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Famously, unoriented QFTs appear in 2D as the worldsheet 
theory of unoriented strings



Unoriented string theory is relevant in many situations.


For example, massless unoriented open strings correspond to 
SO(N) or Sp(N) gauge bosons 



Other (related) examples are orientifolds in string theory which 
gauge worldsheet parity and give rise to unoriented strings.


These are relevant in string compactifications and (attempts of) 
constructing de-Sitter solutions in string theory.



Let’s then first talk about unoriented QFTs in 2D



In 2D, the way to construct unorientable manifolds 
where we will place the QFT is by adding crosscaps



2 Exact p-Function

In this section, we generalize the derivation of exact g-functions in integrable field theories to
overlaps between the crosscap state and arbitrary excited states. In subsection 2.1, we discuss
general properties of the crosscap state and the partition function on the Klein bottle. We
also give a definition of the crosscap entropy and explain its relation to the crosscap overlap.
In subsection 2.2, we compute the crosscap overlap in integrable field theories. Throughout
this section, we assume that the theory is parity-invariant and excitations are scalar.

(a) (b)

Figure 1: Definitions of the crosscap (a) and the Klein bottle (b).

2.1 Klein bottle and crosscap entropy

To define crosscaps, we cut out a disk from a two-dimensional surface and identify antipodal
points on the boundary of the disk (see figure 1-(a)). This manipulation makes the surface
non-orientable and the state created by this procedure is called the crosscap state. Two
commonly-studied closed non-orientable surfaces are RP2 and the Klein bottle. They can
be obtained by inserting one or two crosscap states on S2 respectively. The crosscap states
were studied extensively in 2d CFT, where part of the motivation came from the analysis of
string theory in orientifold spacetimes [39–42].

To compute the crosscap overlaps, we consider a cylinder of length R and circumference
L and contract the two ends with the crosscap states (see figure 1-(b)). This makes the
surface topologically equivalent to the Klein bottle. As mentioned above, the Klein bottle
can also be obtained by inserting two crosscaps on S2, but here it is important to start with
the cylinder, which is locally flat, since our interest is in massive QFT, not CFT.

The partition function of this Klein bottle ZK(R,L) can be expanded in two di↵erent
channels, depending on either we view R or L as the (imaginary) time direction. If we take
R as the time direction, we obtain an expansion

ZK(R,L) =
X

 L

e�E L
R |hC| Li|2

R!1
= e�E⌦L

R |hC|⌦Li|2 + · · · . (2.1)

Here  ` is the state defined on the spatial length `, |Ci is the crosscap state, and ⌦ is the
ground state. In the literature, this channel is often called the tree channel.

The expansion in the other channel (called the loop channel) is slightly more complicated
(see figure 2). Owing to the antipodal identification at the boundary of the cylinder, the
Hilbert space in the other channel is defined on a circle of length 2R not R. As can be seen
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The state created by this procedure is the crosscap state





• Insert one crosscap state on :   S2 ℝℙ2



• Insert one crosscap state on :   S2 ℝℙ2

• Insert two crosscap states on :    Klein bottleS2

Non-orientable 
manifolds



Crosscap states have some analogies with boundary states



Boundary states in 2D are usually studied in 2 ways: 

• Fixed points of RG and CFT techniques



Boundary states in 2D are usually studied in 2 ways: 

• Fixed points of RG and CFT techniques
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BOUNDARY CONDITIONS, FUSION RULES 
AND THE VERLINDE FORMULA 

John L. CARDY 

Department of Physics, University of California, Santa Barbara, CA 93106, USA 

Received 27 February 1989 

Boundary operators in conformal field theory are considered as arising from the juxtaposition 
of different types of boundary conditions. From this point of view, the operator content of the 
theory in an annulus may be related to the fusion rules. By considering the partition function in 
such a geometry, we give a simple derivation of the Verlinde formula. 

