Large Twist Limit for Any Operator in $\mathcal{N} = 4$ SYM

Gwenaël Ferrando

Work in collaboration with Amit Sever, Adar Sharon, and Elior Urisman

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction and Motivation

holography: explicit dictionary, many tests but no proof,

- ideal exemple: N = 4 SYM in the planar limit, but still too complicated, many results remain conjectural,
- further simplification: fishnet theory. Origin of integrability is better understood, holography has been derived. [Gürdoğan and Kazakov (2015)] [Gromov, Kazakov, Korchemsky, Negro, and Sizov (2018)] [Gromov and Sever (2019)]

How to progressively go back to $\mathcal{N} = 4$ SYM?

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

1. A Few Facts About the Fishnet Theory

1. A Few Facts About the Fishnet Theory

2. Short Operators in $\mathcal{N}=4$ SYM

Outline

1. A Few Facts About the Fishnet Theory

(ロ)、(型)、(E)、(E)、 E) のQ()

- 2. Short Operators in $\mathcal{N}=4$ SYM
- 3. Generic Operators and Mixing

A Few Facts About the Fishnet Theory

From $\mathcal{N} = 4$ SYM to The Fishnet Theory

Start from γ -deformed $\mathcal{N} = 4$ SYM:

$$\mathcal{L} = -N_c \operatorname{Tr} \left[\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2\alpha} (\partial^{\mu} A_{\mu})^2 + D^{\mu} \phi^{\dagger}_i D_{\mu} \phi^i + \psi^{\dagger}_{\dot{\alpha}A} D^{\dot{\alpha}\alpha} \psi^A_{\alpha} \right] + \mathcal{L}_{int} ,$$

where

$$D_{\mu} = \partial_{\mu} + i g[A_{\mu}, \cdot],$$

$$F_{\mu\nu} = -\frac{i}{g}[D_{\mu}, D_{\nu}] = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + i g[A_{\mu}, A_{\nu}],$$

and

$$\begin{split} \mathcal{L}_{int} &= N_c g^2 \operatorname{Tr} \left[2 \, e^{-\,\mathrm{i}\,\epsilon^{ijk}\gamma_k} \phi^{\dagger}_i \phi^{\dagger}_j \phi^j \phi^j - \frac{1}{2} \left\{ \phi^{\dagger}_i, \phi^i \right\} \left\{ \phi^{\dagger}_j, \phi^j \right\} \right] \\ &+ \sqrt{2} N_c g \operatorname{Tr} \left[e^{\frac{\mathrm{i}}{2}\gamma^-_j} \psi^{\dagger}_4 \phi^j \psi^{\dagger}_j - e^{-\frac{\mathrm{i}}{2}\gamma^-_j} \psi^{\dagger}_j \phi^j \psi^{\dagger}_4 + \mathrm{i}\,\epsilon_{ijk} e^{\frac{\mathrm{i}}{2}\epsilon_{imk}\gamma^+_m} \psi^i \phi^j \psi^k \right. \\ &- e^{\frac{\mathrm{i}}{2}\gamma^-_j} \psi^4 \phi^{\dagger}_j \psi^j + e^{-\frac{\mathrm{i}}{2}\gamma^-_j} \psi^j \phi^{\dagger}_j \psi^4 + \mathrm{i}\,\epsilon^{ijk} e^{\frac{\mathrm{i}}{2}\epsilon_{imk}\gamma^+_m} \psi^{\dagger}_i \phi^{\dagger}_j \psi^{\dagger}_k \right]. \end{split}$$

Then, set $\gamma_1=\gamma_2=0$ and take the double-scaling limit

$$\mathrm{e}^{-\,\mathrm{i}\,\gamma_3}
ightarrow\infty\,,\quad g
ightarrow0\,,\quad\xi^2=rac{g^2\,\mathrm{e}^{-\,\mathrm{i}\,\gamma_3}}{8\pi^2}\quad\mathrm{fixed}\,.$$

