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Introduction

m An (analytic) Q-system consists of Q-functions encoding the
conserved charges of an integrable model.

m The most well-studied case is that of gly or A,. For A;:

Spectral parameter
with Il = f(u+n ).
m We specify model by imposing analytic properties.
Example: Rational spin chain
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m Q-systems are general, can study systems without knowing
underlying "quantum" algebra! This is the case for Quantum
Spectral Curve).
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Introduction

m A general Q-system

’Analytic Q-system = Functional Relations + Analytic Properties‘
QQ-relations j

Polynomial,
branch-cuts ...

m Q-systems are general, can study systems without knowing
underlying "quantum" algebra! This is the case for Quantum
Spectral Curve).

m AdSsxS°® Ay P,

[Gromov,Kazakov,Leurent,Volin,'13'14]

m AdS,x CP* (ABJM)

[Bombardelli, Cavaglia, Fioravanti,Gromov, Tateo '17]

m AdS3;xS3x T4

[SE.Volin '21,Cavaglia,Gromov,Stefanski, Torrielli '21]
m Ultimate goal: Extend the QSC formalism as widely as possible!
Concrete recipe for su(2|2): Monodromy Bootstrap (seveiin 1]
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Challenges and hopes

m Challenges extending QSC?
not today

Logaritmic branch-cuts

Hirota Equations Lie algebra Q-systems

Functional Relations AnalyticRfoperties

Supersymmetric Q-systems

Parity invartant systems

m Study of functional relations appears in many areas. Important
progress made in ODE/IM [sun12Masoero Raimondo,valeri '15] for general
Lie-algebras. D, has recieved attention recently [Ferrando,Frassek,kazakov 20,
SE,Shu,Volin '20, SE Volin'21]

m Except for new construction of QSC: What else can we hope to do?

m Find powerful ways to solve BAE. [Marboe, volin '16]

m Fishnets in arbitrary dimensions? [Kazakov,Olivucci'18, Basso,Ferrando,Kazakov, Zhong
'19]

m ABJM fishchains (B, ~ C; Q-systems) using QSC?

m Other (1+1)D QFT'S? [Balog, Hegedus ‘05, Gromov,Kazakov,Vieira '08,Kazakov,Leurent '10]



Plan of the talk

m Philosophy:
Explicit examples before generalities, focus on rational spin chains.
m Q-systems and T-systems for A,.
m Q-systems and T-systems for By ~ C,.
m Bethe equations and T-functions.
m Solving By ~ C; spin chains.

m Extensions to higher rank



Reminder on A, Q-systems
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Warmup: Q-system for A,

m We can attach a Q-function to every node on the A, Dynkin diagram

As: O—O—O

Qa Qab Qabc

wherea=1,...,r+1.
m The various functions are related by functional equations,

Qa:Qap — Qa,Qhp = QaabQa Qp = Quaza =1

m Bethe equations for a homogeneous rational spin chain can be found

by setting
Qs =0192, Qab=02qap, Qabc = T3Gabc
_ L
Uk <U+§>
[—2] [+1] _h
AN =0 TN ey ut
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Warmup: Hirota for A,

m We can also attach T-functions to the Dynkin diagram

As: O—O—O

Tl,s 7—2,5 7—3,5
m They satisfy Hirota equations
T:ST;S = a+1,sTafl,s + Ta,s+1Ta,sfl .

m For rational spin chains there are transfer-matrices. Example H = n3

n/—R(u — 0,) x IPSym + 75:3:1—2 D:DASym
ti1(u) = U n— n
61
01 162 103 n
m Start with character solution, T3 1 = i =x1+ X+ ... Xrp1
xi"'z x1 1
ex As Tis=x1s=% %7 % 1
x§+2 x3 1




Relating Q-functions and T-functions
m Q-functions nicely "quantize" the character formula:

Xi+2
_ 1 s+2
Xl1s = x | X2

s+1
X3

X1
X2
X3

1
1
1

s+ [12] o,

[s+2] b4 2
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Qg25+4] Q£2] Q3
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Relating Q-functions and T-functions
m Q-functions nicely "quantize" the character formula:
xi+2 x3 1 (o 2] 52S+4] Q[12] Q1
545
Xl,s:% XS—i—2 % 1 —>T1,s 2l Q[225+4] Q[22] Q>

