Point

-Fourier Transform

-Ansatz

-Substitution

Comparison to Semiclassics

Summary

$$e^{-iNPw} = e^{iNS(P,w)} - \int_0^\infty e^{iN[S(Q,w) + icQ + \tilde{\varphi}(P-Q)]} dQ$$

Only one term on the right hand side dominates.

Ansatz for Solving the Integral Equation

Problem

The Functional Approach

Semiclassica

Saddle Point

-Fourier Transform

-Ansatz

-Substitution

Comparison to Semiclassics

Summary

$$e^{-iNPw} = e^{iNS(P,w)} - \int_0^\infty e^{iN[S(Q,w) + icQ + \tilde{\varphi}(P-Q)]} dQ$$

Only one term on the right hand side dominates.

$$e^{iNS(P,w)} = \begin{cases} -e^{-iN(\Phi(w) + (w+ic)P)} & P < -\frac{1}{c}\operatorname{Im}(\Phi(w)) \\ e^{-iNPw} & -\frac{1}{c}\operatorname{Im}(\Phi(w)) < P \end{cases}$$

Problem

The Functional Approach

Semiclassica

Saddle Point

-Fourier Transform

-Ansatz

-Substitution

Comparison to Semiclassics

$$e^{-iNPw} \stackrel{?}{=} -\int_0^\infty e^{iN[S(Q,w) + icQ + \tilde{\varphi}(P-Q)]} dQ$$

with
$$e^{iNS(P,w)} = -e^{-iN(\Phi(w)+(w+ic)P)}$$
.

Problem

The Functional Approach

Semiclassica

Saddle Point

-Fourier Transform

-Ansatz

-Substitution

Comparison to Semiclassics

Summary

$$e^{-iNPw} \stackrel{?}{=} -\int_0^\infty e^{iN[S(Q,w)+icQ+\tilde{\varphi}(P-Q)]}dQ$$

with $e^{\imath NS(P,w)}=-e^{-\imath N(\Phi(w)+(w+\imath c)P)}.$ Substitute:

$$e^{-iNPw} \stackrel{?}{=} e^{-iN\Phi(w)-iNPw} \int_{0}^{\infty} e^{iN[w(P-Q)+\tilde{\varphi}(P-Q)]} dQ$$

Problem

The Functional Approach

Semiclassica

Saddle Point

-Fourier Transform

-Ansatz

-Substitution

Comparison to Semiclassics

Summary

$$e^{-iNPw} \stackrel{?}{=} -\int_0^\infty e^{iN[S(Q,w) + icQ + \tilde{\varphi}(P-Q)]} dQ$$

with $e^{\imath NS(P,w)}=-e^{-\imath N(\Phi(w)+(w+\imath c)P)}.$ Substitute:

$$e^{-iNPw} \stackrel{!}{=} e^{-iN\Phi(w) - iNPw} \underbrace{\int_{0}^{\infty} e^{iN[w(P-Q) + \tilde{\varphi}(P-Q)]} dQ}_{e^{iN\Phi(w)}}$$

Problem

The Functional Approach

Semiclassica

Saddle Point

-Fourier Transform

-Ansatz

-Substitution

Comparison to Semiclassics

Summary

$$e^{-iNPw} \stackrel{?}{=} -\int_0^\infty e^{iN[S(Q,w)+icQ+\tilde{\varphi}(P-Q)]}dQ$$

with $e^{\imath NS(P,w)}=-e^{-\imath N(\Phi(w)+(w+\imath c)P)}.$ Substitute:

$$e^{-iNPw} \stackrel{!}{=} e^{-iN\Phi(w)-iNPw} \underbrace{\int_0^\infty e^{iN[w(P-Q)+\tilde{\varphi}(P-Q)]} dQ}_{e^{iN\Phi(w)}}$$

Which is valid due to a saddle point justification.

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- -Semiclassics
- -Semiclassical Field
- -Quantum Field
- -Comparison

Summary

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- -Semiclassics
- -Semiclassical Field
- -Quantum Field
- -Comparison
- Summary

• We have a result for the resolvent for intermediate c ($c \sim 1$).

