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Overview of some approaches



Bekenstein-Hawking entropy

SBH =
A

4G

I Schwarzschild: S = 4πGM2

I Extremal Reissner-Nordström: S = πGM2

I N=2 BPS: S = minπGM2

 stat. mech. explanation?



1. Quantizing field fluctuations in black hole background

[’t Hooft 85]

I the good: S = const.× A

I the bad: const. = ∞ (= ΛUV ∼ 1/G )

I the puzzling: depends on cutoff, number of species and other
details

(related: interpretation as entanglement entropy [Srednicki 93, Bombelli et al

86])



2. Highly excited fundamental string states

[Susskind 93]

I (Free) string microscopic entropy: Smicro ∼ `sM

I But SBH ∼ GM2 ??

I Redshift factor at distance `s from horizon (“stretched
horizon”) = `s/GM

⇒ Mloc ∼ GM2/`s Smicro ∼ `sMloc ∼ GM2 X



3. BPS black holes

Saturating BPS bound for given charge Q:

M =
|Z (Q)|√

G

Here Z (Q) = central charge; depends on vacuum moduli.

Remains true with M → Mloc for any local static observer, even
with varying moduli and metric! Unlike non-BPS case, mass not
renormalized between near and far!

⇒ entropy = log # states of charge Q and energy E = |Z(Q)|√
G
|hor .

Q 6= 0 ⇒ Need to count (BPS) D-brane states.



3. BPS black holes (continued)

Use:

1. generically: degeneracy at finite coupling ∼ (good) index at
finite coupling

2. index invariant under change of couplings

and compute semiclassically in weakly coupled regime.

 Smicro = SBH [Stroninger-Vafa 96, Maldacena-Strominger-Witten 97]

[However all successful cases dual to D4-D0/M5-P/AdS3 systems!]



4. (BPS) Fuzzballs

[Mathur, Benna-Warner, Balasubramanian-Gimon-Levi, de Boer et al,

Strominger et al, Skenderis-Taylor et al, X et al]

I There exist very intricate 4d multiparticle BPS bound states.

I “Scaling” solutions: asymptotically indistinguishable from
black hole.

I Huge internal degeneracies. Partial quantitative successes,
however so far not shown to be huge enough to reproduce full
4d SBH .

I Adding spherical D2-branes seems to ± reproduce SBH .



5. AdS5-CFT4

Comparison N = 4 SU(N) YM field theory entropy S0 computed
at zero ’t Hooft coupling g2N and black hole entropy at large ’t
Hooft coupling S∞:

S∞ =
3

4
S0

Renormalization effect quite well understood by now.



6. Computer simulations

[Anagnostopoulos-Hanada-Nishimura-Takeuchi 07]

Monte Carlo simulations of U(N) susy QM with 16 supercharges,
dual to (nonextremal) black hole with D0 charge N in IIA.

Perhaps most convincing confirmation ever that string theory gets
quantum gravity right!



Some recent developments in (non-fuzzball) microstate counting:

I [de Wit-Mohaupt-Lopes Cardoso-Kappeli 99-00]: Wald R2 corrections
to SBH match subleading corrections microscopic M5-P entropy.

I [Ooguri-Strominger-Vafa 04] All order refinement — the OSV
conjecture: ZBH ≈ |Ztop|2.

I [Dabholkar 04,Sen 05] Entropy of “small” black holes

I [Sen 05] Non-BPS extremal BH attractors in arbitrary higher
derivative gravity; Entropy function formalism.

I [Gaiotto-Strominger-Yin 06,de Boer-Cheng-Dijkgraaf-Manschot-Verlinde

06] Relation AdS3-CFT2 elliptic genus to OSV.

I [Gaiotto-Strominger-Yin 06] Exact M5 elliptic genera

I [Gaiotto Shih Strominger Yin Sen Dabholkar Murthy Narayan Banerjee

Nampuri David Jatkar Srivastava Mukherjee Mukhi Nigam ...]