Denoting $\phi_1 = X$, $\phi_2 = Z$, the fishnet Lagrangian is

$$\mathcal{L}_{\mathsf{fishnet}} = -\mathsf{N}_{\mathsf{c}} \operatorname{\mathsf{Tr}} \left(\partial^{\mu} X^{\dagger} \partial_{\mu} X + \partial^{\mu} Z^{\dagger} \partial_{\mu} Z - (4\pi)^2 \xi^2 X^{\dagger} Z^{\dagger} X Z \right) \,.$$

[Gürdoğan and Kazakov (2015)]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Single, chiral interaction vertex:

We will work in the planar limit $N_c \to +\infty$.

► Non-unitary,

► Non-unitary,

Bulk of the diagrams = pieces of square lattice,

(ロ)、(型)、(E)、(E)、 E) のQ()

► Non-unitary,

Bulk of the diagrams = pieces of square lattice,

 $\label{eq:conformal theory for any value of ξ^2 (upon addition of specific double-trace counter-terms), [Sieg and Whilhelm (2016)]$

[Grabner, Gromov, Kazakov, and Korchemsky (2017)]

Non-unitary,

Bulk of the diagrams = pieces of square lattice,

Conformal theory for any value of ξ² (upon addition of specific double-trace counter-terms), [Sieg and Whilhelm (2016)]
 [Grabner, Gromov, Kazakov, and Korchemsky (2017)]

Integrable: related to a non-compact SO(1,5) spin chain,

[Zamolodchikov (1980)][Chicherin, Derkachov, and Isaev (2012)] [Gromov, Kazakov, Korchemsky, Negro, and Sizov (2017)]

Non-unitary,

Bulk of the diagrams = pieces of square lattice,

Conformal theory for any value of ξ² (upon addition of specific double-trace counter-terms), [Sieg and Whilhelm (2016)]
 [Grabner, Gromov, Kazakov, and Korchemsky (2017)]

Integrable: related to a non-compact SO(1,5) spin chain,

[Zamolodchikov (1980)][Chicherin, Derkachov, and Isaev (2012)] [Gromov, Kazakov, Korchemsky, Negro, and Sizov (2017)]

 Holographic dual derived from first principles: chain of point particles with local interactions. [Gromov and Sever (2019)]

Graph-Building Operators

Conformal dimension of $Tr(Z^{J}(x))$: the 2-point function has an iterative structure

The graph-building operator \widehat{H} is an integral operator with kernel

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The graph-building operator \widehat{H} is an integral operator with kernel

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Its action on an arbitrary function Φ is

$$\left[\widehat{H}\Phi\right](x_1,\ldots,x_J) = \int \frac{\Phi(y_1,\ldots,y_J)}{\prod_{k=1}^J (x_k - y_k)^2 y_{k,k+1}^2} \mathrm{d}^4 y_1 \ldots \mathrm{d}^4 y_J$$

The graph-building operator \widehat{H} is an integral operator with kernel

٠

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Its action on an arbitrary function Φ is

$$\left[\widehat{H}\Phi\right](x_1,\ldots,x_J) = \int \frac{\Phi(y_1,\ldots,y_J)}{\prod_{k=1}^J (x_k - y_k)^2 y_{k,k+1}^2} \mathrm{d}^4 y_1 \ldots \mathrm{d}^4 y_J$$

The 2-point function is essentially reduced to the computation of

$$\sum_{M=0}^{+\infty} \xi^{2MJ} \widehat{H}^M = \frac{1}{1 - \xi^{2J} \widehat{H}}$$

 \implies one needs to diagonalise \widehat{H}

Conformal Symmetry and Integrability

 \widehat{H} commutes with the generators of $\mathfrak{so}(5,1)$ in scalar principal series representations at each site.

Actually, it is part of the conserved charges of an integrable spin chain with conformal symmetry.

