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Introduction and Motivation

▶ holography: explicit dictionary, many tests but no proof,

▶ ideal exemple: N = 4 SYM in the planar limit, but still too
complicated, many results remain conjectural,

▶ further simpli�cation: �shnet theory. Origin of integrability is better
understood, holography has been derived. [Gürdo§an and Kazakov (2015)]

[Gromov, Kazakov, Korchemsky, Negro, and Sizov (2018)] [Gromov and Sever (2019)]

How to progressively go back to N = 4 SYM?
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A Few Facts About the Fishnet Theory



From N = 4 SYM to The Fishnet Theory

Start from γ-deformed N = 4 SYM:

L = −NcTr

[
1

4
FµνF
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1

2α
(∂µAµ)

2 + Dµϕ†i Dµϕ
i + ψ†
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α

]
+Lint ,

where
Dµ = ∂µ + i g [Aµ, ·] ,

Fµν = − i

g
[Dµ,Dν ] = ∂µAν − ∂νAµ + i g [Aµ,Aν ] ,

and
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Then, set γ1 = γ2 = 0 and take the double-scaling limit

e− i γ3 → ∞ , g → 0 , ξ2 =
g2e− i γ3

8π2
�xed .

Denoting ϕ1 = X , ϕ2 = Z , the �shnet Lagrangian is

L�shnet = −Nc Tr
(
∂µX †∂µX + ∂µZ †∂µZ − (4π)2ξ2X †Z †XZ

)
.

[Gürdo§an and Kazakov (2015)]

Single, chiral interaction vertex:

We will work in the planar limit Nc → +∞.



Properties

▶ Non-unitary,

▶ Bulk of the diagrams = pieces of square lattice,

▶ Conformal theory for any value of ξ2 (upon addition of speci�c
double-trace counter-terms), [Sieg and Whilhelm (2016)]

[Grabner, Gromov, Kazakov, and Korchemsky (2017)]

▶ Integrable: related to a non-compact SO(1, 5) spin chain,

[Zamolodchikov (1980)][Chicherin, Derkachov, and Isaev (2012)]

[Gromov, Kazakov, Korchemsky, Negro, and Sizov (2017)]

▶ Holographic dual derived from �rst principles: chain of point
particles with local interactions. [Gromov and Sever (2019)]
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Graph-Building Operators

Conformal dimension of Tr(Z J(x)): the 2-point function has an iterative
structure

〈
Tr(Z J(x))Tr(Z †J(y))

〉
↔

+∞∑
M=0

ξ2JM



The graph-building operator
Ĥ is an integral operator
with kernel

Its action on an arbitrary function Φ is[
ĤΦ

]
(x1, . . . , xJ) =

�
Φ(y1, . . . , yJ)∏J

k=1(xk − yk)2y2k,k+1

d
4y1 . . . d

4yJ

The 2-point function is essentially reduced to the computation of

+∞∑
M=0

ξ2MJĤM =
1

1− ξ2JĤ
.

=⇒ one needs to diagonalise Ĥ
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Conformal Symmetry and Integrability

Ĥ commutes with the generators of so(5, 1) in scalar principal series
representations at each site.

Actually, it is part of the conserved charges of an integrable spin chain
with conformal symmetry.

Remark: Principal series representations of the conformal group will be
denoted (∆, ℓ, ℓ̄) with ∆ ∈ C and (ℓ, ℓ̄) ∈ N2.



For arbitrary representation ρ at a given site of the chain, the Lax matrix
with 4-dimensional auxiliary space is

L(ρ;4)(u) = u Id−1

2
q
(ρ)
MN ⊗ ΣMN ,

where ΣMN are 4× 4 matrices. It satisi�es the Yang-Baxter relation

R(4;4)(u − v)L
(ρ;4)
1 (u)L

(ρ;4)
2 (v) = L

(ρ;4)
2 (v)L

(ρ;4)
1 (u)R(4;4)(u − v) .

with

R(4;4)(u) = L(4;4)
(
u +

1

4

)
= u Id+P ,



One can then use the fusion procedure to construct the Lax matrix with
6-dimensional auxiliary space. The result is

L(ρ;6)(u) =

[
u2ηMN − uq

(ρ)
MN +

1

2

(
q(ρ), P

M q
(ρ)
PN − 2q(ρ)MN

− Cρ + 2

4
ηMN − 1

8
ϵ ABCD
MN q

(ρ)
ABq

(ρ)
CD

)]
⊗ eMN ,

where ηMN = Diag(1, 1, 1, 1, 1,−1) and {e N
M } is a basis of 6× 6

matrices. The quadratic Casimir operator is

q(ρ),MNq
(ρ)
NM = Cρ Id .



