D-branes on T-folds with few T's

Massimo BIANCHI

Università di Roma "Tor Vergata" - INFN CERN Theory Division Talk at 4-th EU RTN Workshop Varna, Bulgaria

September 11, 2008

Massimo BIANCHI

CERN - Roma ToV - INFN

Foreword

- Most mechanisms of moduli stabilization require (R-R) fluxes that are poorly understood in string theory
- Yet, in asymmetric orbifolds or alike, chiral twists freeze untwisted moduli, non-geometric shifts prevent massless twisted moduli [Dabholkar, Hull; Dine, Silverstein; Kumar, Vafa; ...M.B., Morales, Pradisi]
- The combined effect of twists and shifts has not been systematically explored in the context of unoriented strings
- Expect duality between (D-branes in) non-geometric vacua and (D-branes in) flux compactifications, at least for extended susy $(N \ge 3)$

Plan

Part I: Unoriented twists and shifts [Anastasopoulos, MB, Morales, Pradisi (w.i.p.)]

- Unoriented T-folds with few T's
- ► Two simple examples based on T⁶_{SO(12)}/Z^L₂ × Z^R₂ × Z'^L₂ × Z'^R₂: ► "h₁₁" = "h₂₁" = 1 (self-mirror) ► "h₁₁" = 0, "h₂₁" = 6 and its "mirror" (discrete torsion)
 ► Partial moduli stabilization, rank reduction, non-chiral ...

Part II: Bound-states of D-branes in L-R asymmetric vacua

- Residual susy and R-R couplings
- $\mathcal{N} = 6 = 2_{L} + 4_{R}$ and other extended susy cases
- Open string excitations

Outlook and Announcements

Massimo BIANCHI

Part I: Unoriented twists and shifts

Massimo BIANCHI

Unoriented T-folds with few T's

CDMP model [Camara, Dudas, Maillard, Pradisi; Vafa, Witten]: standard geometric freely acting orbifold $T^6/Z_2 \times Z_2$, Type I / Heterotic dual pairs All twisted moduli are massive. Only untwisted moduli T_I , U_I , Combine with gaugino condensate(s) in open string sector and/or 3-form fluxes to partially stabilize dilaton and other moduli. **DJK 'minimal' model** [Dolivet, Julia, Kounnas]: (non-magic) hyper-free model, fermionic construction

$$G = \psi^{\mu} \partial X_{\mu} + \chi^{i} y^{i} w^{i}$$

Fermionic basis sets [Antoniadis, Ellis, Hagelin, Nanopoulos; ... Faraggi, Kounnas; ...] :
$$\begin{split} F, S, \bar{S}, \ \bar{b}_1, \ b_1 &= \{\psi^{\mu}, \chi^{1,2}; y^{3,4,5,6}, y^1 w^1 | \bar{y}^5 \bar{w}^5 \}, \\ b_2 &= \{\psi^{\mu}, \chi^{3,4}; y^{1,2}, w^{5,6} y^3 w^3 | \bar{y}^6 \bar{w}^6 \}, \\ b_3 &= \{\psi^{\mu}, \chi^{5,6}; w^{1,2,3,4} y^6 w^6 | \bar{y}^6 \bar{w}^6 \} \\ \end{split}$$
Only dilaton vector-multiplet survives. $\mathcal{N}_L = 0$, L-R asymmetric $(-)^{F_L} \sigma$ freely acting orbifold of $T^6_{SO(12)}, y^i w^i \approx \text{shifts.}$

Combining DJK and CDMP

Replace b_3 with b_2 , get a L-R symmetric asymmetric orbifold. Geometric (freely acting) projections associated to $b_1\bar{b}_1$ and $b_2\bar{b}_2$. Non geometric (freely acting) projections associated to $b_1, b_2, ... b_1\bar{b}_2$.

All untwisted moduli except dilaton hypermultiplet are projected out ($N_L = N_R = 1, N_{tot} = 2$).