Remark: Principal series representations of the conformal group will be denoted $(\Delta, \ell, \overline{\ell})$ with $\Delta \in \mathbb{C}$ and $(\ell, \overline{\ell}) \in \mathbb{N}^2$.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

For arbitrary representation ρ at a given site of the chain, the Lax matrix with 4-dimensional auxiliary space is

$$L^{(
ho;4)}(u) = u \operatorname{Id} - \frac{1}{2} q_{MN}^{(
ho)} \otimes \Sigma^{MN}$$

where Σ^{MN} are 4×4 matrices. It satisifies the Yang-Baxter relation

$$R^{(4;4)}(u-v)L_1^{(\rho;4)}(u)L_2^{(\rho;4)}(v) = L_2^{(\rho;4)}(v)L_1^{(\rho;4)}(u)R^{(4;4)}(u-v).$$

with

$$R^{(4;4)}(u) = L^{(4;4)}\left(u + rac{1}{4}
ight) = u \operatorname{Id} + \mathbb{P},$$

(ロ)、(型)、(E)、(E)、 E) のQ()

One can then use the fusion procedure to construct the Lax matrix with 6-dimensional auxiliary space. The result is

$$\begin{split} L^{(\rho;6)}(u) &= \left[u^2 \eta_{MN} - u q_{MN}^{(\rho)} + \frac{1}{2} \left(q^{(\rho)}{}_{M}{}^{P} q_{PN}^{(\rho)} - 2 q^{(\rho)}{}_{MN} \right. \\ &\left. - \frac{C_{\rho} + 2}{4} \eta_{MN} - \frac{1}{8} \epsilon_{MN}{}^{ABCD} q_{AB}^{(\rho)} q_{CD}^{(\rho)} \right) \right] \otimes e^{MN} \,, \end{split}$$

where $\eta_{MN} = \text{Diag}(1, 1, 1, 1, 1, -1)$ and $\{e_M^N\}$ is a basis of 6×6 matrices. The quadratic Casimir operator is

$$q^{(
ho),MN}q^{(
ho)}_{NM}=C_{
ho}\,{\sf Id}$$
 .

・ロト ・ 日 ・ モ ヨ ト ・ 日 ・ う へ つ ・

For the graph-building operator: chain of length J with $\rho_k = (\Delta_k, \ell_k, \overline{\ell}_k) = (1, 0, 0)$ for each site.

In particular, the transfer matrix with 6-dimensional auxiliary space gives

$$\widehat{\mathbb{T}}^{(6)}(0) = \mathsf{Tr}\Big(L_N^{(\rho_N;6)}(0)L_{N-1}^{(\rho_{N-1};6)}(0)\cdots L_1^{(\rho_1;6)}(0)\Big)$$
$$= \frac{1}{4^J}\prod_{k=1}^J \mathsf{X}_{k,k+1}^2\prod_{k=1}^J \Box_k = \widehat{H}^{-1}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Physical Eigenvectors

Eigenvectors of \widehat{H} with eigenvalue $E = \xi^{-2J}$ represent primary operators of the fishnet theory (and their descendents). This is given by the representation of the conformal group $(\Delta(\xi^2), \ell, \overline{\ell})$ under which the eigenvector transorms.

Example: J = 2, eigenvectors can be written explicitly, physical states correspond to symmetric traceless tensors of arbitrary rank $\ell \ge 0$, their dimensions are

$$\Delta_{\ell,\pm} = 2 + \sqrt{(\ell+1)^2 + 1 \pm 2\sqrt{(\ell+1)^2 + 4\xi^4}}\,.$$

[Grabner, Gromov, Kazakov, and Korchemsky (2017)]

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

• The previous results are exact, they are not perturbative. In particular, for $\ell = 0$,

$$\Delta_{0,-} = 2 + \sqrt{2 - 2\sqrt{(1 + 4\xi^4)^2}} = 2 \pm 2 \,\mathrm{i}\,\xi^2 + O(\xi^4)$$

is the exact dimension of $Tr(Z^2)$. Reproducing the perturbative expansion requires to take into account the counter-terms. We did not need them!