((re-)re-)re-counting N=4 dyons

I [Denef-Moore 07] Partial proof version of OSV; wall crossing formulae

I [Sen 07-08,Cheng-Verlinde 07-08]: General N=4 wall crossing + alg

I [Kontsevitch-Soibelman,Gaiotto-Moore-Neitzke]: General N=2 wall
crossing formula



BPS bound states and wall crossing for dummies

Wall Crossing

Simple derivation
 of index jumps for 
                (1,N) splits!

Denef '00-'03
Denef-Moore '07



Realizations of BPS states in string theory



Setting

• IIA on Calabi-Yau X  4d N = 2 supergravity
+(h1,1 + 1) gauge fields

• D6-D4-D2-D0 BPS bound st.  BPS black holes with magn.
(D-branes + gauge flux) and el. charges (p0, pA, qA, q0)



BPS states and stability

I BPS bound for mass of particle with charge Γ = (p0, p, q, q0)
in vacuum with complexified Kähler moduli t ≡ B + iJ:

M ≥ MBPS = |Z |Mp

where

Z =

(
(Im t)3

6

)−1/2 (
p0 t3

6
− p · t2

2
+ q · t − q0

)
+ inst. corr.

I For generic t: |Z (Γ1 + Γ2, t)| < |Z (Γ1, t)|+ |Z (Γ2, t)|
⇒ BPS states absolutely stable.



Decay at marginal stability

I Stability argument fails when t such that

arg Z (Γ1, t) = arg Z (Γ2, t)

since then |Z (1 + 2)| = |Z (1)|+ |Z (2)|: marginal stability.

I ⇒ BPS states can disappear from spectrum when crossing
walls of marginal stability.

t

Γ
Γ1

Γ2

BPS particle splits in two BPS particles conserving different
susies. Even index of BPS states jumps!



BPS states at gs → 0 and VCY →∞

I Localized at single point in noncompact space.

I Wrapped on holomorphic cycles.
I Bound states with lower dim branes:

I gauge flux: holomorphic vector bundles
I brane “gas”: ideal sheaves



BPS states at gs → 0 near marginal stability

I Decay Γ → Γ1 + Γ2 at marginal stability often invisible in IIA
large volume geometrical D-brane picture.

I Stringy microscopic description [Kachru-McGreevy]:

I12
Γ1 Γ2

Γ1 Γ2

Light 1 → 2 open string modes φi , i = 1, . . . , I12 have D-term
potential:

VD ∼
∑

i

(|φi |2 − ξ)2 ⇒ Msusy = CPI12−1.

I FI term ξ changes sign when crossing MS wall ⇒ susy config.
exists on one side, not on other: ∃ “tachyon glue” iff ξ > 0.



BPS states in 4d supergravity (gs |Γ| � 1)

Simplest possibility: spherically symmetric BPS black hole of
charge Γ ≡ (p0, p, q, q0):

ds2 = −e2U(r)dt2 + e−2U(r)d~x2

t

Solutions ⇔ attractors [Ferrara-Kallosh-Strominger]:

Radial inward flow of moduli t(r) is gradient flow of log |Z (Γ, t)|.



Existence of spherically symmetric BPS black holes

Three possibilities [Moore]:

1. Gradient flow ends in minimum t = t∗(Γ) with Z (Γ, t∗) 6= 0.
⇒ Regular black hole with horizon area A = 4π|Z (Γ, t∗)|2.

2. Flow ends in boundary point t = t0 with Z (Γ, t0) = 0.
⇒ Zero area black hole, but still BPS solution (e.g. pure D6,
D2-D0; note: regular after uplifting to 5d).

3. Flow ends in interior point t = t0 with Z (Γ, t0) = 0.
⇒ No BPS black hole solution.



BPS black hole molecules

More general BPS solutions exist: multi-centered bound states:

ds2 = −e2U(~x)
(
dt − ωidx i

)2
+ e−2U(~x)d~x2.

I Centers have nonparallel charges.

I Bound in the sense that positions are constrained by
gravitational, scalar and electromagnetic forces.

