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Famously, unoriented QFTs appear in 2D as the worldsheet
theory of unoriented strings



Unoriented string theory is relevant in many situations.

For example, massless unoriented open strings correspond to
SO(N) or Sp(N) gauge bosons



Other (related) examples are orientifolds in string theory which
gauge worldsheet parity and give rise to unoriented strings.

These are relevant in string compactifications and (attempts of)
constructing de-Sitter solutions in string theory.



Let’s then first talk about unoriented QFTs in 2D



In 2D, the way to construct unorientable manifolds
where we will place the QFT is by adding crosscaps



Crosscaps

%

X

The state created by this procedure is the crosscap state
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The state created by this procedure is the crosscap state






* Insert one crosscap state on S%: |




* Insert one crosscap state on S RI

* Insert two crosscap states on S%  Klein bottle .-

Non-orientable
manifolds



Crosscap states have some analogies with boundary states



Boundary states in 2D are usually studied in 2 ways:

* Fixed points of RG and CFT techniques
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Systematic construction of conformal boundary conditions



* Use integrable models (00 conserved charges)



* Use integrable models (00 conserved charges)

For special boundaries, called integrable boundaries, one can follow their RG flow
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For crosscap states, they have been studied in CFTs

THE BOUNDARY ANDCROSSCAP STATESJIN

CONFORMAL FIELD THEORIES

NOBUYUKI ISHIBASHI
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Received 20 June 1988

A method to obtain the boundary states and the crosscap states explicitly in various
conformal field theories, is presented. This makes it possible to construct and analyse open
string theories in several closed string backgrounds. We discuss the construction of such
theories in the case of the backgrounds corresponding to the conformal field theories with

SU (2) current ailgebra symmetry.

But never studied in integrable models (as far as | am aware...)



4 dimensions



The analog of the crosscap in 4D is Rl

RP* = S§*/{X! ~ — X+

- Simplest unorientable 4-manifold
- Locally conformally flat, but not globally

*

instead of |




Outline and outcomes

- A two-dimensional integrable model in flat space remains integrable on a crosscap

<

crosscap states preserve integrability

4

- N = 4 Supersymmetric Yang-Mills on RP™ with gauged charge conjugation is
iIntegrable In the planar limit

L 4

- N = 4 Supersymmetric Yang-Mills on [ without gauged charge conjugation Is
not integrable, but one can study It as well by holography + localization + bootstrap



Outline and outcomes

- A two-dimensional integrable model in flat space remains integrable on a crosscap

<

crosscap states preserve integrability [c, Komatsu 21]

4

N = 4 Supersymmetric Yang-Mills on [

L

with gauged charge conjugation is

integrable In the planar limit [JC, Komatsu, Rastelli, Soresina’ wip]

N = 4 Supersymmetric Yang-Mills on RI

* without gauged charge conjugation is

not integrable, but one can study It as well by holography + localization + bootstrap

[JC, Rastelli’ 22]



Crosscaps
IN

2 dimensions




Crosscap overlaps (6 | P)
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Crosscap overlaps (6 | P)

* Klein bottle partition function in two channels

Tree channel (closed string)

gy
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Crosscap overlaps (6 | P)

* Klein bottle partition function in two channels

Tree channel (closed string)

gy

S )
ZK(R,L)z ZB_EWLR <%‘WL>| R: e Eq, R <%‘QL>| + ...

7 \

Ground state







Loop channel (open string)




Loop channel (open string)
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Parity operator



Loop channel (open string)

—>0

Zy(R,L) = Tryp [[Te 2] = 3 e ™5™ (yp | TT |y
YoR

Parity operator —E L2

Parity eigenstates
Parity eigenvalues %1






Loop channel (open string) = Tree channel (closed string)



Loop channel (open string) = Tree channel (closed string)

. . “E, 12| _ —EyR :
Rh_)nolO Zi (R, L) = Rh_)nolo Z €y, € " ~ e T | (G Q) |
V2R

<% | Q L> controls the density of states weighted by the parity €y






Loop channel (open string) = Tree channel (closed string)

F, = — lim logZ(R,L)  Parity-weighted free energy

R— 00
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F, = — lim logZ(R,L)  Parity-weighted free energy
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= RE,, — log [\(CgmL) \2] + O(1/R)

—

2
lim Z (R, L) ~ A Q) ‘

R—




Loop channel (open string) = Tree channel (closed string)