Massless multiplets only from $b_1b_2\overline{b_1}\overline{b_2}$ twisted sector: one hyper and one vector, " h_{11} " = " h_{21} " = 1 ($\mathcal{HOLYGRAIL}$ [Szendroi, Gross]) Unoriented projection produces $1_u + 2_t - n$ chiral-plets and nvector-plets (n = 0, 1)

Open string spectrum: non chiral, rank reduction from B-field. Systematic study under way. For MSSM embeddings [Kiritsis, Schellekens] Combine with (non) anomalous U(1)'s, fluxes, (non)geometric D-brane instantons (gaugino condensation, ADS-like

superpotentials, ...) [Blumenhagen's, Dudas's, Cvetic's talks]

$T^{6}/(Z_{2L} \times Z'_{2L} \times Z_{2R} \times Z'_{2R})$ model with " h_{11} " = " h_{21} " = 1

Generators of the orbifold group specified by the fermionic sets

Introducing

 $\begin{array}{rclcrcrcrcrcrc} g_3 & = & g_1g_2 = \{\chi_{1234} ; & y_{2456} ; & w_{1356} & | & ; & \tilde{y}_{56} ; & \tilde{w}_{56} \} \\ \tilde{g}_3 & = & \tilde{g}_1\tilde{g}_2 = \{ & ; & y_{56} ; & w_{56} & |\tilde{\chi}_{1234} ; & \tilde{y}_{2456} ; & \tilde{w}_{1356} \} \end{array}$

the generic orbifold group element can be written as $g_m^a \tilde{g}_n^b$ with m, n = 1, 2, 3, a, b = 0, 1.

Massimo BIANCHI

Torus partition function

$$\mathcal{T} = rac{1}{16} \sum_{a,b,c,d=0}^{3}
ho_{ac} \, ar{
ho}_{bd} \, \mathbf{\Lambda}_{ab,cd}$$

with ρ_{ab} chiral orbifold amplitudes and $\Lambda_{ab,cd}$ invariant (sub)lattices of SO(12)

Only massless states come from the $g_3\tilde{g}_3$ -twisted sector:

$$\mathcal{T} = |V - S - C|^2 + |2O - S - C|^2 + \dots$$

 $\mathcal{N} = 2$ supergravity coupled to 1+1 hypers and 1 vector " h_{11} " = " h_{21} " = 1, " χ " = 0 (self-mirror) !!

Massimo BIANCHI

Unoriented projection and open strings Klein bottle projection

$$\mathcal{K} = \frac{1}{32} \sum_{a,b,c=0}^{3} \operatorname{Tr}_{g_a \tilde{g}_a} \Omega g_b \tilde{g}_c (q\bar{q})^{H_{cl}} = \frac{1}{8} \sum_{a,d=0}^{3} \operatorname{Tr}_{g_a \tilde{g}_a} \Omega \hat{g}_d (q\bar{q})^{H_{cl}}$$
$$= \frac{1}{8} \sum_{a,d=0}^{3} \rho_{a,d} \hat{\Lambda}_{a,d} (2\tau_2)$$

only 64 'effective' characters \hat{g}_a : $SO(12) \rightarrow SO(4)^2 \times SO(2)^2$ Transverse channel $\tilde{\mathcal{K}} \approx \chi_1$ (identity), as a consequence $\tilde{\mathcal{M}} = \hat{\chi}_1$ and the Möbius-strip projection is simply

$$\mathcal{M}=+\hat{\chi}_1-\hat{\chi}_4-\hat{\chi}_5-\hat{\chi}_8$$

Symplectic Chan-Paton group, tadpole condition $Sp(1)^8$ with uninteresting non-chiral matter

Massimo BIANCHI

Intermezzo: B-field and no vector structure

Most 'rational' models allow/require discrete non zero values for the 'frozen' moduli

B-field in Type I, odd under Ω , B = 1/2 allowed, rank reduction in toroidal compactifications with flat bdles (susy) $N = 32 \times 2^{-r_B/2}$ [MB, Sagnotti; MB, Pradisi, Sagnotti], for SO(12) $r_B = 4$ Heterotic dual description: CHL strings [Chaudhuri, Hockney, Lykken] Compactifications without vector structure $B = \tilde{w}_2$, non commuting Wilson lines [Sen, Sethi; Berkooz et al; MB; Witten; Dijkgraaf et al] For non-susy (non-tachyonic) toroidal models with magnetic fields and 't Hooft fluxes, rank reduction not necessary **Model C** [Bachas] $G = U(5) \times U(3) \times U(4) \times U(4)'$ with (5^{*}, 3) and 3 copies of 10. Non susy. Magnetic field without vector structure,

requires non zero B-field for consistency [Bachas, MB, Blumenhagen, Lüst, Weigand]