X§+1 x3 1 Qg25+4] ng] Qs

m However, Q-functions are not x,, rather

1 ;
ﬁ = X3 > Qa (0.8 Xaﬁ
a
m Can we generalize determinant? Hard, instead look for a bilinear

formula.
m Unpack determinant:
_ oS+H3rx0  x3) _ S+3/x1 _ x3 s+3(x1 _ x2
AX]_VS - Xl (X1 Xl) X2 (X2 X2) + X (x3 X3)
—u [757%
(2—x3)y/ET %y
(x3—x1)yE2x, "

)[H%]
(x1—x2) /x5

u
X3

~
el
L S
»
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Relating Q-functions and T-functions
m Q-functions nicely "quantize" the character formula:

5+2 X1 1 [12s+4] Q[12] Ql

5
e = L2 w1 s TE T o Qb QB o,
S oxs 1 ngs+4] Q[z] 05

m However, Q-functions are not x,, rather
[+]
xa
(-]
a

u

=%, = QpxxJ (1.1)

m Can we generalize determinant? Hard, instead look for a bilinear

formula.
m Unpack determinant:
s+3 s+3 s+3
Axis=x1 (2 -2)-x7 (@ -2)+x37 (% - 2)
u [757%]
R
u u u [s+3] (x2=x3 «/7X1u [S+ ] —s—2
(f of ) [t — Q@)
h

(x1—x2) /x5 P
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Q-system for A, summary

m An A, type Q-system is based on Q-functions built from Q.

m The Hirota equations are given by

T+ T,.= 7—a+1,sTafl,s + Ta,erlTa,sfl .

as’ as
m They can be solved using Q-functions:

[s+251] r1

Tl,s = Wa 2 (Qa)[—s— 2

r+1

Tos = Qly F(@) 7,

or

s "H 57il
fos = <Q[ ) e ]> '

m A simple solution is the character solution.
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B, ~ C, Spin chains

m Simplest non-simply laced case: By ~ Cs.

OO« x®(01) = Vs + /2 + /2 + /5
5 1) i

+-— —+ ——
Vector Spinor
m 3 important types of scattering events

n sn
~ pl4 u+hp10 uth U5 o1 _ plé YT pa
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B, ~ C, Spin chains

m Simplest non-simply laced case: By ~ Cs.

ﬁ?@ \x&([Oll) = v ¢ VA2 e

- -+ —-

Vector Spinor
m 3 important types of scattering events

5 s
~ pl4 u+hp10 uth U5 o1 _ plé YT pa
5/’? = Pses + =i Pses + imh i ses 5fR5®4 = Psgs + 5 Poes

57¢75 4@4
5 4 5
4«{@&4

s 5
k‘? ~ 10 u+z 5 u+33 1
4 >~ Pags + pr 3 Piga + =Ty L P9

m Once again possible to construct transfer-matrices. Ex: (H = 43)

() = W t5.1(1) ﬁ.
61 <6 <b3 01 <6 <63



T-system for B, ~ C,

m There exist many more T-functions, they form a T-system
T5[;2]TF£,22 =Taos+ Tss+1755-1

7—‘{’*2;]-,—1{21 =Taos1Ta2s11+ T54T5 s

—1 1
TIE,ZSLITILJES]JJ = T4,25T4,2s+2 + T5,5T5,5+1
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m There exist many more T-functions, they form a T-system
TEEj]TEE =Taos+ Tss+1755-1

7—4{,72;]7—;{21 =Taos1Ta2s11+ T54T5 s

—1 1
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m Goal: Find character solution, find a bilinear formula and then
quantize by introducing Q-functions.