For the graph-building operator: chain of length J with
ρk = (∆k , ℓk , ℓ̄k) = (1, 0, 0) for each site.

In particular, the transfer matrix with 6-dimensional auxiliary space gives

T̂(6)(0) = Tr
(
L
(ρN ;6)
N (0)L

(ρN−1;6)
N−1 (0) · · · L(ρ1;6)1 (0)

)
=

1

4J

J∏
k=1

x2k,k+1

J∏
k=1

□k = Ĥ−1 .



Physical Eigenvectors

Eigenvectors of Ĥ with eigenvalue E = ξ−2J represent primary operators
of the �shnet theory (and their descendents). This is given by the
representation of the conformal group (∆(ξ2), ℓ, ℓ̄) under which the
eigenvector tranforms.

Example: J = 2, eigenvectors can be written explicitly, physical states
correspond to symmetric traceless tensors of arbitrary rank ℓ ⩾ 0, their
dimensions are

∆ℓ,± = 2+

√
(ℓ+ 1)2 + 1± 2

√
(ℓ+ 1)2 + 4ξ4 .

[Grabner, Gromov, Kazakov, and Korchemsky (2017)]



Comments and Shortcomings of the Fishnet Theory

▶ The previous results are exact, they are not perturbative. In
particular, for ℓ = 0,

∆0,− = 2+

√
2− 2

√
(1+ 4ξ4 = 2± 2 i ξ2 + O(ξ4)

is the exact dimension of Tr
(
Z 2

)
. Reproducing the perturbative

expansion requires to take into account the counter-terms.
We did not need them!

▶ On the other hand, ∆0,+ is the dimension of Tr(Z□Z ) + . . . which
we do not know exactly because there is mixing.

▶ We �nd only two operators for each ℓ; this means that many
operators are protected in the �shnet theory.
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▶ The �shnet theory is a logarithmic CFT: the dilatation operator is
not diagonalisable.

Example: Mixing between Tr
(
ZXX †) and Tr

(
ZX †X

)
.

▶ Neither fermions nor gauge boson in the �shnet theory.
[Gürdo§an and Kazakov (2015)]

How can one incorporate back these protected or logarithmic operators?
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Short Operators in N = 4 SYM



New Double-Scaling Limits

We consider γ-twisted N = 4 SYM with γ1 = γ2 = 0, and focus on the
following short operators:

Tr
(
ZXX †) , Tr(ZψA) , Tr(ZF ) .

Proposal: consider each 2-point function separately. At order n in
perturbation theory the contribution is a �nite sum of the form

gn

k∗
n∑

k=−k∗
n

cn,k e
i kγ3 .

Then, choose a double-scaling limit such that g → 0 while gn e−ik∗
n γ3

remains �xed.

=⇒ huge simpli�cation and simple iterative structure



Tr
(
ZXX †) and Tr

(
ZX †X

)
Double-scaling limit:

e− i γ3 → ∞ , g → 0 , ξ̃4X =
g4e− i γ3

64π4
�xed .

For comparison, recall that the �shnet limit was ξ4 ∝ g4 e−2 i γ3 .
Relevant interactions:

Ncg
2 Tr

(
X †X †XX

)
and 2Ncg

2e− i γ3 Tr
(
X †Z †XZ

)
.

Typical diagram:



Graph-building operator ĤX

has inverse

Ĥ−1
X =

1

16
x212□2x

2
12□1 .