$T^{6}/(Z_{2L} \times Z'_{2L} \times Z_{2R} \times Z'_{2R})$ model with " h_{21} " = 6, " h_{21} " = 0 and its mirror

Generators of the orbifold group specified by the fermionic sets

 $\begin{array}{rclrcrcrcrcrcrcrc} g_1' &=& \{\chi_{3456} \; ; & y_{1235} \; ; & w_{1246} & | & ; & \tilde{y}_{35} \; ; & \tilde{w}_{35} \; \} \\ g_2' &=& \{\chi_{1256} \; ; & y_{2346} \; ; & w_{1345} & | & ; & \tilde{y}_{15} \; ; & \tilde{w}_{15} \; \} \\ \tilde{g}_1' &=& \{ & ; & y_{35} \; ; & w_{35} \; | \tilde{\chi}_{3456} \; ; & \tilde{y}_{1235} \; ; & \tilde{w}_{1246} \; \} \\ \tilde{g}_2' &=& \{ & ; & y_{15} \; ; & w_{15} \; | \tilde{\chi}_{1256} \; ; & \tilde{y}_{2346} \; ; & \tilde{w}_{1345} \; \} \end{array}$

All 'geometric' twisted sectors $g_a \tilde{g}_a$ contribute massless states, depending on discrete torsion $\epsilon = \pm 1$

- $\epsilon = +1$: $6 = 3 \times 2$ vector multiplets
- $\epsilon = -1$: $6 = 3 \times 2$ hyper multiplets

Including open and unoriented strings

Klein bottle projection, similar to previous case, yet $\hat{g}'_a: SO(12) \rightarrow SO(4)^4$. In the transverse channel $\tilde{K} \approx \chi_1 + \text{massive.}$ (So far) only viable possibility: $\tilde{M} \approx \hat{\chi}_1$. Uninteresting $\mathcal{O}(N_{Avogadro}/10^{23})$ non-chiral open string spectra. Identification of D-branes under T-duality twists ... loss of chirality

Part II: Bound-states of D-branes in L-R asymmetric vacua

Massimo BIANCHI

CERN - Roma ToV - INFN

Type II superstring vacua with extended susy

[Ferrara, Kounnas; Dabholkar, Harvey]

\leftrightarrow	$\mathcal{N}=8$	$\mathcal{N}_{_L}=4~,~\mathcal{N}_{_R}=4$		
\leftrightarrow	$\mathcal{N}=6$	$\mathcal{N}_{_L}=2~,~\mathcal{N}_{_R}=4$		
\leftrightarrow	$\mathcal{N}=5$	$\mathcal{N}_{_L}=1 , \mathcal{N}_{_R}=4$		
\leftrightarrow	$\mathcal{N}=4$	$\mathcal{N}_{_L}=2~,~\mathcal{N}_{_R}=2$	or	$\mathcal{N}_{_L}=0~,~\mathcal{N}_{_R}=4$
\leftrightarrow	$\mathcal{N}=3$	$\mathcal{N}_{_L}=1 , \mathcal{N}_{_R}=2$		
\leftrightarrow	$\mathcal{N}=2$	$\mathcal{N}_{_L}=1 , \mathcal{N}_{_R}=1$	or	$\mathcal{N}_{_L}=0~,~\mathcal{N}_{_R}=2$

Generically, L-R asymmetric and thus non-geometric but 'exact' vacuum configurations based on (rational) CFT's When massless R-R states (eg graviphotons) survive there MUST be bound-states of D-branes they couple to Some fraction of extended susy is preserved, BPS condition Use boundary states to determine open string excitations