I Stationary but with intrinsic spin from e.m. field



Explicit multicentered BPS solutions

I N-centered solutions characterized by harmonic function H(~x)
from 3d space into charge space:

H(~x) =
N∑

i=1

Γi

|~x − ~xi |
+ H∞

with H∞ determined by t|~x |=∞ and total charge Γ.

I Positions constrained by

N∑
j=1

〈Γi , Γj〉
|~xi − ~xj |

= 2 Im
(
e−iαZ (Γi )

)
|~x |=∞

where 〈Γ1, Γ2〉 = Γm
1 · Γe

2 − Γe
1 · Γm

2 and α = arg Z (Γ).

I All fields can be extracted completely explicitly from the
entropy function S(Γ) on charge space, e.g.

e2U(~x) =
π

S(H(~x))



Decay at marginal stability

2-centered case:

Γ1 Γ2

I Equilibrium distance from position constraint:

|~x1 − ~x2| =
〈Γ1, Γ2〉

2

|Z1 + Z2|
Im(Z1Z2)

∣∣∣∣
|~x |=∞

I When MS wall is crossed: RHS →∞ and then becomes
negative: decay



Example: pure D4 = D6− D6 molecule

I Pure D4 with D4-charge P has

Z ∼ −P · t2

2
− P3

24
.

Z (t) = 0 at t ∼ i P ⇒ No single centered solution.

I Instead: realized as bound state of single D6 with U(1) flux
F = P/2 and anti-(single D6 with flux F = −P/2):

-D6[-P/2]D6[P/2]

Stable for Im t > O(P).

I M-theory uplift: smooth “bubbling” geometry.
[Benna-Warner,Cheng]



Transition between gs |Γ| � 1 and gs |Γ| � 1 pictures

I Mass squared lightest bosonic modes of open strings between
Γ1 and Γ2:

M2/M2
s ∼ |~x1 − ~x2|2

`2
s

+ ∆α

= c(t) g2
s + ∆α

I On stable side of MS wall ∆α < 0, so if gs gets sufficiently
small, open strings become tachyonic and branes condense
into single centered D-brane. [FD qqhh]

 single D-brane Quiver Higgs Quiver Coulomb two particles
(sugra)

0 |∆α| 3/2c |∆α|c sgI



The flow tree - BPS state correspondence

I Establishing existence of multicentered BPS configurations not
easy: position constraints, S(H(~x)) ∈ R+ ∀~x , ... However:

I Theorem/conjecture: Branches of multicentered configuration
moduli spaces in 1-1 correspondence with attractor flow trees:

Γ

ΓΓE'

ms

E''

E

I Much simpler to check & enumerate!



Flow tree decomposition of BPS Hilbert space

I Flow trees can also be given microscopic interpretations
(decay sequences / tachyon gluing).

I ⇒ Hilbert space of BPS states of charge Γ in background t
has canonical decomposition in attractor flow tree sectors:

H(Γ, t) =

+ + + +



Uplift to M-theory on AdS3 × S2

-2 -1 1 2

-2

-1

1

2

Flow trees which start at infinite CY volume can be realized as
multicentered bound states in asymptotic AdS3 × S2:
[de Boer-(Denef-)El Showk-Messamah-Van den Bleeken 08]

⇒ relevant for (0, 4) CFT2s.



Wall crossing formulae



The BPS index

Hilbert space of BPS states in 4d N = 2 theories:

H(Γ, t) = (1
2 , 0, 0)⊗H′(Γ, t)

Index:
Ω(Γ, t) = TrH′(Γ,t) (−1)2J′3

 How does Ω change when t crosses MS wall?



Wall crossing formula for primitive splits

J
Γ1 Γ2

I Near marginal stability wall Γ → Γ1 + Γ2 (with Γ1 and Γ2

primitive), the decaying part of H′(Γ, t) has following
factorized form:

∆H′(Γ, t) = (J)⊗H′(Γ1, t)⊗H′(Γ2, t)

with J = 1
2(〈Γ1, Γ2〉 − 1).

I Spin J factor:
I macroscopically from intrinsic angular momentum

monopole-electron system (−1/2 from relative c.o.m. spin)
I microscopically from quantizing open string tachyon moduli

space Msusy = CP2J .