Integrability: length-2 spin chain with a scalar of dimension 1 and a
scalar of dimension 2. Once again

T̂(6)(0) = Ĥ−1
X .
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Integrability: length-2 spin chain with a scalar of dimension 1 and a
scalar of dimension 2. Once again
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Spectrum: (∆ℓ,±, ℓ, ℓ) for ℓ ⩾ 0 and

∆ℓ,± = 2+

√
(ℓ+ 1)2 ± 4ξ̃2X .

In particular, for ℓ = 0,

∆0,± = 2+

√
1± 4ξ̃2X = 3± 2ξ̃2X + O(ξ̃4X )

are the dimensions of two linear combinations of Tr
(
ZXX †) and

Tr
(
ZX †X

)
. Operator mixing is resolved.

Structure constants can also be computed in this limit.
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Tr(ZF )

Double-scaling limit:

e− i γ3 → ∞ , g → 0 , ξ̃4F =
g4e− i γ3

64π4
�xed .

Same limit as for the previous case.
Relevant interactions:

− iNcg Tr
(
∂µX

†[Aµ,X ] + ∂µX [Aµ,X †]
)
,

2Ncg
2 Tr

(
X †AµXA

µ
)
, and 2Ncg

2e− i γ3 Tr
(
X †Z †XZ

)
.

Typical diagram:



Graph-building operator
ĤA depends on the
gauge-�xing parameter α.

However, there exists a gauge-independent operator ĤF acting on
antisymmetric tensors Ψµν

F and such that: if Ψµν
F = ∂µ2Ψ

ν
A − ∂ν2Ψ

µ
A, then[

ĤFΨF

]µν
= ∂µ2

[
ĤAΨA

]ν
− ∂ν2

[
ĤAΨA

]µ
.

This shows explicitly that the 2-point function
〈
Tr(ZF )(x) Tr

(
Z †F

)
(y)

〉
is gauge-independent in the double-scaling limit.
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One can invert ĤF when acting on antisymmetric tensors of the form
Ψµν

F = ∂µ2Ψ
ν
A − ∂ν2Ψ

µ
A, the inverse is[

Ĥ−1
F ΨF

]µν
=

1

16

(
∂µ2 x

4
12□1∂

ρ
2Ψ

ν
F ,ρ − (µ↔ ν)

)
.

Integrability: length-2 spin chain with a scalar of dimension 1 and a
rank-2 antisymmetric tensor of dimension 2. When restricted to tensors
coming from a vector dimension 1,

T̂(6)(0) = Ĥ−1
F .
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Spectrum:

▶ (∆ℓ,±, ℓ, ℓ) for ℓ ⩾ 1 with

∆ℓ,± = 2+

√
(ℓ+ 1)2 ± 4ξ̃2F .

▶ (∆′
ℓ,±, ℓ+ 2, ℓ)⊕ (∆′

ℓ,±, ℓ, ℓ+ 2) for ℓ ⩾ 0 (tensors with ℓ+ 2
indices and mixed symmetry) with

∆′
ℓ,± = 2+

√
(ℓ+ 2)2 + 1± 2

√
(ℓ+ 2)2 + 4ξ̃4F .

The dimension of Tr(ZF ) is ∆′
0,−.
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Generic Operators and Mixing



Fishnet Contributions

We will focus on Tr
(
Z JF

)
and Tr

(
Z JXX †) for J > 1.

Let us consider the 2-pt function
〈
Tr
(
Z JF

)
(x) Tr

(
(Z †)JF

)
(y)

〉
. When

e− i γ3 → +∞, the dominant contributions are

These have maximal twist: g2JM+2 e− i JMγ3 .

But Tr
(
Z JF

)
is absent from the �shnet theory, so more graphs need to

be taken into account.
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Mixing

For the same twist e− i JMγ3 , we now include diagrams of order between
g2JM+2 and g2JM+2M . These subleading contributions generically look
like

In the bulk, there can be either Z J or Z JA or Z JXX †.
Remark: There exist more diagrams with the same scaling but we claim
that they do not contribute to the anomalous dimensions in the limit we
are going to focus on:

e− i γ3 → ∞ , g → 0 , ξ̃2(J+1) =

(
g2

8π2

)J+1

e− i Jγ3 �xed .
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There is still an iterative structure: the graph-building operator is now a
matrix Ĥ with one row (and one column) for each intermediate state.