Massimo BIANCHI

$\mathcal{N} = 6 = 2_L + 4_R$ case

Spontaneous breaking $\mathcal{N} = 8 \rightarrow \mathcal{N} = 6$ via chiral Z_2 twist of the L-movers ('T-duality' on four internal directions, T_t^4)

$$X_{L}^{i} \rightarrow -X_{L}^{i}$$
 , $\Psi_{L}^{i} \rightarrow -\Psi_{L}^{i}$, $i = 6, 7, 8, 9$

accompanied by an order two shift along untwisted T_s^2 Unbroken susy's satisfy

$$Q_L = \Gamma_{6789} Q_L$$

no conditions on \mathcal{Q}_{R} . After dualizing all masseless 2-forms into axions, the $30=2_{_{NS-NS}}+12_{_{NS-NS}}+16_{_{R-R}}$ scalar moduli parameterize the space $\mathcal{M}_{\mathcal{N}=6}^{D=4}=SO^{*}(12)/U(6)$. The $16=8_{_{NS-NS}}+8_{_{R-R}}$ vectors together with their magnetic duals transform according to the $\mathbf{32}$ dimensional chiral spinor representation of $SO^{*}(12)$.

Massimo BIANCHI

$\mathcal{N}=6$ BPS branes, susy

Surviving $16_{R-R} = 2_{(1|5)} + 4_{(1|3)} + 6_{(3|3)} + 4_{(5|3)}$ R-R charges carried by D-brane bound-states invariant under twist and shift

$$\begin{array}{ll} q_{1}^{a} + \frac{1}{4!} \varepsilon_{ijkl} q_{5}^{aijkl} &, \quad q_{1}^{i} + \frac{1}{3!} \varepsilon^{i}{}_{jkl} q_{3}^{jkl} &, \\ q_{3}^{aij} + \frac{1}{2!} \varepsilon^{ij}{}_{kl} q_{3}^{akl} &, \quad q_{5}^{abijk} + \varepsilon^{ijk}{}_{l} q_{3}^{abl} \end{array}$$

Eg 1/3 BPS state: D5 wrapped along twisted $T_t^4 \times S_s^1$ and D1 along same S_s^1 ,

$$\mathcal{Q}_{\scriptscriptstyle R} = \Gamma_{04}\Gamma_{6789}\mathcal{Q}_{\scriptscriptstyle L} = \Gamma_{04}\mathcal{Q}_{\scriptscriptstyle L}$$

Different analysis for BPS states carrying NS-NS charges eg two massive gravitini and superpartners form a complex 1/2 BPS multiplet

D-branes in T-folds [Brunner, Rajaraman, Rozali; Gutperle; MB, Morales, Pradisi; Gaberdiel,

Schafer-Nameki; Lawrence, Schulz, Wecht; Kawai, Sugawara]

Massimo BIANCHI

Other $\mathcal{N} = 6$ cases

 \triangleright Z_n chiral projection acting on 4 super-coordinates as

$$(Z^1,Z^2)_{\scriptscriptstyle L}
ightarrow (\omega Z^1,\omega^{-1}Z^2)_{\scriptscriptstyle L} \quad,\quad (\Psi^1,\Psi^2)_{\scriptscriptstyle L}
ightarrow (\omega \Psi^1,\omega^{-1}\Psi^2)_{\scriptscriptstyle L}$$

with $\omega^n = 1$. In order to avoid massless twisted states, combine with an order *n* shift along the 'untwisted' directions $(Z_L^3; Z_R^i)$

maximal torus of SU(3)³ with chiral Z₃ projection and no shift. N = 5 supergravity in untwisted sector. Twisted sector produces the extra massless gravitino multiplet to complete the spectrum of N = 6 supergravity [Dabholkar, Harvery] Other extended susy cases with $L \neq R$

- ▶ $\mathcal{N} = 5 = 1_L + 4_R$, unique massless spectrum, non-geometric, uncorrected LEEA (as for $\mathcal{N} = 6, 8$)
- ▶ $\mathcal{N} = 4 = 2_L + 2_R$ uncorrected LEEA, (non)geometric, $SL(2) \times SO(6, N_v)$ symmetry
- N = 3 = 1_L + 2_R uncorrected LEEA, non-geometric / fuxes, U(3, N_v) symmetry
- ▶ $\mathcal{N} = 2 = 1_L + 1_R$, (non) geometric, quantum corrections absent in special cases ($\chi = 0$, eg FHSV, octonionic magic)
- ▶ $\mathcal{N} = 4 = 0_L + 1_R$, $\mathcal{N} = 4 = 0_L + 2_R$, $\mathcal{N} = 1 = 0_L + 1_R$ NO massless R-R graviphotons, NO BPS D-branes