T-system for B, ~ C,

m There exist many more T-functions, they form a T-system

T5[;2]TF£,22 =Taos + Ts 5117551

ool T = Tans 1 Taosis + T3 Tos
_1 1
TIE,ZS]A»IT},J;S]JA = Ta2sTaps2+ T5sT5 511

m Goal: Find character solution, find a bilinear formula and then
quantize by introducing Q-functions.

m The character solution:

Tao=1
1,1 5+2 1 s+1 1
Tap=x1+x2+ o+ o- 1 17 =2 X1 TsTl
L Tss = X | st2_ 4 s+1_ 1
T5’0:1 X2 s+2 X2 _29+1
Tsn=xim+ 2 +14+ 24 L “—x([0s])



Rewriting x2([0s])

m Decompose determinant to look for starting point:

s+2 1 s+1 1 +4 I
X7 C— X7 — =7
~ 1 Xs+2 1 Xs-f—l 2543
— 1 1 = feres)2s+3 (1 ERR)
ATee x3+2 - % X§+1 - %H (( ) (V"m) )( 2 ‘/;1)
%2 X2

_(( %)254»37(\/%)254»3) (mfﬁ)

+- —+



Rewriting x2([0s])

m Decompose determinant to look for starting point:

s+2 1 s+1 1 +4 I
X — =% X —
~ 1 =2 1 =1 2543 /R
O v T
Xy T er2 Xp 0 T 1
%2 X2

() )

+- —+

m Surprise: Ts s is nicely described by spinors!

0 0 0 -1 _
T5,s — (\U[25+3])T (8 5)1 (1) g)w[—25—3] = Yl2s+3]yl—25-3]
1 0 0 O
1 JEX\
1 X1
v=| e | Y




Quantizing the character solution

m Quantize by taking an ansatz

Functions of u
Tss = @[—25—3]\U[25+3] '

with boundary conditions Ts g =1, T5 _1 = 0.



Quantizing the character solution

m Quantize by taking an ansatz

Functions of u
T5,s — @[—25—3]\U[25+3] '

with boundary conditions Ts g =1, T5 _1 = 0.

m The remaining equations are solved by
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Quantizing the character solution
m Quantize by taking an ansatz
Functions of u
Tss = @[—25—3]\U[25+3] '
with boundary conditions Ts g =1, T5 _1 = 0.
m The remaining equations are solved by

-,—4’5 _ \/,-[3+S]Vi

—1)° s —3—s
B-s) T w4

A\ W = wl=2lyl2

m The « functions appear naturally due to Fierz identities

Vi = Pl-2yiyl

1 1 i 1 ij
635; = fZCaﬁCW’S + E('Yi)aﬁ('y )"+ 5(’Yij)aﬁ(’)’])75



Summarizing the B, ~ C, T-system

m We can solve the B, ~ C, T-system using

Tse = @[2s+3]w[72573] ,

T4,s :Vi[3+s]( )[ 3—5] +( 2) W[3+5]W[ 3— 5],
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Summarizing the B, ~ C, T-system
m We can solve the B, ~ C, T-system using
Tse = @[2s+3]w[72573] ,
Tas = VB34 4 (—21)5 WBHslyy-3-5]

m Checks to do:
m Equations imply Bethe equations.
m Compare against other expressions for T-functions.
m The Q-functions are now not as easy to place on the Dynkin
diagram. "Natural" attempt:
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QQ-relations and Bethe Equations

m Claim: The system naturally implies QQ-relations giving Bethe
equations.

m Need two equations
vi=wl-2Ayiyll i = ety gl
(V)*F(V) = (V) (V)"
m Consider the highest weight components:
LB 4
(VIH(V2)~ — (V1) (V2)* o Wiy

m Shifting and evaluating at zeros gives now:

4
L{[li] 7(V11)[;212] = -1

—a (v
\Ul ( ) ‘~|11:0 ]_|,2 q.[aBab] _ _1
R ) = ol Pl
vyl ==
(V1) oo

where B, is the symmetrized C, Cartan matrix.
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Fundamental T-functions T4 (u)
m Consider a spin chain, ex:

- a@w

m The spectrum can be calculated using the following expression:

(4] (4]
_ pBlpl-1194" (3] p[-3195 94
t4’]_ - P P [2] + P4 P4 qf [2]
da Ay 3

Bl o3 94 05 el o314 ne
+ PPy 2+ PR 5

&7 o &



Fundamental T-functions T4 (u)

m Consider a spin chain, ex:

taae) = w

m The spectrum can be calculated using the following expression:

(4] (4]
~119 _
tog = PP 94, 4 PPl ITS 28
da Ada 3
[-4] g Pz
+ PP] PIE_3] qa dg + P[3]P[ 3]4a
(-2] gs 4 74 [—2]
Ada Ada
m To reproduce these expressions we use the following identification:
V=04qs, Vi=o05g5. 181= :[4];[74*] Taq
4 “4
+
O Og o4
>=F, Ps
ks oL
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m Can we improve the expression, for Ty ¢7

Tas = \/i[3+5](v[—3—s])i 4+ (—21)S wB+slp/[—3-sl

m Idea: V;, W are components of a bigger vector U
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Singlet and oscillating sign
m Can we improve the expression, for Ty ¢7

Tas = \/i[3+5](V[_3—s])i n (—21)5W[3+S]W[—3—s] _

m Idea: V;, W are components of a bigger vector U

a_yja 21 3 3
v Vi=U2 ae{1,2,3,1} (RU)® = U3, (RU)* = U

vie | vo VO — E(U‘D’ +U3) Tas= <Rs+1u[f3fs] U[3+s]>
V2 2 ' '
v W = U3 _ U5

m Then we can draw the following picture
T4,s T5,s
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I
U W



Singlet and oscillating sign
m Can we improve the expression for T3 7

T4,s — \/i[3+5](v[—3—s])i + (—21)S wB+slp/[—3-sl

m Idea: V;, W are components of a bigger vector U’
Vi Vei=1° a€{1,2,21}
V2

vie |vo VO — E(U3+U*3) Tac= <Rs+1u[f3fs] U[3+s]>

Vé 2 S 1
Vi W = U3 _ U5

m Then we can draw the following picture

T4,s T5,s

</ O:éo \U[ 1]rIw[1] (RU)

(Vi, W) v w[ 1] rI\U[ll UI

I
U W e

(RUY® = U3, (RU)3 = U3



Summarizing the B, ~ (, Q-system

m A Q-system for_52 ~ C, can be built from spinors V. There is also
a vector, VI = Wl=24/wl and a scalar W = Wi-2yl2],



Summarizing the B, ~ C, Q-system

m A Q-system for_52 ~ C, can be built from spinors V. There is also
a vector, VI = Wl=24/wl and a scalar W = Wi-2yl2],

m Among the relations satisfied by W we find Bethe equations after
imposing analytical properties.



Summarizing the B, ~ (, Q-system

m A Q-system for_52 ~ C, can be built from spinors V. There is also
a vector, VI = Wl=24/wl and a scalar W = Wi-2yl2],

m Among the relations satisfied by W we find Bethe equations after
imposing analytical properties.

m We can unify V/ and W into UL. This vector gives a compact
bilinear formula for Ty 5.



Summarizing the B, ~ (, Q-system

m A Q-system for_82 ~ C, can be built from spinors V. There is also
a vector, VI = Wl=24/wl and a scalar W = Wi-2yl2],

m Among the relations satisfied by W we find Bethe equations after
imposing analytical properties.

m We can unify V/ and W into UL. This vector gives a compact
bilinear formula for Ty 5.

| | The matriX R was introduced in [Masoero, Valieri,Raimondo '15].
are now slightly more difficult:

Uf (RU); — Up (RU); o WRT W) (2.1)



Summarizing the B, ~ (, Q-system

A Q-system for_82 ~ C, can be built from spinors V. There is also
a vector, VI = Wl=24/wl and a scalar W = Wi-2yl2],

Among the relations satisfied by W we find Bethe equations after
imposing analytical properties.