I Implies index jump

∆Ω = (−)2J(2J + 1) Ω(Γ1, tms) Ω(Γ2, tms).



Indices from wall crossing: examples
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1. Pure D4 on P > 0 with pulled back flux S splits in D6 with
flux P/2 + S and anti-(D6 with flux −P/2 + S), so

|Ω| = |〈Γ1, Γ2〉| =
P3

6
+

c2P

12
=: IP = χ(MP). X

2. D6-D2 “brane gas” bound state with D2 = U ∩ V , V > U,
first splits off D6 with flux U, remainder next splits in D6 with
flux V and anti-(D6 with flux U + V ), so

|Ω| = |〈Γ1, Γ2 +Γ3〉〈Γ2, Γ3〉| = |IV − IV−U |IU = χ(MU∩V ) X



Nonprimitive splits 1: halos

Γ

Γ1 Ν Γ 2

Halo = bound state of one Γ1 particle (“core”) with N Γ2 particles.

Wall crossing formula for index from generating function:∑
N

∆Ω(Γ1 + NΓ2, t) uN = Ω(Γ1)
(
1− (−1)〈Γ1,Γ2〉u

)|〈Γ1,Γ2〉|Ω(Γ2,t)

Most general nonprimitive splits: Γ → (MΓ1,NΓ2)  ??



Example: D6-D0 bound states in large B-field

For −B ∼ −Re t sufficiently large: D6 - N D0 BPS bound states
exist as halos:

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1
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Γ

D0

D6

ZD6−D0(u; t) :=
∑
n

Ω(D6+nD0, t) un =
∏
k

(1−(−u)k)−kχ(X ) X

(product is over halos of D0-particles of D0-charge k.)



D2-D0 halos and D6-DT-GV correspondence
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Similarly: D2D0 halos around D6-· · · cores. MS lines asymptoting
to vertical lines B ∼ qD0/qD2, J →∞.

⇒ only in suitable B →∞ limit identification:

ZD6D2D0 = ZDT = ZGV

Genus r = 0 part of ZGV counts halo states, genus r > 0 core
states. Asymmetry under inversion D0-charge of r = 0 part due to
different signs halo D0 charge stable for different signs B-field.



Side remark: scaling solutions

I ∃ multicentered “scaling” solutions without MS lines,
asymptotically indistinguishable from single black hole

I E.g. multicenter configuration corresponding to three node
closed loop quiver. Microscopic index:

Ω =

∫ ∞

0
ds e−s L1

a−1(s) L1
b−1(s) L1

c−1(s) + · · ·

I Polynomial in (a, b, c) in regime without scaling solutions, X
I Exponential in regime with scaling solutions:

Ω ∼ (abc)−1/3 2a+b+c  why?



The OSV conjecture



The OSV conjecture

[Warning: 2 ≡ π ≡ i ≡ 1.]

Defining

Zosv (φ) ≡
∑
q

Ω(p, q) eφ·q

[Ooguri-Strominger-Vafa] conjectured:

Zosv (φ) ∼ Ztop(gtop, t)Ztop(gtop, t)

with identifications:

gtop =
1

φ0 + i p0
, tA =

φA + i pA

φ0 + i p0
.

Inverting:

Ω(p, q) ∼
∫

dφ e−φ·q |Ztop|2(p, φ).

RHS in leading saddle point approx. = eSBH(p,q).



Deriving OSV for p0 = 0: rough outline

1. Identify Zosv = limβ→0ZD4(β, C1,C3).

2. Use SL(2, Z) TST-duality to rewrite ZD4 at t = i∞ as
Fareytail/Rademacher series built on polar part Z−

D4:

Zosv =
∑

A∈SL(2,Z)

f (A, φ0)Z−
D4(A · (φ

0, φ))

3. Polar BPS states split: no attractor point, Ω∗(Γ
−) = 0, so

Ω(Γ−, t) =
∑

Γ−→Γ1+Γ2

(−)〈Γ1,Γ2〉−1|〈Γ1, Γ2〉|Ω(Γ1, tms) Ω(Γ2, tms)

4. At large P, SL(2, Z) element A = S : φ0 7→ 1/φ0, and splits
into Γ1 (Γ2) = single (anti-)D6 with dilute D2-D0 gas
dominate nonpolar part of ZD4 in Fareytail sum, provided
φ0(∼ 1/gtop) not too large (and P large).