Focus on $\mathcal{N}=5,3$

$\mathcal{N} = 5 = \mathbf{1}_{\scriptscriptstyle L} + \mathbf{4}_{\scriptscriptstyle R}$ case

Simple(st) realization [Ferrara, Kounnas] $Z_2^L \times Z_2^L$ which acts by T-duality along T_{6789}^4 and T_{4589}^4 combined with order two shifts 1/5 BPS bound states of D-branes carrying $8_{R-R} = 6_{(1533)} + 2_{(3333)}$ R-R charges (invariant orbits)

$$q'_{(1335)} = q'_1 + \frac{1}{4!} \varepsilon_{i_l j_l k_l l_l} q_5^{li_l j_l k_l l_l} + \frac{1}{3!} \varepsilon'_{J,K'L'} q_3^{JK'L'} + \frac{1}{3!} \varepsilon'_{J,K''L''} q_3^{JK''L''}$$

where i_l, j_l, k_l, l_l run over the four directions orthogonal to T_l^2 while K', L' and K'', L'' run over the two sets of two directions orthogonal to T_l^2 and

$$q_{(3333)}^{l_1 l_2 l_3} = q_3^{l_1 l_2 l_3} + \frac{1}{2!} \varepsilon^{l_2 l_3} J_2 J_3 q_3^{l_1 J_2 J_3} + \frac{1}{2!} \varepsilon^{l_3 l_1} J_3 J_1 q_3^{J1 l_2 J_3} + \frac{1}{2!} \varepsilon^{l_1 l_2} J_1 J_2 q_3^{J_1 J_2 l_3}$$

$\mathcal{N} = 3 = 1_{\scriptscriptstyle L} + 2_{\scriptscriptstyle R}$ case

The simplest $\mathcal{N} = 3$ model with 3 matter vector-plets. Two steps

- 'geometric' Z₂ freely acting orbifold (locally equivalent to K3 × T²). The Z₂ action combines a twist breaking N = 8 = 4_L + 4_R to N = 4 = 2_L + 2_R and a shift preventing massless twisted states
- non geometric chiral (say Left-) projection combined with a shift along the orthogonal directions a = 4,5

Surviving NS-NS charges: p_R^a and their magnetic duals \hat{P}_R^a . Surviving R-R charges: T-duality invariant combinations

$$q_1^a + \frac{1}{3!} \varepsilon_{bij}^a q_3^{bij} \quad , \quad q_3^{aij} + \frac{1}{3!} \varepsilon_{bkl}^a q_5^{bijkl}$$

One can consider 1/3 BPS states.

Massive gravitino in $\mathcal{N}=4 \rightarrow \mathcal{N}=3$ long multiplet. No 1/2 BPS states

Massimo BIANCHI

Boundary states for L-R asymmetric branes

[Abouelsaood, Callan, Lovelace, Nappi, Yost; Billò, Di Vecchia, Frau, Lerda, Pesando].

Bosonic coordinates

$$|B_a
angle^{(X)} = \sqrt{\det(\mathcal{G}_a + \mathcal{F}_a)} \exp(-\sum_{n>o} a^i_{-n} R_{ij}(F_a) \tilde{a}^j_{-n}) |0_a
angle$$

where $R_a = (1 - F_a)/(1 + F_a)$ and $|0_a\rangle \leftrightarrow p_L = -R_a p_R$ NS-NS sector (no fermionic zero-modes)

$$|B_{a},\pm\rangle^{(\psi)}_{_{NS-NS}}=\exp(\pm i\sum_{n\geq 1/2}\psi^{i}_{-n}R_{ij}(F_{a})\tilde{\psi}^{j}_{-n})|\pm\rangle$$