F, = — lim logZ(R,L)  Parity-weighted free energy

R— 00

= RE,, — log l\(%\QL) \2] + O(1/R)



Loop channel (open string) = Tree channel (closed string)

F, = — lim logZ(R,L)  Parity-weighted free energy

R— 00

= RE, — log \<%|QLH + O(1/R)

S

extensive piece O(1) piece



Loop channel (open string) = Tree channel (closed string)

F=—1lim logZ(R,L)  Parity-weighted free energy

R— 00

= RE, — log (€ |Q,) \ + O(1/R)
extensive piece O(1) piece

* Same structure as the thermal free energy of a system with boundaries

®* In that case, O(1) piece defines the boundary entropy or g-function



Crosscap overlap in Integrable models

Iim Tr,p ll’[ e‘ﬁuzl (G€2)

R— 00

Large volume partition function

(in integrable models)

<>

Thermodynamic Bethe Ansatz + O(1) fluctuation



Crosscap overlap in Integrable models

lim Tr,p lH e‘ﬁuz] ~ e PN (B Q)

R— 00
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R— 00

* Single type of particle (massive) (e.g sinh-Gordon model)
* Energy eigenstates for R — oo < M excitations labelled by | {p;})
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Crosscap overlap in Integrable models

Iim Tr,p lH e‘HL/Z] (G€2)

R— 00

* Single type of particle (massive) (e.g sinh-Gordon model)
* Energy eigenstates for R — oo < M excitations labelled by | {p;})

1 — eZiijH S(P],pk)
k#j
o I1} {Pj}> X | {_Pj}>

e For Bethe states with standard normalization: 11| {pj}) = 1| {—pj}>



Crosscap overlap in Integrable models




Crosscap overlap in Integrable models

Standard thermal sum

with the parity invariant constraint {p;} = {—p;}



Crosscap overlap in Integrable models

: L .
Tr,, [H e—HL/Z] Z T L ED)| L —ER ‘ (€] QL>‘

{Pj}:{—Pj}

Standard thermal sum

with the parity invariant constraint {p;} = {—p;}

Apply standard TBA techniques to compute the saddle point and its fluctuations



Crosscap overlap in Integrable models

Result: “Simplest” g-function
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det _

Y(0)
(@10)] =\[1+\/1+Y«»

|

det _

Y-function

O0=LE(u)+logY(u)—log(l+7Y)* % (u)

Dispersion relation

|
K (u,v) =—09, [log S(u,v) £log S(u, — v)]
l



1 + ¥Y(0)

vo, | det 1-G_ Y-function 0 = LE(u) + log Y(u) — log(1 + Y) * K _ (u)
(©le)| = || \/ S—

det |1 — CA?+—

J Dispersion relation

1
K (U, v) =—0, [log S(u,v) = log S(u, — v)]
l



a : : )
‘ ‘ [ Y0) ] det |1 - G_ Y-function 0 = LE() + log Y(u) — log(1 + ¥) % F ()
<Cg | QL) — 1 \/ - -

1 + ¥Y(0)

det [1 -G,
\_ _ _ ) Dispersion relation

1
HK+(u,v) = =0, [log S(u, v) £ log S(u, — v)|
l

. J’ “dv K (u,v) )

Fredholm determinants: G - f(u) = -
- 0 2m 14+ 1/Y(v)






* Can be generalized for any excited state | (€ |W;) | using
analytic continuation of this formula, similar to Dorey-Tateo trick.

det _I—CA?'_

Y(0) -

[(CY) | = 1+ 3 —
U V0 a1
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* Can be generalized for any excited state | (€ |W;) | using
analytic continuation of this formula, similar to Dorey-Tateo trick.

det _I—CA?'_

Y(0) -

[(CY) | = 1+ 3 —
U V0 a1

N B K (u,u) " dv F (u,v)
G ) = ; 0, log Y(ii;) T+ Jy 271+ 1/Y(v) fo)
* Asymptotic limit
E—
I =00 det G_|_
[(E|¥,)| = “Simplest” g-function
\ detG_

M

(Ge) . g = | LOp@) + Y H () | 85— Holuu)

<i1,]<
k=1




Crosscap states in spin chains
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* XXX SU(2) spin chain HSU(z) < D, S S
J
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* XXX SU(2) spin chain HgU(a) < D, S S
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Crosscap states in spin chains