• The previous results are exact, they are not perturbative. In particular, for $\ell = 0$,

$$\Delta_{0,-} = 2 + \sqrt{2 - 2\sqrt{(1 + 4\xi^4)^2}} = 2 \pm 2 \,\mathrm{i}\,\xi^2 + O(\xi^4)$$

is the exact dimension of $Tr(Z^2)$. Reproducing the perturbative expansion requires to take into account the counter-terms. We did not need them!

• On the other hand, $\Delta_{0,+}$ is the dimension of $Tr(Z \Box Z) + \ldots$ which we do not know exactly because there is mixing.

• The previous results are exact, they are not perturbative. In particular, for $\ell = 0$,

$$\Delta_{0,-} = 2 + \sqrt{2 - 2\sqrt{(1 + 4\xi^4)^2}} = 2 \pm 2i\xi^2 + O(\xi^4)$$

is the exact dimension of $Tr(Z^2)$. Reproducing the perturbative expansion requires to take into account the counter-terms. We did not need them!

On the other hand, ∆_{0,+} is the dimension of Tr(Z□Z) + ... which we do not know exactly because there is mixing.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

▶ We find only two operators for each *l*; this means that many operators are protected in the fishnet theory.

The fishnet theory is a logarithmic CFT: the dilatation operator is not diagonalisable.

Example: Mixing between $Tr(ZXX^{\dagger})$ and $Tr(ZX^{\dagger}X)$.

イロト 不得 トイヨト イヨト

э

The fishnet theory is a logarithmic CFT: the dilatation operator is not diagonalisable.

Example: Mixing between $Tr(ZXX^{\dagger})$ and $Tr(ZX^{\dagger}X)$.

Neither fermions nor gauge boson in the fishnet theory.

[Gürdoğan and Kazakov (2015)]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How can one incorporate back these protected or logarithmic operators?

Short Operators in $\mathcal{N}=4$ SYM

New Double-Scaling Limits

We consider γ -twisted $\mathcal{N} = 4$ SYM with $\gamma_1 = \gamma_2 = 0$, and focus on the following short operators:

$$\operatorname{Tr}(ZXX^{\dagger}), \quad \operatorname{Tr}(Z\psi_A), \quad \operatorname{Tr}(ZF).$$

Proposal: consider each 2-point function separately. At order n in perturbation theory the contribution is a finite sum of the form

$$g^n \sum_{k=-k_n^*}^{k_n^*} c_{n,k} e^{i k \gamma_3}$$

Then, choose a double-scaling limit such that $g \to 0$ while $g^n e^{-ik_n^* \gamma_3}$ remains fixed.

 \implies huge simplification and simple iterative structure

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

 $\operatorname{Tr}(ZXX^{\dagger})$ and $\operatorname{Tr}(ZX^{\dagger}X)$

Double-scaling limit:

$$e^{-\operatorname{i} \gamma_3} o \infty, \quad g o 0, \quad \tilde{\xi}_X^4 = rac{g^4 e^{-\operatorname{i} \gamma_3}}{64\pi^4} \quad ext{fixed} \,.$$

For comparison, recall that the fishnet limit was $\xi^4 \propto g^4 e^{-2 i \gamma_3}$. Relevant interactions:

$$N_c g^2 \operatorname{Tr}(X^{\dagger}X^{\dagger}XX)$$
 and $2N_c g^2 e^{-i\gamma_3} \operatorname{Tr}(X^{\dagger}Z^{\dagger}XZ)$.

Typical diagram:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Graph-building operator \widehat{H}_X has inverse

$$\widehat{H}_{X}^{-1} = \frac{1}{16} x_{12}^2 \Box_2 x_{12}^2 \Box_1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Integrability: length-2 spin chain with a scalar of dimension 1 and a scalar of dimension 2. Once again

$$\widehat{\mathbb{T}}^{(6)}(0) = \widehat{H}_X^{-1}$$
 .