1. Introduction 

Recently there has been considerable progress made in understanding the prob- 
lem of classifying conformal theories, following the observation of E. Verlinde [1] 
that the fusion rules of the underlying algebra are related by formula 

j i J J J = ( 1 )  
i 

to the elements S/ of the matrix which represents the modular transformation 
r --* - 1 / r  acting on the Virasoro characters. 

A conformal field theory defined on a manifold without boundaries has as its 
underlying symmetry two algebras ~¢ and zJ  which act respectively on the 
holomorphic (z) and antiholomorphic (~) dependences of the physical fields of the 
theory. In a rational conformal field theory, the irreducible representations of these 
algebras are constructed by acting on a highest weight vector with all possible 
lowering operators, and then projecting out null states. The fusion rule coefficients 
Nj.~, of the algebra d give the number of distinct ways that the representation i 
occurs in the "fusion" of two fields transforming according to the representations 
j ,  k respectively. This process of fusion corresponds to considering only the holo- 
morphic, or only the antiholomorphic part of the operator product expansion of two 
physical operators. The decoupling of the null states after this fusion process then 
gives strong constraints on the Nj~,, first analysed for the case of the Virasoro 
algebra by Belavin et al. [2]. 

0550-3213/89/$03.50©Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



Boundary states in 2D are usually studied in 2 ways: 

• Fixed points of RG and CFT techniques
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Systematic construction of conformal boundary conditions 



• Use integrable models (  conserved charges)∞



• Use integrable models (  conserved charges)∞

For special boundaries, called integrable boundaries, one can follow their RG flow 
In

t. 
J. 
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For crosscap states, they have been studied in CFTs

But never studied in integrable models (as far as I am aware…)



4 dimensions



The analog of the crosscap in 4D is  (instead of )ℝℙ4 ℝℙ2

 ℝℙ4 = S4/{Xμ ∼ − Xμ}

- Simplest unorientable 4-manifold

- Locally conformally flat, but not globally



- A two-dimensional integrable model in flat space remains integrable on a crosscap 


 


crosscap states preserve integrability

⇔

-  Supersymmetric Yang-Mills on  with gauged charge conjugation is 
integrable in the planar limit


𝒩 = 4 ℝℙ4

-  Supersymmetric Yang-Mills on  without gauged charge conjugation is 
not integrable, but one can study it as well by holography + localization + bootstrap

𝒩 = 4 ℝℙ4

Outline and outcomes
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integrable in the planar limit


𝒩 = 4 ℝℙ4

-  Supersymmetric Yang-Mills on  without gauged charge conjugation is 
not integrable, but one can study it as well by holography + localization + bootstrap

𝒩 = 4 ℝℙ4

[JC, Komatsu’ 21]

[JC, Rastelli’ 22]

[JC, Komatsu, Rastelli, Soresina’ wip]

Outline and outcomes



Crosscaps 

in


2 dimensions



Crosscap overlaps ⟨𝒞 |Ψ⟩



Crosscap overlaps
• Klein bottle partition function in two channels
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Crosscap overlaps

2 Exact p-Function

In this section, we generalize the derivation of exact g-functions in integrable field theories to
overlaps between the crosscap state and arbitrary excited states. In subsection 2.1, we discuss
general properties of the crosscap state and the partition function on the Klein bottle. We
also give a definition of the crosscap entropy and explain its relation to the crosscap overlap.
In subsection 2.2, we compute the crosscap overlap in integrable field theories. Throughout
this section, we assume that the theory is parity-invariant and excitations are scalar.
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Figure 1: Definitions of the crosscap (a) and the Klein bottle (b).

2.1 Klein bottle and crosscap entropy

To define crosscaps, we cut out a disk from a two-dimensional surface and identify antipodal
points on the boundary of the disk (see figure 1-(a)). This manipulation makes the surface
non-orientable and the state created by this procedure is called the crosscap state. Two
commonly-studied closed non-orientable surfaces are RP2 and the Klein bottle. They can
be obtained by inserting one or two crosscap states on S2 respectively. The crosscap states
were studied extensively in 2d CFT, where part of the motivation came from the analysis of
string theory in orientifold spacetimes [39–42].