We can unify V/ and W into U. This vector gives a compact
bilinear formula for Ty 5.

| | The matriX R was introduced in [Masoero, Valieri,Raimondo '15].
are now slightly more difficult:

Uf (RU); — Up (RU); o WRT W) (2.1)

Interesting similarities with AdS,/CFT3 QSC.
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Motivation and plan

m Solving Bethe Ansatz Equations is generally a slow procedure.

m Can we do better using Q-systems? Often yes! (However, state of
the art for A, uses supersymmetry, no generalisation yet [varboe,volin '16])

m Plan:

m Example of alternating suy
m Backto G, ~ B,
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The alternating su, spin chain (ABJM), Part 1

m The analytic ansatz amounts to setting
QRa=0(1)9a Qab = 0(2)qab

m The Bethe equations are

@ - 2 - -
(ﬂ)u _ @ q12 ﬂ)Lﬁ _ _ 912 91 9123
- B - - - + F
u q[ 2 q12 =0 u q[122] d1 9123 qr2=
Ly _ _9 Le — ()93
4 ( ) ule = (+) (

Rabc = 0(3)Yabc

2 -
_ Y123 q12

T2
9123

7(2)

=L
73%3)

] q12

q123=0



The alternating su, spin chain (ABJM), Part 1
m The analytic ansatz amounts to setting
QRa=0(1)9a Qab = 0(2)qab Qabc = 0(3)Gabe

m The Bethe equations are

[ - 2 - - 2 -
(ﬂ)u —_ T Y ﬂ)Ls —_ 12 91 % (ﬂ)Lz — _ 123 912
- - [-2] 4% — - [-2] o+ T - - [-2] 4+
“ g~ 912 q1=0 “ 912 91 9123 q12=0 “ G103 912 q123=0
e = 70 ule = 070 s = £e
O] @%@ 73%3)

m Example: homogeneous alternating suy4 spin chain with sites in 4, 4,
then we set

La=1L, Lg =0, Lz=L.



The alternating su, spin chain (ABJM), Part 2

m The trick now is to not solve Bethe equations but instead the
Wronskian equation Q1234 = 1;

. .\ L
W(q1, 92,93, q4) = Bl 1[71] = — (“2(U +i)(u— 1))
W% 7@
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m We also need to impose
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The alternating su, spin chain (ABJM), Part 2

m The trick now is to not solve Bethe equations but instead the
Wronskian equation Q1234 = 1;

. .\ L
W(q1, 92,93, q4) = Bl 1[71] = — (“2(U +i)(u— 1))
W% 7@

m We also need to impose
Jab = uLW(qa’ qb) Remainder( qaLb) =0

u

i ; — . be _
Gabe = (u+ $)H(u — 3)"W(as, 0, 9c) Remainder (¢ 5itfs—gye) =0

m The degree of a g-functions fixed by distance from highest weight:

Y

®? ([100] ® [001]) = [202] & [210] @ [012] & [020] & 4 [101] & 2 [000]



The alternating su, spin chain (ABJM), Part 2
m The trick now is to not solve Bethe equations but instead the

Wronskian equation Q1234 = 1;

. L
W(q1, 92,93, 9a) = s = (v*(u+1)(u— 1))
091 %0 %)

m We also need to impose
Gab = U*W(qa, 9p) Remainder(q—L) =0
il L ” Remainder(— 3 ) =
Gabe = (u+35)" (v = 3)"W(9a, 9b, qc) emain er(( )L(u——) r) =

m The degree of a g-functions fixed by distance from highest weight:

SN

®? ([100] ® [001]) = [202] & [210] @ [012] & [020] & 4 [101] & 2 [000]

m Can study for example determinant operators [vang jiang KomatsuWu 217.

.t ] 2 | 3 | 4 | 5

# Solutions | 10 (0.4s) | 70 (55s) | 558 (3 min) -
+ impose sym | 5 (0.5 s) 59 (20s) | 119 (2min)



The B, ~ C, case

m Once again take an ansatz

Vy =05 Yq,

V=04 V',

(3.1)



The B, ~ C, case

m Once again take an ansatz

V, =05 Ya,

m Fix
Jr p—
09595

+ —
0404

=Py,

V=04 V',

o4 B
0_{_)2]0{_)—2]

Ps

(3.1)



The B, ~ (, case

m Once again take an ansatz

Vo, =05%q, Vi=ogv', (3.1)
m Fix
959 _p 04 _
ofoy Fa 2] _[-2] Ps
474 0'5 0'5

m What is the Wronskian relation for a By ~ C; algebra? We can use
Tso=1,T5_1=0
3 -1
S S