Spectrum: $(\Delta_{\ell,\pm},\ell,\ell)$ for $\ell \geqslant 0$ and

$$\Delta_{\ell,\pm}=2+\sqrt{(\ell+1)^2\pm4 ilde{\xi}_X^2}$$
 .

・ロト・4日ト・4日ト・4日・9000

Spectrum: $(\Delta_{\ell,\pm},\ell,\ell)$ for $\ell \geqslant 0$ and

$$\Delta_{\ell,\pm}=2+\sqrt{(\ell+1)^2\pm 4 ilde{\xi}_X^2}\,.$$

In particular, for $\ell = 0$,

$$\Delta_{0,\pm}=2+\sqrt{1\pm4 ilde{\xi}_X^2}=3\pm2 ilde{\xi}_X^2+{\it O}(ilde{\xi}_X^4)$$

are the dimensions of two linear combinations of $Tr(ZXX^{\dagger})$ and $Tr(ZX^{\dagger}X)$. Operator mixing is resolved.

Spectrum: $(\Delta_{\ell,\pm},\ell,\ell)$ for $\ell \geqslant 0$ and

$$\Delta_{\ell,\pm}=2+\sqrt{(\ell+1)^2\pm 4 ilde{\xi}_X^2}\,.$$

In particular, for $\ell = 0$,

$$\Delta_{0,\pm}=2+\sqrt{1\pm4 ilde{\xi}_X^2}=3\pm2 ilde{\xi}_X^2+{\it O}(ilde{\xi}_X^4)$$

are the dimensions of two linear combinations of $Tr(ZXX^{\dagger})$ and $Tr(ZX^{\dagger}X)$. Operator mixing is resolved.

Structure constants can also be computed in this limit.

Tr(ZF)

Double-scaling limit:

$$e^{-\operatorname{i}\gamma_3} o \infty\,, \quad g o 0\,, \quad \widetilde{\xi}_F^4 = rac{g^4 e^{-\operatorname{i}\gamma_3}}{64\pi^4} \quad \mathrm{fixed}\,.$$

Same limit as for the previous case. Relevant interactions:

$$\begin{split} &-\operatorname{i} \mathit{N_cg} \operatorname{Tr} \left(\partial_\mu X^\dagger [A^\mu, X] + \partial_\mu X [A^\mu, X^\dagger] \right), \\ & 2 \mathit{N_cg}^2 \operatorname{Tr} \left(X^\dagger A_\mu X A^\mu \right), \quad \text{and} \quad 2 \mathit{N_cg}^2 e^{-\operatorname{i} \gamma_3} \operatorname{Tr} \left(X^\dagger Z^\dagger X Z \right). \end{split}$$

Typical diagram:

Graph-building operator \widehat{H}_A depends on the gauge-fixing parameter α .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

However, there exists a gauge-independent operator \widehat{H}_F acting on antisymmetric tensors $\Psi_F^{\mu\nu}$ and such that: if $\Psi_F^{\mu\nu} = \partial_2^{\mu} \Psi_A^{\nu} - \partial_2^{\nu} \Psi_A^{\mu}$, then

$$\left[\widehat{H}_{F}\Psi_{F}\right]^{\mu\nu} = \partial_{2}^{\mu}\left[\widehat{H}_{A}\Psi_{A}\right]^{\nu} - \partial_{2}^{\nu}\left[\widehat{H}_{A}\Psi_{A}\right]^{\mu}$$

This shows explicitly that the 2-point function $\langle Tr(ZF)(x) Tr(Z^{\dagger}F)(y) \rangle$ is gauge-independent in the double-scaling limit.

