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Introduction
An (analytic) Q-system consists of Q-functions encoding the
conserved charges of an integrable model.

The most well-studied case is that of glN or Ar . For A1:

T (u) =

˛̨̨̨
˛Q[2]

1 Q
[−2]
1

Q
[2]
2 Q

[−2]
2

˛̨̨̨
˛

Spectral parameter

Q+
1 Q

−
2 − Q−

2 Q
+
1 = 1

QQ-relations

with f [n] = f (u + n ~
2).

We specify model by imposing analytic properties.
Example: Rational spin chain

Q1 = x
u
~
1 ff
Q
j(u − u1;j)

Q2 = x
u
~
2 ff
Q
j(u − u2;j)

x1
x2

Q
j ̸=i

(u1;i−u1;j+~)
(u1;i−u1;j−~) =

„
u+ ~

2

u− ~
2

«L
QQ

polynomial

twist

dressing 1
ff+ff− = uL
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Introduction
A general Q-system

Analytic Q-system = Functional Relations + Analytic Properties

QQ-relations Polynomial,
branch-cuts . . .

Q-systems are general, can study systems without knowing
underlying "quantum" algebra! This is the case for Quantum
Spectral Curve).

AdS5×S5

[Gromov,Kazakov,Leurent,Volin,’13’14]

AdS4× CP3 (ABJM)
[Bombardelli,Cavaglià,Fioravanti,Gromov,Tateo ’17]

AdS3×S3× T4

[SE,Volin ’21,Cavaglià,Gromov,Stefanski,Torrielli ’21]

...

...Pa

P̃a

Ultimate goal: Extend the QSC formalism as widely as possible!
Concrete recipe for su(2|2): Monodromy Bootstrap [SE,Volin ’21]



3/34

Introduction
A general Q-system

Analytic Q-system = Functional Relations + Analytic Properties

QQ-relations Polynomial,
branch-cuts . . .

Q-systems are general, can study systems without knowing
underlying "quantum" algebra! This is the case for Quantum
Spectral Curve).

AdS5×S5

[Gromov,Kazakov,Leurent,Volin,’13’14]

AdS4× CP3 (ABJM)
[Bombardelli,Cavaglià,Fioravanti,Gromov,Tateo ’17]

AdS3×S3× T4

[SE,Volin ’21,Cavaglià,Gromov,Stefanski,Torrielli ’21]

...

...Pa

P̃a

Ultimate goal: Extend the QSC formalism as widely as possible!
Concrete recipe for su(2|2): Monodromy Bootstrap [SE,Volin ’21]



3/34

Introduction
A general Q-system

Analytic Q-system = Functional Relations + Analytic Properties

QQ-relations Polynomial,
branch-cuts . . .

Q-systems are general, can study systems without knowing
underlying "quantum" algebra! This is the case for Quantum
Spectral Curve).

AdS5×S5

[Gromov,Kazakov,Leurent,Volin,’13’14]

AdS4× CP3 (ABJM)
[Bombardelli,Cavaglià,Fioravanti,Gromov,Tateo ’17]

AdS3×S3× T4

[SE,Volin ’21,Cavaglià,Gromov,Stefanski,Torrielli ’21]

...

...Pa

P̃a

Ultimate goal: Extend the QSC formalism as widely as possible!
Concrete recipe for su(2|2): Monodromy Bootstrap [SE,Volin ’21]



4/34

Challenges and hopes
Challenges extending QSC?