* XXX SU(2) spin chain HgU(a) < D, S S
J

* Mimic the definition in field theory: identify states on antipodal sites of the chain:

‘C»j = |1 >j ® |1 >j_|_% + | >j ® [ >j_|_%

/

(L log 2)/2 T sitej

no| =~

® Long-range entangled
‘ %) — ‘ C» . (As opposed to the short-range entangled
J in spin chain boundary state)
j=1
|b>>jN #|1 >j® 1 >j+1 +#][] >j® 1 >j+1 +#[1 >j® i >j+1
log2 =



Crosscap states in spin chains

* XXX SU(2) spin chain HgU(a) < D, S S
J

* Mimic the definition in field theory: identify states on antipodal sites of the chain:

‘C»j = |1 >j ® |1 >j_|_% + | >j ® [ >j_|_%

® Long-range entangled
‘ C » : (As opposed to the short-range entangled
J in spin chain boundary state)

| 6) =

.
|l no| =~
(—

° .
One can ShOW. (T(I/l) o T(—I/l)> | Cg> — O < Q2n+1 | Cg> — O [Ghoshal, Zamolodchikov]
(OO many COnserved Charges) [Piroli, Pozsgay, Vernier]



Cross
C
ap states in spin ch
chains

| 6) = %
E(‘C»j)g)
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\%>zf[(\c>>j)® Q



Crosscap states in spin chains

|'6) =

—

X
( [ c) j)
1 Bethe state

<% | u> o det G—I— Proven recently:

[Gombor’22]

\/(u—|u> det (G [Ekman’22]

M

T
Gaudin type matrix: (G.) ciicn = | LD + Z K (w, w) | 0 — F o (u;, uy)
SLISS
k=1

J




Crosscap states in spin chains

Boundary overlap:

(€luy  [detGy

V@ | detG

det G,

= (non-universal factor) x\

det G_



N=4 SYM on RP4

&
worldsheet crosscap
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N=4 SYM on RP*

. CFT,on RP

So(d+ 1,1) - 8o(d+ 1) :

« New CFT data: (O)

K,—P,, M,, B




N=4 SYM on RP*

. CFT,on RP%: \

sod+1,1) > 8od+1): K,—P,, M, R x
xH
Wy
» New CFT data: (O) R

 Local OPE data (OPE coeffs and dimensions) remains the same

% Mirror
image

* New bootstrap condition: 6, 0,
X X



N=4 SYM on RP*

- Antipodal map on susy generators: Q < S

- Preserves half supersymmetry “O + § ”: 1/2-BPS setup

- Field identification on antipodal points is fixed by spacetime symmetries:
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N=4 SYM on RP*

- Antipodal map on susy generators: Q < S

- Preserves half supersymmetry “O + § ”: 1/2-BPS setup

- Field identification on antipodal points is fixed by spacetime symmetries:

e.g. scalar:

D,(x)

+d,(x')

D30 D3 Pys6e —DPys56  R—symmetry: SO(6) — SO(3) x SO(3)



N=4 SYM on RP*

- Antipodal map on susy generators: Q < S

- Preserves half supersymmetry “O + § ”: 1/2-BPS setup

- Field identification on antipodal points is fixed by spacetime symmetries:

e.g. scalar: /‘ Gauge group generators
a
Di(x) 7,

+@(x) T,

(D1,2,3 < (D1,2,3 (D4,5,6 < (D4,5,6



N=4 SYM on RP*

- Antipodal map on susy generators: Q < S

- Preserves half supersymmetry “O + § ”: 1/2-BPS setup

- Field identification on antipodal points is fixed by spacetime symmetries:

e.g. scalar: /‘ Gauge group generators
.(Da(X) T @qM(X) T
T O5(x) 7, +®(x) (—T,")
(1)1,2,3 PN (1)1,2,3 () 456 € b 45.6 Gauge charge conjugation

(Outer automorphism of SU(N))
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New observables, (O) # 0

Consider a single trace O ~ Tr| y,

No charge conjugation

(CI)(x)zCD(y )gg)[@um“ —

_|_

...x;| at tree level

With charge conjugation

x—y?2 (1 +xy)?

