Large Twist Limit for Any Operator in N = 4
SYM

Gwenaél Ferrando

Work in collaboration with Amit Sever, Adar Sharon, and Elior
Urisman

000

TELAVIV NO'01IIN
UNIVERSITY Q2NN



Introduction and Motivation

» holography: explicit dictionary, many tests but no proof,

> ideal exemple: N =4 SYM in the planar limit, but still too
complicated, many results remain conjectural,

» further simplification: fishnet theory. Origin of integrability is better
understood, holography has been derived. [Giirdogan and Kazakov (2015)]
[Gromov, Kazakov, Korchemsky, Negro, and Sizov (2018)] [Gromov and Sever (2019)]

How to progressively go back to ' = 4 SYM?
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A Few Facts About the Fishnet Theory



From N =4 SYM to The Fishnet Theory

Start from y-deformed A/ = 4 SYM:
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Then, set 1 = 72 = 0 and take the double-scaling limit

ng—i’Y3

a2 fixed .
s

i 2
e'"? 500, g—0, &=

Denoting ¢1 = X, ¢2 = Z, the fishnet Lagrangian is

Liishner = —Ne Tr (0" X190, X + 01219,Z — (47)>?XT Z1XZ) .

Single, chiral interaction vertex:

We will work in the planar limit N, — +o0.
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Properties

> Non-unitary,
» Bulk of the diagrams = pieces of square lattice,

» Conformal theory for any value of ¢2 (upon addition of specific
double-trace counter-terms), [Sieg and Whilhelm (2016)]
[Grabner, Gromov, Kazakov, and Korchemsky (2017)]

» Integrable: related to a non-compact SO(1,5) spin chain,

[Zamolodchikov (1980)][Chicherin, Derkachov, and lsaev (2012)]
[Gromov, Kazakov, Korchemsky, Negro, and Sizov (2017)]



Properties

> Non-unitary,
» Bulk of the diagrams = pieces of square lattice,

» Conformal theory for any value of ¢2 (upon addition of specific
double-trace counter-terms),

» Integrable: related to a non-compact SO(1,5) spin chain,

» Holographic dual derived from first principles: chain of point
particles with local interactions.



Graph-Building Operators

Conformal dimension of Tr(Z7(x)): the 2-point function has an iterative

structure
e
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The graph-building operator
H is an integral operator
with kernel

94
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The graph-building operator

H is an integral operator
with kernel

Its action on an arbitrary function ® is

P(yq,...,
n 12) d4y1 . ..d4yJ

ﬁd) (Xl,...,XJ): W]
[ } [Tiems (% = ¥)2Y2 441

The 2-point function is essentially reduced to the computation of

1

+o00
Z EQMJ,’_I\M _ .
M=0 1- €2JH

— one needs to diagonalise H



Conformal Symmetry and Integrability

H commutes with the generators of s0(5,1) in scalar principal series
representations at each site.

Actually, it is part of the conserved charges of an integrable spin chain
with conformal symmetry.

Remark: Principal series representations of the conformal group will be
denoted (A, 4, 7) with A € C and (£,f) € N?.



For arbitrary representation p at a given site of the chain, the Lax matrix
with 4-dimensional auxiliary space is

. 1
LO(u) = uld— gy © =M,
where YMN are 4 x 4 matrices. It satisifies the Yang-Baxter relation
RED (=)L @)™ (v) = )L (@R = v).

with .
R4 (y) = L+ (u + 4) = uld4P,



One can then use the fusion procedure to construct the Lax matrix with
6-dimensional auxiliary space. The result is

. 1
L90) = | — i+ 3 (47~ 2

®eMN,

Cp,+2 1
- e el )

where nyy = Diag(1,1,1,1,1,—1) and {e,,"} is a basis of 6 x 6
matrices. The quadratic Casimir operator is

g MG — C,1d .



For the graph-building operator: chain of length J with
Pk = (Ax, Ly, bk) = (1,0,0) for each site.

In particular, the transfer matrix with 6-dimensional auxiliary space gives

o~

TO(0) = Tr(Ly  O)L(0) - LI (0))

J J
1 2 -1
- ﬂka’kHHDk =H".
k=1 k=1



Physical Eigenvectors

Eigenvectors of H with eigenvalue E = £~2/ represent primary operators
of the fishnet theory (and their descendents). This is given by the
representation of the conformal group (A(£2),4,£) under which the
eigenvector tranforms.