Analytic PropertiesFunctional Relations

not today
Logaritmic branch-cuts

Parity invariant systems
Mixed fluxSupersymmetric Q-systems

Lie algebra Q-systemsHirota Equations

Study of functional relations appears in many areas. Important
progress made in ODE/IM [Sun’12,Masoero,Raimondo,Valeri ’15] for general
Lie-algebras. Dr has recieved attention recently [Ferrando,Frassek,Kazakov ’20,

SE,Shu,Volin ’20, SE Volin’21]

Except for new construction of QSC: What else can we hope to do?
Find powerful ways to solve BAE. [Marboe,Volin ’16]

Fishnets in arbitrary dimensions? [Kazakov,Olivucci’18, Basso,Ferrando,Kazakov,Zhong

’19]

ABJM fishchains (B2 ≃ C2 Q-systems) using QSC?
Other (1+1)D QFT’s? [Balog, Hegedus ’05, Gromov,Kazakov,Vieira ’08,Kazakov,Leurent ’10]
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Plan of the talk

Philosophy:
Explicit examples before generalities, focus on rational spin chains.
Q-systems and T-systems for Ar .
Q-systems and T-systems for B2 ≃ C2.
Bethe equations and T-functions.
Solving B2 ≃ C2 spin chains.
Extensions to higher rank
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Reminder on Ar Q-systems
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Warmup: Q-system for Ar
We can attach a Q-function to every node on the Ar Dynkin diagram

A3:
Qa Qab Qabc

where a = 1; : : : ; r + 1.

The various functions are related by functional equations,
QQ-relations:

Q+
AaQ

−
Ab − Q−

AaQ
+
Ab = QAabQA Q∅̄ = Q1234 = 1

Bethe equations for a homogeneous rational spin chain can be found
by setting

Qa = ff1qa ; Qab = ff2qab ; Qabc = ff3qabc

q
[2]
1

q
[−2]
1

q
[−1]
12

q
[+1]
1

˛̨̨̨
q1=0

= −
„
u+ ~

2

u− ~
2

«L
ff(2)

ff+
(1)
ff+
(1)

= uL
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Warmup: Hirota for Ar
We can also attach T-functions to the Dynkin diagram

A3:

T1;s T2;s T3;s

They satisfy Hirota equations
T+
a;sT

−
a;s = Ta+1;sTa−1;s + Ta;s+1Ta;s−1 :

For rational spin chains there are transfer-matrices. Example H = n3

n n

n

n

„1
u

R(u − „i ) ∝ PSym + u−„i+ℏ
u−„i−ℏ PASym

t1;1(u) = u

„1 „2 „3

T

Start with character solution, T1;1 =
T

= x1 + x2 + : : : xr+1

ex A2 : T1;s = ffl1;s =
1
∆

˛̨̨̨
˛̨x
s+2
1 x1 1

xs+2
2 x2 1

xs+2
3 x3 1

˛̨̨̨
˛̨
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Relating Q-functions and T-functions
Q-functions nicely "quantize" the character formula:

ffl1;s =
1
∆

˛̨̨̨
˛̨x
s+2
1 x1 1

xs+2
2 x2 1

xs+1
3 x3 1

˛̨̨̨
˛̨ T

[s+ 5
2
]

1;s ∝

˛̨̨̨
˛̨̨Q

[2s+4]
1 Q

[2]
1 Q1

Q
[2s+4]
2 Q

[2]
2 Q2

Q
[2s+4]
3 Q

[2]
3 Q3

˛̨̨̨
˛̨̨

However, Q-functions are not xa, rather

Q
[+]
a

Q
[−]
a

= xa =⇒ Qa ∝ x
u
~
a

Can we generalize determinant? Hard, instead look for a bilinear
formula.
Unpack determinant:

∆ffl1;s = xs+3
1 (x2

x1
− x3

x1
)− xs+3

2 (x1
x2

− x3
x2
) + xs+3

3 (x1
x3

− x2
x3
)

“
x

u
~
1 x

u
~
2 x

u
~
3

”[s+ 3
2
]

0B@(x2−x3)
√
x1 x

− u
~

1

(x3−x1)
√
x2 x

− u
~

2

(x1−x2)
√
x3 x

− u
~

3

1CA
[−s− 3

2
]
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Q-system for Ar summary

An Ar type Q-system is based on Q-functions built from Qa.