To compute the crosscap overlaps, we consider a cylinder of length R and circumference
L and contract the two ends with the crosscap states (see figure 1-(b)). This makes the
surface topologically equivalent to the Klein bottle. As mentioned above, the Klein bottle
can also be obtained by inserting two crosscaps on S2, but here it is important to start with
the cylinder, which is locally flat, since our interest is in massive QFT, not CFT.

The partition function of this Klein bottle ZK(R,L) can be expanded in two di↵erent
channels, depending on either we view R or L as the (imaginary) time direction. If we take
R as the time direction, we obtain an expansion

ZK(R,L) =
X

 L

e�E L
R |hC| Li|2

R!1
= e�E⌦L

R |hC|⌦Li|2 + · · · . (2.1)

Here  ` is the state defined on the spatial length `, |Ci is the crosscap state, and ⌦ is the
ground state. In the literature, this channel is often called the tree channel.

The expansion in the other channel (called the loop channel) is slightly more complicated
(see figure 2). Owing to the antipodal identification at the boundary of the cylinder, the
Hilbert space in the other channel is defined on a circle of length 2R not R. As can be seen
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σ

Loop channel (open string)

Figure 2: Expansion of the Klein bottle partition function in the loop channel. Because of
the antipodal identification, the Hilbert space is defined on a union of two red lines, which
together form a circle of length 2R. After the time evolution of L/2, a state represented by
the dashed line gets identified with its parity image represented by the top red line.

in the figure, the states defined on this circle get identified with their parity images after the
time evolution for a period L/2. This leads to an expression

ZK(R,L) = Tr2R
⇥
⇧ e�HL/2

⇤
=

X

 2R

e�E 2R
L/2 h 2R|⇧| 2Ri . (2.2)

Here ⇧ is the parity operator while H is the Hamiltonian. Re-organizing the sum in terms
of eigenstates of the parity, we can rewrite it as

ZK(R,L) =
X

 2R

✏ 2Re
�E 2R

L/2 , (2.3)

where ✏ is the eigenvalue of the parity for the state  , which takes either +1 or �1. The
equality of the two expressions (2.1) and (2.3) in the large R limit gives

lim
R!1

ZK(R,L) = lim
R!1

"
X

 2R

✏ 2Re
�E 2R

L/2

#
' e�E⌦L

R |hC|⌦Li|2 . (2.4)

This shows that the overlap hC|⌦Li controls the density of states weighted by the parity ✏ .
To make this statement more precise, we consider the parity-weighted free energy

FK ⌘ � lim
R!1

logZK(R,L) . (2.5)
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the thermal free energy of a system with boundaries, for which the boundary entropy, also
known as the g-function, gives an O(1) contribution. The boundary entropy is defined in
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F𝕂 ≡ − lim
R→∞

log Z𝕂(R, L) Parity-weighted free energy

= REΩL
− log [ |⟨𝒞 |ΩL⟩ |2 ] + O(1/R)
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• Same structure as the thermal free energy of a system with boundaries 
• In that case,  piece defines the boundary entropy or g-function𝒪(1)
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Crosscap overlap in Integrable models

lim
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Large volume partition function 




Thermodynamic Bethe Ansatz +  fluctuation

↔
𝒪(1)

(in integrable models)
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Tr2R [Π e−ĤL/2] ≃ e−EΩR ⟨𝒞 |ΩL⟩
2

• Energy eigenstates for    excitations labelled by R → ∞ ⇔ M |{pj}⟩
• Single type of particle (massive) (e.g sinh-Gordon model)

1 = e2ipjR∏
k≠j

S(pj, pk)