One can invert \widehat{H}_F when acting on antisymmetric tensors of the form $\Psi_F^{\mu\nu} = \partial_2^{\mu} \Psi_A^{\nu} - \partial_2^{\nu} \Psi_A^{\mu}$, the inverse is

$$\left[\widehat{H}_{F}^{-1}\Psi_{F}\right]^{\mu\nu} = \frac{1}{16} \left(\partial_{2}^{\mu} x_{12}^{4} \Box_{1} \partial_{2}^{\rho} \Psi_{F,\rho}^{\nu} - (\mu \leftrightarrow \nu)\right) \,.$$

・ロト・4日ト・4日ト・4日・9000

One can invert \widehat{H}_F when acting on antisymmetric tensors of the form $\Psi_F^{\mu\nu} = \partial_2^{\mu} \Psi_A^{\nu} - \partial_2^{\nu} \Psi_A^{\mu}$, the inverse is

$$\left[\widehat{H}_{F}^{-1}\Psi_{F}\right]^{\mu\nu} = \frac{1}{16} \left(\partial_{2}^{\mu} x_{12}^{4} \Box_{1} \partial_{2}^{\rho} \Psi_{F,\rho}^{\nu} - (\mu \leftrightarrow \nu)\right) \,.$$

Integrability: length-2 spin chain with a scalar of dimension 1 and a rank-2 antisymmetric tensor of dimension 2. When restricted to tensors coming from a vector dimension 1,

$$\widehat{\mathbb{T}}^{(6)}(0) = \widehat{H}_F^{-1}.$$

► $(\Delta_{\ell,\pm}, \ell, \ell)$ for $\ell \ge 1$ with

$$\Delta_{\ell,\pm}=2+\sqrt{(\ell+1)^2\pm 4 ilde{\xi}_F^2}$$
 .

► $(\Delta_{\ell,\pm}, \ell, \ell)$ for $\ell \ge 1$ with

$$\Delta_{\ell,\pm}=2+\sqrt{(\ell+1)^2\pm4 ilde{\xi}_F^2}$$
 .

• $(\Delta'_{\ell,\pm}, \ell+2, \ell) \oplus (\Delta'_{\ell,\pm}, \ell, \ell+2)$ for $\ell \ge 0$ (tensors with $\ell+2$ indices and mixed symmetry) with

$$\Delta_{\ell,\pm}' = 2 + \sqrt{(\ell+2)^2 + 1 \pm 2\sqrt{(\ell+2)^2 + 4 ilde{\xi}_F^4}}$$

► $(\Delta_{\ell,\pm}, \ell, \ell)$ for $\ell \ge 1$ with

$$\Delta_{\ell,\pm}=2+\sqrt{(\ell+1)^2\pm4 ilde{\xi}_F^2}$$
 .

• $(\Delta'_{\ell,\pm}, \ell+2, \ell) \oplus (\Delta'_{\ell,\pm}, \ell, \ell+2)$ for $\ell \ge 0$ (tensors with $\ell+2$ indices and mixed symmetry) with

$$\Delta_{\ell,\pm}' = 2 + \sqrt{(\ell+2)^2 + 1 \pm 2\sqrt{(\ell+2)^2 + 4 ilde{\xi}_F^4}}$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

The dimension of Tr(ZF) is $\Delta'_{0,-}$.

Generic Operators and Mixing

<□ > < @ > < E > < E > E のQ @

We will focus on $Tr(Z^J F)$ and $Tr(Z^J X X^{\dagger})$ for J > 1.

We will focus on $\text{Tr}(Z^J F)$ and $\text{Tr}(Z^J X X^{\dagger})$ for J > 1.

Let us consider the 2-pt function $\langle \operatorname{Tr}(Z^J F)(x) \operatorname{Tr}((Z^{\dagger})^J F)(y) \rangle$. When $e^{-i\gamma_3} \to +\infty$, the dominant contributions are

We will focus on $\text{Tr}(Z^J F)$ and $\text{Tr}(Z^J X X^{\dagger})$ for J > 1.

Let us consider the 2-pt function $\langle \operatorname{Tr}(Z^J F)(x) \operatorname{Tr}((Z^{\dagger})^J F)(y) \rangle$. When $e^{-i\gamma_3} \to +\infty$, the dominant contributions are

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

These have maximal twist: $g^{2JM+2} e^{-i JM\gamma_3}$.