The Hirota equations are given by

T+
a;sT

−
a;s = Ta+1;sTa−1;s + Ta;s+1Ta;s−1 :

They can be solved using Q-functions:

T1;s = Q
[s+ r+1

2
]

a (Qa)[−s−
r+1
2

] ; T2;s = Q
[s+ r+1

2
]

ab (Qab)[−s−
r+1
2

] ;

or
Ta;s =

fi
Q

[s+ r+1
2

]

(a) ; Q
[−s− r+1

2
]

(a∗)

fl
:

A simple solution is the character solution .
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T+
a;sT

−
a;s = Ta+1;sTa−1;s + Ta;s+1Ta;s−1 :

They can be solved using Q-functions:

T1;s = Q
[s+ r+1

2
]

a (Qa)[−s−
r+1
2

] ; T2;s = Q
[s+ r+1

2
]

ab (Qab)[−s−
r+1
2

] ;

or
Ta;s =

fi
Q

[s+ r+1
2

]

(a) ; Q
[−s− r+1

2
]

(a∗)

fl
:

A simple solution is the character solution .
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Q-functions and Hirota for B2 ≃ C2
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B2 ≃ C2 Spin chains
Simplest non-simply laced case: B2 ≃ C2.

45
Spinor

fflB2([01]) =
√
x1x2 +

q
x1
x2

+
q

x2
x1

+
q

1
x1x2

Vector
++ +− −+ −−

3 important types of scattering events

5 5

5

5

u

R ≃ P14
5⊗5 +

u+ℏ
u−ℏP

10
5⊗5 +

u+ℏ
u−ℏ

u+ 3ℏ
2

u− 3ℏ
2

P1
5⊗5

4 4

5

5

u

R5⊗4 = P16
5⊗5 +

u+ 5ℏ
4

u− 5ℏ
4

P4
5⊗5

4 4

4

4

u

R ≃ P10
4⊗4 +

u+ ℏ
2

u− ℏ
2

P5
4⊗4 +

u+3 ℏ
2

u−3 ℏ
2

P1
4⊗4

Once again possible to construct transfer-matrices. Ex: (H = 43)

t4;1(u) = u 4

„1 „2 „3

T
t5;1(u) = u 5

„1 „2 „3

T
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T-system for B2 ≃ C2

There exist many more T-functions, they form a T-system

T
[−2]
5;s T

[2]
5;s = T4;2s + T5;s+1T5;s−1

T
[−1]
4;2s T

[+1]
4;2s = T4;2s−1T4;2s+1 + T−

5;sT
+
5;s

T
[−1]
4;2s+1T

[+1]
4;2s+1 = T4;2sT4;2s+2 + T5;sT5;s+1

Goal: Find character solution, find a bilinear formula and then
quantize by introducing Q-functions.
The character solution:

T5;s =
1
∆̃

˛̨̨̨
˛x
s+2
1 − 1

xs+2
1

xs+1
1 − 1

x+s+1
1

xs+2
2 − 1

xs+2
2

xs+1
2 − 1

xs+1
2

˛̨̨̨
˛

T4;0=1

T4;1=x1+x2+
1
x2

+ 1
x1

T5;0=1

T5;1=x1x2+
x2
x1

+1+
x1
x2

+ 1
x1x2

fflC2([0s])
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Rewriting fflC2([0s])

Decompose determinant to look for starting point:

∆̃ T5;s=

˛̨̨̨
˛̨̨x
s+2
1 − 1

xs+2
1

xs+1
1 − 1

xs+1
1

xs+2
2 − 1

xs+2
2

xs+1
2 − 1

xs+1
2

˛̨̨̨
˛̨̨ =„

(
√
x1x2)2s+3−

“
1√
x1x2

”2s+3
«“q

x1
x2

−
√
x2√
x1

”

−
„“q

x1
x2

”2s+3
−
“q

x2
x1

”2s+3
«“√

x1x2− 1√
x1x2

”
++ −−

+− −+

Surprise: T5;s is nicely described by spinors!