Crosscap overlap in Integrable models

lim
R→∞
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• Energy eigenstates for    excitations labelled by R → ∞ ⇔ M |{pj}⟩
• Single type of particle (massive) (e.g sinh-Gordon model)

1 = e2ipjR∏
k≠j

S(pj, pk)

•  Π |{pj}⟩ ∝ |{−pj}⟩

• For Bethe states with standard normalization:     Π |{pj}⟩ = 1 |{−pj}⟩
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e− L
2 ∑j E(pj) ≃ e−EΩR ⟨𝒞 |ΩL⟩

2

Standard thermal sum 

with the parity invariant constraint  {pj} = {−pj}

Apply standard TBA techniques to compute the saddle point and its fluctuations

Crosscap overlap in Integrable models



⟨𝒞 |ΩL⟩ = 1 +
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det [1 − Ĝ+]

Result: ‘‘Simplest’’ g-function
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det [1 − Ĝ+]
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• Can be generalized for any excited state  using 
analytic continuation of this formula, similar to Dorey-Tateo trick.
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f(ũk) + ∫
∞

0

dv
2π

𝒦±(u, v)
1 + 1/Y(v)

f(v)

|⟨𝒞 |ΨL⟩ | L→∞=
det G+

det G−

• Asymptotic limit

(G±)1≤i,j≤ M
2

= L∂up(ui) +
M
2

∑
k=1

𝒦+(ui, uk) δij − 𝒦±(ui, uj)

‘‘Simplest’’ g-function



Crosscap states in spin chains



Crosscap states in spin chains
HSU(2) ∝ ∑

j

⃗S j
⃗S j+1• XXX SU(2) spin chain



Crosscap states in spin chains
HSU(2) ∝ ∑
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• Mimic the definition in field theory: identify states on antipodal sites of the chain:

|c⟩⟩j ≡ |↑ ⟩j ⊗ |↑ ⟩j+ L
2

+ |↓ ⟩j ⊗ |↓ ⟩j+ L
2

site j

• XXX SU(2) spin chain

2 Exact p-Function

In this section, we generalize the derivation of exact g-functions in integrable field theories to
overlaps between the crosscap state and arbitrary excited states. In subsection 2.1, we discuss
general properties of the crosscap state and the partition function on the Klein bottle. We
also give a definition of the crosscap entropy and explain its relation to the crosscap overlap.
In subsection 2.2, we compute the crosscap overlap in integrable field theories. Throughout
this section, we assume that the theory is parity-invariant and excitations are scalar.
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Figure 1: Definitions of the crosscap (a) and the Klein bottle (b).

2.1 Klein bottle and crosscap entropy

To define crosscaps, we cut out a disk from a two-dimensional surface and identify antipodal
points on the boundary of the disk (see figure 1-(a)). This manipulation makes the surface
non-orientable and the state created by this procedure is called the crosscap state. Two
commonly-studied closed non-orientable surfaces are RP2 and the Klein bottle. They can
be obtained by inserting one or two crosscap states on S2 respectively. The crosscap states
were studied extensively in 2d CFT, where part of the motivation came from the analysis of
string theory in orientifold spacetimes [39–42].

To compute the crosscap overlaps, we consider a cylinder of length R and circumference
L and contract the two ends with the crosscap states (see figure 1-(b)). This makes the
surface topologically equivalent to the Klein bottle. As mentioned above, the Klein bottle
can also be obtained by inserting two crosscaps on S2, but here it is important to start with
the cylinder, which is locally flat, since our interest is in massive QFT, not CFT.

The partition function of this Klein bottle ZK(R,L) can be expanded in two di↵erent
channels, depending on either we view R or L as the (imaginary) time direction. If we take
R as the time direction, we obtain an expansion

ZK(R,L) =
X

 L

e�E L
R |hC| Li|2

R!1
= e�E⌦L

R |hC|⌦Li|2 + · · · . (2.1)

Here  ` is the state defined on the spatial length `, |Ci is the crosscap state, and ⌦ is the
ground state. In the literature, this channel is often called the tree channel.