Example: J = 2, eigenvectors can be written explicitly, physical states
correspond to symmetric traceless tensors of arbitrary rank £ > 0, their
dimensions are

Ag,i:2+\/(f+1)2+1ﬂ:2 (04 1) + 44,
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Comments and Shortcomings of the Fishnet Theory

» The previous results are exact, they are not perturbative. In
particular, for £ =0,

Do =2+1/2—-2/(1+46* =242i¢% + O(¢*)

is the exact dimension of Tr(ZQ). Reproducing the perturbative
expansion requires to take into account the counter-terms.
We did not need them!

» On the other hand, Ag . is the dimension of Tr(ZOZ) + ... which
we do not know exactly because there is mixing.

» We find only two operators for each ¢; this means that many
operators are protected in the fishnet theory.
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» The fishnet theory is a logarithmic CFT: the dilatation operator is

not diagonalisable.
Example: Mixing between Tr(ZXXT) and Tr(ZXTX).

» Neither fermions nor gauge boson in the fishnet theory.
[Giirdogan and Kazakov (2015)]

How can one incorporate back these protected or logarithmic operators?



Short Operators in N’ = 4 SYM

o F = = £ DA



New Double-Scaling Limits

We consider y-twisted A" = 4 SYM with v, = 75 = 0, and focus on the
following short operators:

Tr(zxX"), Tr(Zya), Tr(ZF).

Proposal: consider each 2-point function separately. At order n in
perturbation theory the contribution is a finite sum of the form

ky
n ik
g E Cnke "
k=—k*

Then, choose a double-scaling limit such that g — 0 while g"e =73
remains fixed.

= huge simplification and simple iterative structure



Tr(ZXX1) and Tr(ZX1X)

Double-scaling limit:

g4e—i'y3

W flxed .

e 00, g—0, fi:

For comparison, recall that the fishnet limit was &* o< g# e=2173,
Relevant interactions:

Neg? Tr(XTXTXX) and 2N.g2e™ "2 Tr(XTZ1XZ).

Typical diagram:




Graph-building operator ﬁx Y
has inverse 1 9"
~ X, *31

_ 1
HX1 = Exlejzxfzml . > /



Graph-building operator ﬁx
has inverse 1

~ . 1
HXl = EX122|:’2X122D]_ .

Integrability: length-2 spin chain with a scalar of dimension 1 and a
scalar of dimension 2. Once again

TO®)(0) = Hy*.
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Spectrum: (Ay .4, ¢) for £ > 0 and

Apr =2+ /(£ +1)2+4E3.

In particular, for £ =0,

Do+ =2+1/1+482 =3+2% 4 O(Ey)

are the dimensions of two linear combinations of Tr(ZXXT) and
Tr(ZXTX). Operator mixing is resolved.

Structure constants can also be computed in this limit.



Tr(ZF)

Double-scaling limit:

. g4e—i’y3

e_i73—>oo, g—)O, 54,::64T fixed .

Same limit as for the previous case.
Relevant interactions:

— i Neg Tr(9, XT[A*, X] + 0, X[A*, XT])
2Ng? Tr(XTAXA"),  and 2N g%e™ " Tr(XTZ1XZ).

Typical diagram:




X,

Graph-building operator 2 G % \“9‘
Hyz depends on the ( + WW<°3‘

gauge-fixing parameter «. * 9




X,

Graph-building operator 2 G % 3
Hy depends on the Q + M{"H‘
o~
2

gauge-fixing parameter «. * 9

However, there exists a gauge-independent operator ﬁ;: acting on
antisymmetric tensors W% and such that: if V& = 95wy — 95V, then

{ﬁpwp} - [QAWA} Ty [ﬁAwAr .

This shows explicitly that the 2-point function (Tr(ZF)(x) Tr(ZTF)(y))
is gauge-independent in the double-scaling limit.



One can invert Hr when acting on antisymmetric tensors of the form
W = 04wy — ¥ Wy, the inverse is

1

=16 (9% x¢ LWy )V — (1> v))

[ﬁ;lwp} .



One can invert Hr when acting on antisymmetric tensors of the form
W = 04wy — ¥ Wy, the inverse is

1

[I:?,_Tl\ll;:} . =16 (9% x¢ S5V )V — (< v)) .

Integrability: length-2 spin chain with a scalar of dimension 1 and a
rank-2 antisymmetric tensor of dimension 2. When restricted to tensors
coming from a vector dimension 1,

T®)(0) = HF!.
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Spectrum:
> (Agi,e, £) for £ > 1 with

Dy =2+\/(0+1)2+4E2.