T5;s = (Ψ[2s+3])T
0BB@
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

1CCAΨ[−2s−3] ≡ Ψ̄[2s+3]Ψ[−2s−3]

Ψ =

0BBBBB@
1
1q

x2
x1

−
q

x1
x2

∆̃q
1

x1x2
−√

x1x2

∆̃

1CCCCCA

0BBBB@
√
x1x2q
x1
x2q
x1
x2
1√
x1x2

1CCCCA
u
~
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Quantizing the character solution
Quantize by taking an ansatz

T5;s = Ψ̄[−2s−3]Ψ[2s+3] ;

Functions of u

with boundary conditions T5;0 = 1; T5;−1 = 0.

The remaining equations are solved by

T4;s = V
[3+s]
i V i[3−s] +

(−1)s

2 W [3+s]W [−3−s]

V i = Ψ̄[−2]‚iΨ[2] W = Ψ̄[−2]Ψ[2]

The ‚ functions appear naturally due to Fierz identities

‹‚¸‹
‹
˛ = −1

4
C¸˛C

‚‹ +
1

2
(‚i )¸˛(‚

i )‚‹ +
1

2
(‚i j)¸˛(‚

i j)‚‹
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Summarizing the B2 ≃ C2 T-system

We can solve the B2 ≃ C2 T-system using

T5;s = Ψ̄[2s+3]Ψ[−2s−3] ;

T4;s = V
[3+s]
i (V i )[−3−s] +

(−1)s

2
W [3+s]W [−3−s] ;

Checks to do:
Equations imply Bethe equations.
Compare against other expressions for T-functions.

The Q-functions are now not as easy to place on the Dynkin
diagram. "Natural" attempt:

T5;s T4;s

Ψ¸ (V i ;W )
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QQ-relations and Bethe Equations
Claim: The system naturally implies QQ-relations giving Bethe
equations.

Need two equations

V i = Ψ̄[−2]‚iΨ[2] ; V i j = Ψ̄[−1]‚i jΨ[1] :
(V i )+(V j)− − (V i )−(V j)+

Consider the highest weight components:

Ψ
[2]
1 Ψ

[−2]
2 −Ψ

[2]
2 Ψ

[−2]
1 ∝ V 1

(V 1)+(V 2)− − (V 1)−(V 2)+ ∝ Ψ+
1 Ψ

−
1

Shifting and evaluating at zeros gives now:
Ψ

[4]
1

Ψ
[−4]
1

(V 1)[−2]

(V 1)[2]

˛̨̨̨
Ψ1=0

= −1

(V 1)[2]

(V 1)[−2]

Ψ
[−2]
1

Ψ[2] 1

˛̨̨̨
V 1=0

= −1

Q2
a=1

q
[Bab ]
a

q
[−Bab ]
a

= −1

where Bab is the symmetrized C2 Cartan matrix.
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Fundamental T-functions T4;1(u)
Consider a spin chain, ex:

t4;1(u) = u 4

The spectrum can be calculated using the following expression:

t4;1 = P
[3]
4 P

[−1]
4

q
[4]
4

q
[2]
4

+ P
[3]
4 P

[−3]
4

q
[4]
5

q5

q4

q
[2]
4

+ P
[3]
4 P

[−3]
4

q4

q
[−2]
4

q
[−4]
5

q5
+ P

[3]
4 P

[−3]
4

q
[−4]
4

q
[−2]
4

P4 = u3

To reproduce these expressions we use the following identification:

V 1 = ff4q4 ; Ψ1 = ff5q5 : t4;1 =
1

ff
[4]
4 ff

[−4]
4

T4;1

ff+5 ff
−
5

ff+4 ff
−
4

= P4 ;
ff4

ff
[2]
5 ff

[−2]
5

= P5
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Singlet and oscillating sign
Can we improve the expression, for T4;s?