The expansion in the other channel (called the loop channel) is slightly more complicated
(see figure 2). Owing to the antipodal identification at the boundary of the cylinder, the
Hilbert space in the other channel is defined on a circle of length 2R not R. As can be seen
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(a) (b)

Figure 6: (a) The subregion entanglement entropy for a crosscap state (red curve), a generic
chaotic eigenstate (dashed curve), and a boundary state (black curve). (b) The phase transi-
tion of the Ryu-Takayanagi (RT) surface. The outer circle is the spatial slice of the boundary
CFT while the black dot in the middle is a black hole. The area of the RT surface (denoted
by a solid red curve) grows linearly until the subregion of the boundary CFT (denoted by a
dashed red curve) exceeds half the system size. After that, the RT surface discontinuously
jumps from the one on the right to the one on the left and starts decreasing linearly.

The Bethe equation for the SL(2, R) chain is given by

1 = eipjL
Y

k 6=j

SSL(uj, uk) , (4.13)

with SSL(u, v) = hSL(u, v)/hSL(v, u). Note that, unlike the XXX spin chain, several excita-
tions can be at the same site. For instance, when n1 = n2 in the sum in (4.9), we will have
|0 · · · 2

n1=n2

· · · i as a ket.

The crosscap state in this model is defined by

|Ci ⌘
L
2Y

j=1

(|c̃iij)⌦ , (4.14)

where |c̃iij is the antipodally identified two-site state

|c̃iij ⌘
1X

n=0

|nij ⌦ |ni
j+L

2
. (4.15)

Entanglement structures. The boundary states in the XXX spin chain can also be
expressed in terms of entangled two-site states [56]. However, while the crosscap states
in the XXX chain are given by two-site states at antipodal sites, the boundary states are
given by two-site states at neighboring sites. This di↵erence is reflected in the di↵erent
entanglement structures: the boundary state is short-range entangled, and their subregion
entanglement entropy never exceeds log 2 (see figure 6-(a)). This is simply because the
boundary states are tensor products of local two-site states.

In contrast, the subregion entanglement entropy of the crosscap state exhibits the volume
law: it increases linearly until the size of the region reaches half of the system size and the
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Figure 1. (a) A leading diagram in double line notation contributing to the one-point

function of a single trace operator of length L = 6 in the large N limit of N = 4 SYM on

RP4 without the gauging of charge conjugation. The pre-factor ensures the UV limit of

the two-point functions is normalized to one. (b) A leading diagram in the large N limit

contributing to the one-point function of the same single trace operator in N = 4 SYM

on RP4 with the gauging of charge conjugation. In this example, the double line notation

graph originates a surface with three faces (illustrated in distinct colors) as opposed to the

four faces of the figure (a), hence producing a di↵erent large N scaling.

When the two point functions of O and its conjugate are normalized to the unit

norm in the UV limit, then the corresponding vev has the following large N scaling

hOi ⇠ O(N) . (2.18)

We will provide explicit examples of this computation at tree level in the section 5.

This the standard scaling expected from a classical gravitational background and the

goal of this paper is to determine a new solution of type IIB supergravity dual to

this setup.

Charge conjugation. If we accompany the involution ISYM with the charge con-

jugation3 ⌧ , the transformation of elementary fields is now given by

�a
I(x

0)Ta = ��̂a
I(x)T

>
a , Aa

µ(x
0)Ta = Iµ

⌫Aa
⌫(x)T

>
a ,  a(x0)Ta = i

�̃µ̂xµ

|x|
R (x)aT>

a .