(Identification of antipodal points on the spin chain)

X

(q)(X)ZCD(y)Z)Rw — =

x=—yr

xy)?
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Consider a single trace O ~ Tr|y,...x;] at tree level

No charge conjugation

&)

A1 .
(0) ~ — O O ~N
AL

- New analytic classical (Euclidean)
background asymptotic to Ad85><S5

- Explicit analytic (Euclidean) solution from a

10D uplift of 5D /4 = 8 gauged supergravity
[JC, Rastelli’ 22]

- Not integrable

With charge conjugation

(Identification of antipodal points on the spin chain)



New observables, (O) # 0

Consider a single trace O ~ Tr|y,...x;] at tree level

No charge conjugation

&)

A1 .
(0) ~ — O O ~N
AL

- New analytic classical (Euclidean)
background asymptotic to Ad85><S5

- Explicit analytic (Euclidean) solution from a

10D uplift of 5D /4 = 8 gauged supergravity
[JC, Rastelli’ 22]

- Not integrable

With charge conjugation

(Identification of antipodal points on the spin chain)

- Background still AdSs X S° with a probe
orientifold O1 plane extended inside the

SS

- Integrable setup
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N=4 SYM on RP* with charge conjugation

- Claim: (O) given by the crosscap overlap

- Crosscap worldsheet from the probe orientifold

- Spin chain: antipodal contraction




New observables, (O) # 0

N=4 SYM on RP* with charge conjugation

- Claim: (O) given by the crosscap overlap

- Crosscap worldsheet from the probe orientifold

- Spin chain: antipodal contraction

- Conjecture for the asymptotic formula
(Gaudin)
(6) = det G}
det G(_Gaudin)

é Derivatives of log of Bethe equations
- Analogous to the boundary overlap (e.g. D3-D5 system) but without non-
universal prefactors [Bajnok, Gombor, de Leeuw, Komatsu, Kristjansen,

Lindardopoulos, Pozsgay, Wang, Wilhelm, Zarembo etc.]

for L > 1



Outlook

| ocalization of N=4 SYM on RP* without charge conjugation leads to 2D

Yang-Mills on Rl

New classical background dual to N=4 SYM on |

2. Similar story with charge conjugation”? [wang’ 20]

4

without charge

conjugation contains singularities which are geometrlcally of the orientifold
type (in flat space). How does the gauge theory help to resolve them?

Precision holography with matrix model from localisation?

Sigma-model proof of integrability for the crosscap? [Linardopoulos, Zarembo

Other models in R

99 ABJM (oriented though) ?

L

Fishnet theories on |

9 Nonplanar version of Basso-Dixon diagrams?



Outlook

L 4

' Involve conformal [Cavaglia, Gromoyv,

Julius, Preti]

- Bootstrap for the two point-functions on |

dimensions + three point couplings + one-pt functions (known
from integrability). No new boundary operators! Bootstrability? 5215 o0 "

- Antipodal map defining R *in embedding coordinates is given by
X0, X1, X5, X3, X1, X)) = (X, — X1, — X, — X5, — X, — X5)

- But we can imagine doing:
(XOa X19X29 X39X49 XS) = (X()9 X19X29 o X39 o X49 o XS)

49 1/2 BPS?

- In N=4 SYM, are these new higher codimension versions of R

- Presumably they define new types of crosscaps on the worldsheet which are
also integrable



Thank you



Backup slides



Holographic Dual of ./ = 4 SYM on RP*

(without charge conjugation)

e New (euclidean) 1/2-BPS solution of 10D |IB supergravity (asymptotically AdS)

4 26 in2 60
ds? = AV ds2 (d6’2: 2, 4+ —— dszgsz>)

10D 5D * o2 1 +F, cos20. 5 1+ H_sin26

\—y-/ \—Y—/
SO(3 SO(2,1
2 . <>/J eR)

dr? + e*4ds?>

Explicit functions of r and ¢
3
e’ = 7 sinh 2r + l(2 — #7)cosh 2r — !
¥ — 0 : Standard (euclidean) AdS;xS°

Parametric family of backgrounds.To be fixed by
comparison to the gauge theory.

 Solution contains analytic expressions for non-trivial dilaton, B,, C, and C,



Holographic Dual of #/ = 4 SYM on RP*

(without charge conjugation)

e Singular in the IR

ds?

oD ~ hV AR+ h (7 + Fds? 4 dEP + a0

o~ 12

C2 i h_l dVdSZ
» Resembles an O1_ plane in flat space!

« However O-planes are incompatible with the previous large N counting: this setup does not
involve gauging of worldsheet parity («» charge conjugation)

 What’s the embedding in string theory?