Problem

The Functional Approach

Semiclassica

Saddle Point

- -Semiclassics
- -Semiclassical Field
- -Quantum Field
- -Comparison
- Summary

- We have a result for the resolvent for intermediate c ($c \sim 1$).
- One can then compute for example $\langle \operatorname{in}|\psi|\operatorname{out}\rangle$.

Problem

The Functional Approach

Semiclassica

Saddle Point

- -Semiclassics
- -Semiclassical Field
- -Quantum Field
- -Comparison
- Summary

- We have a result for the resolvent for intermediate c ($c \sim 1$).
- One can then compute for example $\langle \operatorname{in}|\psi|\operatorname{out}\rangle$.
- In order to compare with known results we take small c (but not $c \sim N^{-1}$) and compare with semiclassics.

Problem

The Functional Approach

Semiclassica

Saddle Point

- -Semiclassics
- -Semiclassical Field
- -Quantum Field
- -Comparison
- Summary

- We have a result for the resolvent for intermediate c ($c \sim 1$).
- One can then compute for example $\langle \operatorname{in}|\psi|\operatorname{out}\rangle$.
- In order to compare with known results we take small c (but not $c \sim N^{-1}$) and compare with semiclassics.

Semiclassics

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

-Semiclassics

- -Semiclassical Field
- -Quantum Field
- -Comparison
- Summary

• For small c the Bethe ansatz yields a semiclassical solution.

Semiclassics

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

-Semiclassics

- -Semiclassical Field
- -Quantum Field
- -Comparison
- Summary

- For small c the Bethe ansatz yields a semiclassical solution.
- Classical inverse scattering deals with a spectral surface of hyperelliptic type.

Semiclassics

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

-Semiclassics

- -Semiclassical Field
- -Quantum Field
- -Comparison

- For small c the Bethe ansatz yields a semiclassical solution.
- Classical inverse scattering deals with a spectral surface of hyperelliptic type.
- The multi-gap spectral weight on the upper sheet of an operator from inverse scattering theory corresponds to density of Bethe roots.

The Semiclassics Field

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

-Semiclassics

-Semiclassical Field

- -Quantum Field
- -Comparison

Summary

Consider an elliptic Riemann surface

The Semiclassics Field

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

-Semiclassics

-Semiclassical Field

- -Quantum Field
- -Comparison

Summary

Consider an elliptic Riemann surface

$$\psi(x,t) = e^{\frac{4\eta u_a}{\pi}u(x,t)} \frac{\sigma(u(x,t) - u_a)}{\sigma(u(x,t) + u_a)}, \quad u(x,t) = k(x - vt)$$

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- -Semiclassics
- -Semiclassical Field

-Quantum Field

-Comparison

Summary

• Consider a Bethe solution where $\frac{\rho_p}{\rho_s} = \chi_{[\lambda_1, \lambda_2] \cup [\lambda_3, \lambda_4]}$ and c small.

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- -Semiclassics
- -Semiclassical Field

-Quantum Field

-Comparison

- Consider a Bethe solution where $\frac{\rho_p}{\rho_s} = \chi_{[\lambda_1, \lambda_2] \cup [\lambda_3, \lambda_4]}$ and c small.
- For this case one can solve the Bethe equations to a given order in c (leading).

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- -Semiclassics
- -Semiclassical Field

-Quantum Field

-Comparison

- Consider a Bethe solution where $\frac{\rho_p}{\rho_s} = \chi_{[\lambda_1, \lambda_2] \cup [\lambda_3, \lambda_4]}$ and c small.
- For this case one can solve the Bethe equations to a given order in c (leading).
- The solution mirrors the classical solution.