R-R sector

$$\begin{split} |B_{a},\pm\rangle_{R-R}^{(\psi)} &= \frac{1}{\sqrt{\det(\mathcal{G}_{a}+\mathcal{F}_{a})}} \exp(i\pm\sum_{n>0}\psi_{-n}^{i}R_{ij}(F_{a})\tilde{\psi}_{-n}^{j})\mathcal{U}_{A\tilde{B}}^{\pm}(F_{a})|A,\tilde{B}\rangle\\ \mathcal{U}_{A\tilde{B}}^{\pm}(F_{a}) &= \left[\operatorname{AExp}(-F_{ij}^{a}\Gamma^{ij}/2)C\Gamma_{11}\frac{1\pm i\Gamma_{11}}{1\pm i}\right]_{A\tilde{B}} \end{split}$$

Massimo BIANCHI

CERN - Roma ToV - INFN

Partition functions and tree channel

Magnetized / Intersecting D-branes in L-R symmetric orbifolds

[Angelantonj, Sagnotti; Blumenhagen, Cvetic, Langacker, Shiu; Blumenhagen, Körs, Lüst, Stieberger] Generalize to $Z_{N_L}^L \times Z_{N_R}^R$ action, invariant boundary states would then be of the form

$$|B,F\rangle_{g} = \frac{1}{\sqrt{N_{L}N_{R}}} \left(1 + g_{L} + g_{R} + \dots + g_{L}^{N_{L}-1}g_{R}^{N_{R}-1}\right)|B,F\rangle = \frac{1}{\sqrt{N_{L}N_{R}}} \sum_{l,r} |B,F_{(l,r)}\rangle$$

where the 'induced' magnetic field $F_{(l,r)}$ is determined by the condition

$$R(F_{(I,r)}) = R(g_L^I)R(F)R^t(g_R^r)$$

$$\mathcal{A}_{g,h} = \Lambda(g,h)\mathcal{I}(g,h) \sum_{\alpha} c_{\alpha}^{GSO} \frac{\vartheta_{\alpha}(0)}{\eta^{3}} \prod_{I} \frac{\vartheta_{\alpha}(\epsilon_{I}(g,h)\tau)}{\vartheta_{1}(\epsilon(g,h)\tau)}$$

Massimo BIANCHI

Example: $\mathcal{N} = 5$ model on T^6/Z_3^L torus of $SU(3)^3$

Prior to twists and shifts, 27 boundary states

$$\mathcal{A}_{\vec{r},\vec{s}} = \mathcal{N}^{\vec{t}}_{\vec{r},\vec{s}}\mathcal{X}_{\vec{t}}$$

where $\mathcal{X}_{\vec{t}} = (V_8 - S_8)\chi_{t_1}\chi_{t_2}\chi_{t_3}$ correspond to branes with magnetic quantum number (n, m) = (1, 0), (-1, 1), (0, -1)After twist and shift: branes rotated and displaced wrt one another

$$\mathcal{A}_{Z_{3}^{L\neq R}} = \frac{1}{6} \sum_{a,b \in Z_{3}} \Lambda_{(a,b)} \mathcal{I}_{(a,b)} \sum_{\alpha} c_{\alpha}^{GSO} \frac{\vartheta_{\alpha}(0)}{\eta^{3}} \prod_{I} \frac{\vartheta_{\alpha}(a\tau+b)}{\vartheta_{1}(a\tau+b)}$$

Both 'untwisted' and 'twisted' strings are present [MB, Morales, Pradisi; Blumehagen, Gorlich, Kors, Lüst; ...], yet non chiral spectra

Massimo BIANCHI

Outlook

Twists and shifts can conveniently combine with other mechanisms, *e.g.* open and closed string fluxes, non-anomalous U(1)'s, instanton effects, ... of moduli stabilization. Explicit computations are feasible. Model with only 1+1 twisted moduli ... some tension with chirality ($\chi = 0$) D-branes in L-R asymmetric vacua, very promising ... yet relation with (non) geometric fluxes [Lawrence, Schulz, Wecht], [Hull, ...], [Berman, ...], [Villadoro, zwirner], ... to be understood and interacting CFT's (WZW, Gepner or alike) to be worked out [Kawai, Sugawara]

Announcements

- Strings '09
 Rome, 22-26 June 2009
 Angelicum Pontificia Università S. Tommaso http://people.roma2.infn.it/ strings2009/
- New Perspectives in String Theory GGI, Arcetri (Florence), 6 April - 19 June 2009 http://ggiwww.fi.infn.it/index.php?p=events.inc&id=25