T4;s = V
[3+s]
i (V [−3−s])i + (−1)s

2 W [3+s]W [−3−s] :

Idea: Vi ;W are components of a bigger vector U
V a = Ua; a ∈ {1; 2; 2̄; 1̄}

V 0 =
1

2
(U3 + U−3)

W = U3 − U ā

T4;s =
˙
Rs+1U [−3−s]; U [3+s]

¸(RU)3 = U 3̄ ; (RU)3̄ = U3

V i =

0BBBB@
V 1

V 2

V 0

V 2̄

V 1̄

1CCCCA

Then we can draw the following picture
T4;s T5;s

(V i ;W ) Ψ

UI
ΨL

ΨR
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Singlet and oscillating sign
Can we improve the expression, for T4;s?

T4;s = V
[3+s]
i (V [−3−s])i + (−1)s

2 W [3+s]W [−3−s] :

Idea: Vi ;W are components of a bigger vector U
V a = Ua; a ∈ {1; 2; 2̄; 1̄}
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Summarizing the B2 ≃ C2 Q-system

A Q-system for B2 ≃ C2 can be built from spinors Ψ. There is also
a vector, V i = Ψ̄[−2]‚iΨ[2] and a scalar W = Ψ̄[−2]Ψ[2].

Among the relations satisfied by Ψ we find Bethe equations after
imposing analytical properties.
We can unify V i and W into UI . This vector gives a compact
bilinear formula for T4;s .
The matrix R was introduced in [Masoero,Valieri,Raimondo ’15]. QQ-relations
are now slightly more difficult:

U+
I (RU)

−
J − U−

I (RU)
−
J ∝ Ψ̄−

RΓIJΨ̄
+
L (2.1)

Interesting similarities with AdS4/CFT3 QSC.
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Wronskian Bethe Ansatz
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Motivation and plan

Solving Bethe Ansatz Equations is generally a slow procedure.

Can we do better using Q-systems? Often yes! (However, state of
the art for Ar uses supersymmetry, no generalisation yet [Marboe,Volin ’16])
Plan:

Example of alternating su4
Back to C2 ≃ B2
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The alternating su4 spin chain (ABJM), Part 1

The analytic ansatz amounts to setting

Qa = ff(1)qa Qab = ff(2)qab Qabc = ff(3)qabc

The Bethe equations are

(
u+

u−
)L4 = − q

[2]
1

q
[−2]
1

q−12
q+12

˛̨̨̨
˛
q1=0

(
u+

u−
)L6 = − q

[2]
12

q
[−2]
12

q−1
q+1

q−123
q+123

˛̨̨̨
˛
q12=0

(
u+

u−
)L4 = − q

[2]
123

q
[−2]
123

q−12
q+12

˛̨̨̨
˛
q123=0

uL4 =
ff(2)

ff+
(1)
ff−
(1)

uL6 =
ff(1)ff(3)

ff+
(2)
ff−
(2)

uL4 =
ff(2)

ff+
(3)
ff−
(3)

Example: homogeneous alternating su4 spin chain with sites in 4; 4,
then we set

L4 = L ; L6 = 0 ; L4 = L :
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The alternating su4 spin chain (ABJM), Part 2
The trick now is to not solve Bethe equations but instead the
Wronskian equation Q1234 = 1;

W (q1; q2; q3; q4) =
1

ff
[3]
(1)
ff
[1]
1 ff

[−1]
(1)

ff
[−3]
(1)

=
`
u2(u + i)(u − i)

´L
:

We also need to impose
qab = uLW (qa; qb)

qabc = (u + i
2)
L(u − i

2)
LW (qa; qb; qc)

Remainder(qab
uL

) = 0

Remainder( qabc
(u+ i

2
)L(u− i

2
)L
) = 0

The degree of a q-functions fixed by distance from highest weight:

N2 ([100]⊗ [001]) = [202]⊕ [210]⊕ [012]⊕ [020]⊕ 4 [101]⊕ 2 [000]

Can study for example determinant operators [Yang,Jiang,Komatsu,Wu 21’].