Ĥ is de�ned such that 2-point functions are essentially matrix elements
of 1

1−Ĥ

Example:〈
Tr(Aµ(x0)Z (x1) . . .Z (xJ)) Tr

(
Z †(zJ) . . .Z

†(z1)
)〉

= − i

2

� ⟨x0, x1, . . . , xJ |
(

1
1−Ĥ

)µ

A∅
|y1, . . . , yJ⟩

(4π2)J
∏J

i=1(yi − zi )2

∏J
i=1 d

4yi
π2J

.

The problem is still to diagonalise Ĥ, and physical states correspond to
those with eigenvalue equal to 1.



Each matrix element scales di�erently:

Ĥres = ξ̃2(J+1)

g−2Ĥ∅∅ g−1Ĥ∅A g−1Ĥ∅X
g−1ĤA∅ ĤAA ĤAX

g−1ĤX∅ ĤXA ĤXX

+ O(g) .

In the double-scaling limit we have chosen, some eigenvalues will diverge,
some will go to zero. We focus on those which remain �nite:

ĤΨ = EΨ , with E = E0 + O(g) , E0 ̸= 0 . (1)
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At leading order, only the above 3× 3 submatrix is relevant. Writing

Ψ =

 Ψ∅,0(x1, . . . , xJ)
Ψµ

A,0(x0, x1, . . . , xJ)

ΨX ,0(x0, x1, . . . , xJ)

+ O(g) ,

we get Ψ∅,0 = 0 and

ξ̃2(J+1)Ĥ

(
ΨF ,0

ΨX ,0

)
= E0

(
ΨF ,0

ΨX ,0

)
for Ψµν

F ,0 = ∂µ0Ψ
ν
A,0 − ∂ν0Ψ

µ
A,0, and some 2× 2 matrix Ĥ depending on all

9 matrix elements of Ĥres.



Ĥ is a complicated matrix of integral operators but it is local (contrary to

Ĥres) and can be inverted:

Ĥ−1 =

 θ · ∂0 x2J0x210 ∂0 · ∂(θ)
2 θ · ∂0

(
θ·xJ0
x2
J0

− θ·x10
x2
10

)
x2J0x

2

10

2

(
x10·∂(θ)

x2
10

− xJ0·∂(θ)

x2
J0

)
x2J0x

2

10 ∂0 · ∂(θ) ∂0,µ x2J0x
2

10 ∂
µ
0
+ 8 x10 · xJ0


×

∏J−1

i=1 x2i,i+1
∏J

i=1 □i

(−4)J+1
,

where θµ is a polarisation vector such that {θµ, θν} = 0. It encodes the
tensor structure: Ψµν 7→ Ψ = θµθνΨµν .

There is conformal symmetry, but we have not yet been able to prove
integrability.
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Conclusion

▶ One can devise a double-scaling limit for any charged operator in
N = 4 SYM such that an iterative structure emerges.

▶ In most cases, this involves mixing with other operators having the
same R-symmetry charges, including �shnet operators.

▶ Regarding holography, the �shchain picture appears to be generic.

▶ The graph-building operator Ĥ can also be used to study corrections
in g . For instance, corrections to the �shnet limit.

▶ For uncharged operators, one needs to modify the scheme since one
cannot start from γ-deformed N = 4. But it should be possible to
directly twist the correlators. [Cavaglià, Grabner, Gromov, and Sever (2020)]
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▶ The graph-building operator Ĥ can also be used to study corrections
in g . For instance, corrections to the �shnet limit.

▶ For uncharged operators, one needs to modify the scheme since one
cannot start from γ-deformed N = 4. But it should be possible to
directly twist the correlators. [Cavaglià, Grabner, Gromov, and Sever (2020)]



Conclusion

▶ One can devise a double-scaling limit for any charged operator in
N = 4 SYM such that an iterative structure emerges.

▶ In most cases, this involves mixing with other operators having the
same R-symmetry charges, including �shnet operators.

▶ Regarding holography, the �shchain picture appears to be generic.
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Thank you for your attention!