(2.19)

The transposition of the SU(N) generators changes the large N scaling of the one-

point functions. As a consequence, the scalar propagator now reads
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and similarly for the remaining elementary fields. Ignoring the 1/N part of the

expression above, the color indices have the same structure as for the SO(N) gauge

group. As well known, the SO(N) gauge group produces a large N ’t Hooft expansion

3We thank Shota Komatsu for many ideas and discussions leading to this setup.
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RP4 without the gauging of charge conjugation. The pre-factor ensures the UV limit of

the two-point functions is normalized to one. (b) A leading diagram in the large N limit

contributing to the one-point function of the same single trace operator in N = 4 SYM

on RP4 with the gauging of charge conjugation. In this example, the double line notation

graph originates a surface with three faces (illustrated in distinct colors) as opposed to the

four faces of the figure (a), hence producing a di↵erent large N scaling.

When the two point functions of O and its conjugate are normalized to the unit

norm in the UV limit, then the corresponding vev has the following large N scaling

hOi ⇠ O(N) . (2.18)

We will provide explicit examples of this computation at tree level in the section 5.

This the standard scaling expected from a classical gravitational background and the

goal of this paper is to determine a new solution of type IIB supergravity dual to

this setup.

Charge conjugation. If we accompany the involution ISYM with the charge con-

jugation3 ⌧ , the transformation of elementary fields is now given by
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and similarly for the remaining elementary fields. Ignoring the 1/N part of the

expression above, the color indices have the same structure as for the SO(N) gauge

group. As well known, the SO(N) gauge group produces a large N ’t Hooft expansion

3We thank Shota Komatsu for many ideas and discussions leading to this setup.
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With charge conjugation

(Identification of antipodal points on the spin chain)

- Background still  with a probe 
orientifold O1 plane extended inside the 




- Integrable setup

AdS5 × S5

S5

New observables, ⟨𝒪⟩ ≠ 0
Consider a single trace  at tree level𝒪 ∼ Tr[χ1…χL]
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- New analytic classical (Euclidean) 
background asymptotic to AdS S  


- Explicit analytic (Euclidean) solution from a 
10D uplift of 5D  gauged supergravity


- Not integrable

5× 5

𝒩 = 8

No charge conjugation
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χ2

χL

…
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New observables, ⟨𝒪⟩ ≠ 0
N=4 SYM on  with charge conjugationℝℙ4

- Claim:  given by the crosscap overlap


- Crosscap worldsheet from the probe orientifold


- Spin chain: antipodal contraction
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contributing to the one-point function of the same single trace operator in N = 4 SYM

on RP4 with the gauging of charge conjugation. In this example, the double line notation

graph originates a surface with three faces (illustrated in distinct colors) as opposed to the
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New observables, ⟨𝒪⟩ ≠ 0
N=4 SYM on  with charge conjugationℝℙ4

- Claim:  given by the crosscap overlap


- Crosscap worldsheet from the probe orientifold


- Spin chain: antipodal contraction

⟨𝒪⟩

⟨𝒪⟩ =
det G(Gaudin)

+

det G(Gaudin)
−

for L ≫ 1

Derivatives of log of Bethe equations

- Analogous to the boundary overlap (e.g. D3-D5 system) but without non-
universal prefactors


- Conjecture for the asymptotic formula

1
NL/2

� N 1
NL/2 � N0

(b)(a)
Figure 1. (a) A leading diagram in double line notation contributing to the one-point

function of a single trace operator of length L = 6 in the large N limit of N = 4 SYM on

RP4 without the gauging of charge conjugation. The pre-factor ensures the UV limit of

the two-point functions is normalized to one. (b) A leading diagram in the large N limit

contributing to the one-point function of the same single trace operator in N = 4 SYM

on RP4 with the gauging of charge conjugation. In this example, the double line notation

graph originates a surface with three faces (illustrated in distinct colors) as opposed to the

four faces of the figure (a), hence producing a di↵erent large N scaling.

When the two point functions of O and its conjugate are normalized to the unit

norm in the UV limit, then the corresponding vev has the following large N scaling

hOi ⇠ O(N) . (2.18)

We will provide explicit examples of this computation at tree level in the section 5.