L 2 3 4 5
# Solutions 10 (0.4 s) 70 (5 s) 558 (3 min) -

+ impose sym 5 (0.5 s) 17 (3.5 s) 59 (20 s) 119 (2min)
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The B2 ≃ C2 case
Once again take an ansatz

Ψ¸ = ff5  ¸ ; V i = ff4 v
i ; (3.1)

Fix
ff+5 ff

−
5

ff+4 ff
−
4

= P4 ;
ff4

ff
[2]
5 ff

[−2]
5

= P5

What is the Wronskian relation for a B2 ≃ C2 algebra? We can use
T5;0 = 1; T5;−1 = 0˛̨̨̨

˛̨̨̨
˛
 
[3]
1 0  

[−1]
1 0

0  
[1]
1 0  

[−3]
1

 
[3]
3  

[1]
3  

[−1]
3  

[−3]
3

 
[3]
2  

[1]
2  

[−1]
2  

[−3]
2

˛̨̨̨
˛̨̨̨
˛ = P4 P

+
5 P

−
5  +

0  
−
0

"Dynamic source"

Fused product

For spin chains containing vector representations:

Remainder(  ̄‚
i 

P5
) = 0 (3.2)
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Some explicit results for B2 ≃ C2

Technical comments
It is always necessary to gauge-fix Q-function. Why?

W (q1; q2) = f =⇒ W (q1; q2 + q1) = f :

Gauge-fixing is done by subtracting lower degree from higher degree
q-functions.
The degree of Q-functions can be computed as

deg(qa) = ⟨Lowering Roots; ›a⟩
+ ⟨Ground State; (!a − ›a)⟩+ ⟨Weyl vector; (!a − ›a)⟩ :

Running the described algorithm:

L 3 4 5 6 7
# Sol 6 (0.3 s) 20 (1.03 s) 50 (1.7) 175 (11 s) 490 (3 min)

Table. Homogeneous spin chain with spinors

The method also works for twisted spin chains.
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Generalisations
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Example of B3

Two examples to show how to generalize:

Example 1: B2

7 21 8

T3;sT2;sT1;s

6 14 14′

Qa|{z}
6

Qab|{z}
15

Qabc|{z}
20

The T-system can now be solved by

T1;s = Q
[−s− 5

2
]

a »abQ
[s+ 5

2
]

b ; T2;s =
1

2
Q

[−s− 5
2
]

ab »ac»bdQ
[s+ 5

2
]

cd

T3;s =
1
6Q

[−s− 5
2
]

abc »ad»be»cfR(Q
[s+ 5

2
]

def )

;

20=14⊗6
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Example of C3

For C3:
6 14 14

T3;sT2;sT1;s

7 21 8

UI|{z}
8

UIJ|{z}
28

ΨR|{z}
8

ΨL|{z}
8

UI = (V i ;W ) UIJ = (V i j ;W i )

V i ∝ Ψ̄[−2]‚iΨ[2];W ∝ Ψ̄[−2]Ψ[2]

V i j ∝ Ψ̄[−2]‚iΨ[2];W ∝ Ψ̄[−2]Ψ[2]
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Conclusions and outlook
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Conclusions

We can solve various different T-systems using bilinear formulas for
T-functions
The symmetry of the Q-system does not in general coincide with
that of the integrable model.
From the T-system we can construct Wronskian Bethe Equations.
These equations can be used to solve for the spectrum.
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Outlook

On-going work:
Exceptional non-simply laced algebras, expected to follow a similar
pattern. (D(3)

4 should give G2)
Supersymmetric Q-systems, still mysterious. (Some help from ABJM
QSC)
Personal goal: D(2; 1|¸)

Would be very interesting to extend beyond rational spin chains.
Long-term goal: Extend the QSC and, hopefully, find a rich family
of "AdS/CFT" like systems.
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