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- -Semiclassics
- -Semiclassical Field

–Quantum Field

-Comparison

- Consider a Bethe solution where $\frac{\rho_p}{\rho_s} = \chi_{[\lambda_1, \lambda_2] \cup [\lambda_3, \lambda_4]}$ and c small.
- For this case one can solve the Bethe equations to a given order in c (leading).
- The solution mirrors the classical solution.
- The function $\Phi(z)$ apearing in the resolvent:

$$\Phi(z(u)) = \zeta(u + u_{\infty}) + \zeta(u - u_{\infty}) - \alpha u,$$

with
$$\zeta(u) = \partial \log \sigma(u)$$

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- -Semiclassics
- -Semiclassical Field

-Quantum Field

-Comparison

Summary

- Consider a Bethe solution where $\frac{\rho_p}{\rho_s} = \chi_{[\lambda_1, \lambda_2] \cup [\lambda_3, \lambda_4]}$ and c small.
- For this case one can solve the Bethe equations to a given order in c (leading).
- The solution mirrors the classical solution.
- The function $\Phi(z)$ apearing in the resolvent:

$$\Phi(z(u)) = \zeta(u + u_{\infty}) + \zeta(u - u_{\infty}) - \alpha u,$$

• with $\zeta(u) = \partial \log \sigma(u)$

$$\langle \operatorname{out} | \psi(0) | \operatorname{in} \rangle = C \oint e^{\frac{4\eta u_a}{\pi} u(z)} \frac{\sigma(u(z) - u_a)}{\sigma(u(z) + u_a)} dz$$

Comparison Between the Classical and Quantum Results

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- -Semiclassics
- -Semiclassical Field
- -Quantum Field

-Comparison

Summary

 Classical average over space-time (Flaschka, McLaughlin, Forest):

$$\langle \psi(x) \rangle = \oint e^{\frac{4\eta u_a}{\pi} u(z)} \frac{\sigma(u(z) - u_\infty)}{\sigma(u(z) + u_\infty)} \frac{dz}{\sqrt{\prod(z - \lambda_i)}}$$

Comparison Between the Classical and Quantum Results

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- -Semiclassics
- -Semiclassical Field
- -Quantum Field

-Comparison

Summary

 Classical average over space-time (Flaschka, McLaughlin, Forest):

$$\langle \psi(x) \rangle = \oint e^{\frac{4\eta u_a}{\pi} u(z)} \frac{\sigma(u(z) - u_\infty)}{\sigma(u(z) + u_\infty)} \frac{dz}{\sqrt{\prod(z - \lambda_i)}}$$

• We get:

$$\langle \operatorname{out} | \psi(0) | \operatorname{in} \rangle = C \oint e^{\frac{4\eta u_a}{\pi} u(z)} \frac{\sigma(u(z) - u_a)}{\sigma(u(z) + u_a)} dz$$

Comparison Between the Classical and Quantum Results

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- -Semiclassics
- -Semiclassical Field
- -Quantum Field

-Comparison

Summary

 Classical average over space-time (Flaschka, McLaughlin, Forest):

$$\langle \psi(x) \rangle = \oint e^{\frac{4\eta u_a}{\pi} u(z)} \frac{\sigma(u(z) - u_\infty)}{\sigma(u(z) + u_\infty)} \frac{dz}{\sqrt{\prod(z - \lambda_i)}}$$

• We get:

$$\langle \operatorname{out}|\psi(0)|\operatorname{in}\rangle = C \oint e^{\frac{4\eta u_a}{\pi}u(z)} \frac{\sigma(u(z) - u_a)}{\sigma(u(z) + u_a)} dz$$

 The measure of integration is different but the object integrated over is the same Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

Summary

Summary

Problem

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

Summary

 We compute the matrix elements of the field operator of the Lieb-Liniger model in the intermediate c regime.

Summary

Probl	em
-------	----

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- We compute the matrix elements of the field operator of the Lieb-Liniger model in the intermediate c regime.
- We approach the semiclassical limit (but do not actually take it).

Summary

The Functional Approach

Semiclassica

Saddle Point

Comparison to Semiclassics

- We compute the matrix elements of the field operator of the Lieb-Liniger model in the intermediate c regime.
- We approach the semiclassical limit (but do not actually take it).
- The comparison is suggestive that the approach is correct.