This the standard scaling expected from a classical gravitational background and the

goal of this paper is to determine a new solution of type IIB supergravity dual to

this setup.

Charge conjugation. If we accompany the involution ISYM with the charge con-

jugation3 ⌧ , the transformation of elementary fields is now given by
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and similarly for the remaining elementary fields. Ignoring the 1/N part of the

expression above, the color indices have the same structure as for the SO(N) gauge

group. As well known, the SO(N) gauge group produces a large N ’t Hooft expansion
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[Bajnok, Gombor, de Leeuw, Komatsu, Kristjansen, 
Lindardopoulos, Pozsgay, Wang, Wilhelm, Zarembo etc.]



Outlook
- Localization of N=4 SYM on  without charge conjugation leads to 2D 

Yang-Mills on . Similar story with charge conjugation?


- New classical background dual to N=4 SYM on  without charge 
conjugation contains singularities which are geometrically of the orientifold 
type (in flat space). How does the gauge theory help to resolve them? 


- Precision holography with matrix model from localisation?


- Sigma-model proof of integrability for the crosscap?


- Other models in ? ABJM (oriented though) ?


- Fishnet theories on ? Nonplanar version of Basso-Dixon diagrams?

ℝℙ4

ℝℙ2

ℝℙ4

ℝℙd

ℝℙ4

[Wang’ 20]

[Linardopoulos, Zarembo]



Outlook

- Antipodal map defining  in embedding coordinates is given by
ℝℙ4

(X0, X1, X2, X3, X4, X5) ↦ (X0, − X1, − X2, − X3, − X4, − X5)

- But we can imagine doing:

(X0, X1, X2, X3, X4, X5) ↦ (X0, X1, X2, − X3, − X4, − X5)

- In N=4 SYM, are these new higher codimension versions of ? 1/2 BPS?


- Presumably they define new types of crosscaps on the worldsheet which are 
also integrable


ℝℙ4

- Bootstrap for the two point-functions on : involve conformal 
dimensions + three point couplings + one-pt functions (known 
from integrability). No new boundary operators! Bootstrability?


ℝℙ4
[Cavaglià, Gromov, 
Julius, Preti]

[Caron-Huot, Coronado, 
Trinh, Zahraee]



Thank you



Backup slides



Holographic Dual of  SYM on  
(without charge conjugation)

𝒩 = 4 ℝℙ4

• New (euclidean) 1/2-BPS solution of 10D IIB supergravity (asymptotically AdS)

ds2
10D = Δ1/4 (ds2

5D +
4
g2 (dθ2 +

cos2 θ
1 + 𝒦+ cos2 θ

dΩ2
S2 +

sin2 θ
1 + 𝒦− sin2 θ

dΩ2
dS2))

SO(3) SO(2,1)dr2 + e2Ads2
ℝℙ4

e2A =
𝒥3

4
sinh 2r +

1
4

(2 − 𝒥3)cosh 2r −
1
2

Explicit functions of  and r 𝒥

Parametric family of backgrounds. To be fixed by 
comparison to the gauge theory.

• Solution contains analytic expressions for non-trivial dilaton,  and B2, C2 C4

𝒥 → 0 : Standard (euclidean) AdS S5× 5



ds2
10D ∼ h−3/4dΩ2

dS2
+ h1/4 (𝒥dz2 + 𝒥ds2

ℝℙ4 + dξ2 + ξ2dΩ2
S2)

• Singular in the IR

e−Φ ∼ h−1/2

C2 ∼ h−1 dVdS2

• Resembles an  plane in flat space! 


• However -planes are incompatible with the previous large N counting: this setup does not 
involve gauging of worldsheet parity (  charge conjugation)


• What’s the embedding in string theory?


•

𝒪1−

𝒪
↔

Holographic Dual of  SYM on  
(without charge conjugation)

𝒩 = 4 ℝℙ4