> (A} 4 L+ 2,0)®(A) 4,4, £ +2) for £ >0 (tensors with £+ 2
indices and mixed symmetry) with

A%,i—2+\/(€+2)2+1j:2 (£+2)2+4§N4F.

The dimension of Tr(ZF) is Ag .




Generic Operators and Mixing

o F = = £ DA
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Fishnet Contributions

We will focus on Tr(Z7F) and Tr(Z/XXT) for J > 1.

Let us consider the 2-pt function (Tr(Z/F)(x) Tr((Z")’F)(y)). When
e '’ — 400, the dominant contributions are

2IM+2 o~ i JMy3

These have maximal twist: g

But Tr(Z7F) is absent from the fishnet theory, so more graphs need to
be taken into account.
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Mixing
For the same twist e~ /M3 we now include diagrams of order between
g>!M+2 and g?/M+2M  These subleading contributions generically look
like

In the bulk, there can be either Z7 or Z/A or Z/XXT.

Remark: There exist more diagrams with the same scaling but we claim
that they do not contribute to the anomalous dimensions in the limit we
are going to focus on:

. . 2 J+1 )
e 500, g—0, U= (8gQ> e 7 fixed.
™



There is still an iterative structure: the graph-building operator is now a
matrix H with one row (and one column) for each intermediate state.

H j e
A,¢ {}'{AIX y + ~ e T
¢/X j/{xx :j)<¥ @4— .

=%



‘H is defined such that 2-point functions are essentially matrix elements

f 1
oA

Example:
(Tr(A*(x0)Z(x1) - - - Z(xs)) Tr(ZT(zJ) . ZT(zl))>

n
1
i /<X07X17 ’XJ|(17H)A@ |)/1> 7YJ> Hi:1d4yi
(

4m2 [ (vi — 21)? 2!

2

The problem is still to diagonalise H, and physical states correspond to
those with eigenvalue equal to 1.



Each matrix element scales differently:
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Each matrix element scales differently:

R . g _272@@ g _/1\7:ZQ)A 8 _Alﬁmx
Hyes = £2UFD) gilaAm Han Hax +0(g) .
g 'Hxy  Hxa Hxx

In the double-scaling limit we have chosen, some eigenvalues will diverge,
some will go to zero. We focus on those which remain finite:

HV =EV, with E=FE+0(g), E #0. (1)



At leading order, only the above 3 x 3 submatrix is relevant. Writing

W@70(X1, e 7XJ)
V= WZ,O(X()’XI""’XJ) +O(g)a
Wx o(x0, X1, - -+, X))

we get Wy g =0 and

U (YFo) _ Veo
20 (o) =& (uss)
for \IJ’;’”O = (‘9(‘;\!12’0 — 85“1/“‘\70, and some 2 x 2 matrix 5% depending on all

9 matrix elements of H,es.



Hisa complicated matrix of integral operators but it is local (contrary to
Hyes) and can be inverted:

2 2 0 0:-x 0. 2 2
5 0 - 9o x2x% 8o - O 20 -8 ( o X;:o) X33
- B0 x00 @Y 2 2 ) 2 2
2 (Xu;fo - Jon — ) XJoX10 80 : 6( ) 80,;L XjoX10 85 + 8 x10 - XJo
Jo
J—1 2 J
[[o X [, O
(—4)7H ’

where 6# is a polarisation vector such that {6#,6”} = 0. It encodes the
tensor structure: WA i W = gLV .



is a complicated matrix of integral operators but it is local (contrary to

9
ﬁres) and can be inverted:

2 2 0 6-x 6- 2 2
5 0 - 9o x2x% 8o - O 20 -8 ( o X;:o) X33
- 90 x5-00)\ 2 2 0 2 2
2 (mefo — 207 ) xGox30 9o - OV Do, X5ox30 O + 8 x10 * X0
Jo
J-1_2 J
Lo X I, O
(—4)H+1 g

where 6# is a polarisation vector such that {6#,6”} = 0. It encodes the
tensor structure: WA i W = gLV .

There is conformal symmetry, but we have not yet been able to prove
integrability.
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Conclusion

» One can devise a double-scaling limit for any charged operator in
N =4 SYM such that an iterative structure emerges.

» In most cases, this involves mixing with other operators having the
same R-symmetry charges, including fishnet operators.

» Regarding holography, the fishchain picture appears to be generic.

> The graph-building operator 7 can also be used to study corrections
in g. For instance, corrections to the fishnet limit.

» For uncharged operators, one needs to modify the scheme since one
cannot start from ~-deformed N = 4. But it should be possible to
directly twist the correlators.



Thank you for your attention!

o F = = £ DA