1] =
0 Yy 0o 9 _ -
B [1 5| = Pa P Py ¥g g
3 Y3 Ys

1‘[}[3] 1/}[1] 1/}[ 1] ¢[ 3]| Fused product

"Dynamic source"
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The B, ~ C, case

m Once again take an ansatz

Vo, =05%q, Vi=ogv', (3.1)
m Fix
959 _p 04 _
ofoy Fa 2] _[-2] Ps
474 0'5 0'5

m What is the Wronskian relation for a By ~ C; algebra? We can use
Tso=1,T5_1=0
3 -1
S S

1] =
0 Yy 0o 9 _ -
B [1 5| = Pa P Py ¥g g
3 Y3 Ys

1‘[}[3] 1/}[1] 1/}[ 1] ¢[ 3]| Fused product
m For spin chains containing vector representations:
Py’

5

"Dynamic source"
—_—

Remainder( )=0 (3.2)



Some explicit results for B, ~ G,

m Technical comments
m It is always necessary to gauge-fix Q-function. Why?

W(q1,q2) =Ff = W(q1, g2+ q1)=f.

Gauge-fixing is done by subtracting lower degree from higher degree
g-functions.
m The degree of Q-functions can be computed as
deg(ga) = (Lowering Roots, €,)
+ (Ground State, (w, — €,)) + (Weyl vector, (w, — €3)) .
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W(q1,q2) =Ff = W(q1, g2+ q1)=f.

Gauge-fixing is done by subtracting lower degree from higher degree
g-functions.
m The degree of Q-functions can be computed as

deg(ga) = (Lowering Roots, €,)
+ (Ground State, (w, — €,)) + (Weyl vector, (w, — €3)) .

m Running the described algorithm:

L | 3 | 4 | 5 | 6 | 7

# Sol | 6 (0.3s) | 20 (1.03s) | 50 (1.7) | 175 (11s) | 490 (3 min)

Table. Homogeneous spin chain with spinors



Some explicit results for B, ~ G,

m Technical comments
m It is always necessary to gauge-fix Q-function. Why?

W(q1,q2) =Ff = W(q1, g2+ q1)=f.

Gauge-fixing is done by subtracting lower degree from higher degree
g-functions.
m The degree of Q-functions can be computed as

deg(ga) = (Lowering Roots, €,)
+ (Ground State, (w, — €,)) + (Weyl vector, (w, — €3)) .

m Running the described algorithm:

L | 3 | 4 | 5 | 6 | 7

# Sol | 6 (0.3s) | 20 (1.03s) | 50 (1.7) | 175 (11s) | 490 (3 min)

Table. Homogeneous spin chain with spinors

m The method also works for twisted spin chains.



Generalisations



Example of B3

m Two examples to show how to generalize:
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Example of B3

m Two examples to show how to generalize:
m Example 1: By

Qa Qab Qabc
~

6 15 20
m The T-system can now be solved by

Tl,s _ Q‘[;_ abQ[5+2] , Q 2] ac bdQ[5+

[s+3] _
T3 s = lQabc Kadl{beKCfR(Q ) < 20=14R6



Example of (3

m For C3:
6 14 14
7—1 s T2,s T3 s
7 21 8
v,
—~—
8
U! IJ

8 28 ~—

ul = (vi,w) UM = (vi,wi
Vix Ul-2yiyld W wi-2yl2

Vi o Wi-2Ayiyl W o wi=2yl2l



Conclusions and outlook



Conclusions

m We can solve various different T-systems using bilinear formulas for
T-functions

m The symmetry of the Q-system does not in general coincide with
that of the integrable model.

m From the T-system we can construct Wronskian Bethe Equations.
These equations can be used to solve for the spectrum.



Outlook

m On-going work:
m Exceptional non-simply laced algebras, expected to follow a similar
pattern. (Dz(ﬁ) should give G3)
m Supersymmetric Q-systems, still mysterious. (Some help from ABJM
QSCQ)
m Personal goal: D(2,1|a)

m Would be very interesting to extend beyond rational spin chains.

m Long-term goal: Extend the QSC and, hopefully, find a rich family
of "AdS/CFT" like systems.
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