5. Dilute gasses fully factorize ⇒ in suitable regime:

Zosv ∼ ZD6ZD6 ∼ ZDT ZDT = |Ztop|2.



Pictorial summary

D6 D6
D4

S Z Ztop top



Final result

Index of nonpolar charge Γ = (0,P,Q, q0):

Ω(Γ; t∞ = i∞) =

∫
dφ µ(P, φ) e−2πqΛφΛ

eF
ε(P,φ)+δF ,

where, with substitutions g ≡ 2π
φ0 , tA ≡ 1

φ0 (φ
A + i PA

2 ):

µ(P, φ) =
4π

g2
e−Kε(g ,t,t̄)

Fε(P, φ) = F ε
top(g , t) + F ε

top(g , t)

δF = O(e−εgP3

)

with F ε
top topological string free energy cut off by taking only DT

invariants NDT (β, n) with β · P < εP3, |n| < εP3, and K ε “Kähler
potential” derived from this.

Must take ε < O(P−1) for factorization and DT id., so error

δF ∼ e−gP2

∼ e−(Im t)2/g



Range of validity

Unless freaky cancelations of contributions to indices occur, we
find restriction

g > O(1)

i.e. strong topological string coupling!

Equivalently (as g |saddle ∼
√

q̂0/P3):

q̂0 > O(P3).

Technical reason: only when g > gcrit ∼ O(1) are non-factorizable
terms in fareytail series sufficiently suppressed (entropy overwhelms
Boltzmann suppression  phase transition).

Not artifact of derivation, but related to “entropy enigma”.



The Entropy Enigma

For Γ = Λ(0,P,Q,Q0) in large Λ limit, and in background with
Im t � O(Λ), there always exists two centered D6-anti-D6 type
black hole configuration such that

SBH,2 := SBH,1(Γ1) + SBH,1(Γ2) ∼ Λ3

while leading order OSV prediction is log Ω ∼ SBH,1(Γ) ∼ Λ2.

S ~ Λ2

S ~ Λ3

[Denef-Moore 07]



The Entropy Enigma demystified

M-theory uplift [de Boer-(Denef-)El Showk-Messamah-Van den Bleeken 08]:
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EE = Susy version of [Banks-Douglas-Horowitz-Martinec]

thermodynamic instability of Schwarzschild-AdS to localization on
sphere.



Does this mean OSV is wrong?

Does entropy enigma imply that large Λ / weak g (∼ 1/Λ) OSV
conjecture is wrong?

No, physically one only really expects the conjecture to be valid at
attractor point, i.e. finite t∞:

Ω(Γ; t∗(Γ))
?∼

∫
dφ e−φ·q|Ztop|2(p, φ).

[No troubling Λ3 solutions there.]

But: interpretation lost of counting large volume D-brane ground
states; direct microscopic (D-brane) counting beyond reach at this
point.



Wall crossing for non-dummies





Kontsevich-Soibelman formula

I Consider two charges Γ1 and Γ2 near a wall of marginal
stability. Let, for positive m, n:

Ω±(m, n) := Ω(m Γ1 + n Γ2 , t±)

where t± are moduli immediately on left/right of wall.

I Let k := 〈Γ1, Γ2〉 and define the maps (symplectomorphisms)

Tm,n : (x , y) 7→
(
x(1− (−1)mnxmyn)n , y(1− (−1)mnxmyn)−m

)
.

I Then the KS wall crossing formula states∏
m/n↓

T
kΩ+(m,n)
m,n =

∏
m/n↑

T
kΩ−(m,n)
m,n .

I Example: k = 1: T10T01 = T01T11T10.

I KS reproduces and extends (1,n) w.c. formula to (m,n)!
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