We will focus on $\text{Tr}(Z^J F)$ and $\text{Tr}(Z^J X X^{\dagger})$ for J > 1.

Let us consider the 2-pt function $\langle \operatorname{Tr}(Z^J F)(x) \operatorname{Tr}((Z^{\dagger})^J F)(y) \rangle$. When $e^{-i\gamma_3} \to +\infty$, the dominant contributions are

These have maximal twist: $g^{2JM+2} e^{-i JM\gamma_3}$.

But $Tr(Z^{J}F)$ is absent from the fishnet theory, so more graphs need to be taken into account.

Mixing

For the same twist $e^{-i JM\gamma_3}$, we now include diagrams of order between g^{2JM+2} and g^{2JM+2M} . These subleading contributions generically look like

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Mixing

For the same twist $e^{-i JM\gamma_3}$, we now include diagrams of order between g^{2JM+2} and g^{2JM+2M} . These subleading contributions generically look like

In the bulk, there can be either Z^J or $Z^J A$ or $Z^J X X^{\dagger}$.

Mixing

For the same twist $e^{-i JM\gamma_3}$, we now include diagrams of order between g^{2JM+2} and g^{2JM+2M} . These subleading contributions generically look like

In the bulk, there can be either Z^J or $Z^J A$ or $Z^J X X^{\dagger}$.

Remark: There exist more diagrams with the same scaling but we claim that they do not contribute to the anomalous dimensions in the limit we are going to focus on:

$$e^{-\operatorname{i} \gamma_3} o \infty, \quad g o 0, \quad \tilde{\xi}^{2(J+1)} = \left(rac{g^2}{8\pi^2}
ight)^{J+1} e^{-\operatorname{i} J \gamma_3} \quad \mathrm{fixed} \, .$$

There is still an iterative structure: the graph-building operator is now a matrix $\widehat{\mathcal{H}}$ with one row (and one column) for each intermediate state.

$\widehat{\mathcal{H}}$ is defined such that 2-point functions are essentially matrix elements of $\frac{1}{1-\widehat{\mathcal{H}}}$

Example:

$$\langle \operatorname{Tr}(A^{\mu}(x_0)Z(x_1)\dots Z(x_J))\operatorname{Tr}(Z^{\dagger}(z_J)\dots Z^{\dagger}(z_1))\rangle$$

= $-\frac{\mathrm{i}}{2}\int \frac{\langle x_0, x_1, \dots, x_J | \left(\frac{1}{1-\widehat{\mathcal{H}}}\right)_{A\emptyset}^{\mu} | y_1, \dots, y_J \rangle}{(4\pi^2)^J \prod_{i=1}^J (y_i - z_i)^2} \frac{\prod_{i=1}^J \mathrm{d}^4 y_i}{\pi^{2J}} .$

The problem is still to diagonalise $\widehat{\mathcal{H}}$, and physical states correspond to those with eigenvalue equal to 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Each matrix element scales differently:

$$\widehat{\mathcal{H}}_{\mathsf{res}} = \widetilde{\xi}^{2(J+1)} \begin{pmatrix} g^{-2} \widehat{\mathcal{H}}_{\emptyset\emptyset} & g^{-1} \widehat{\mathcal{H}}_{\emptyset A} & g^{-1} \widehat{\mathcal{H}}_{\emptyset X} \\ g^{-1} \widehat{\mathcal{H}}_{A\emptyset} & \widehat{\mathcal{H}}_{AA} & \widehat{\mathcal{H}}_{AX} \\ g^{-1} \widehat{\mathcal{H}}_{X\emptyset} & \widehat{\mathcal{H}}_{XA} & \widehat{\mathcal{H}}_{XX} \end{pmatrix} + O(g) \, .$$

Each matrix element scales differently:

$$\widehat{\mathcal{H}}_{\mathsf{res}} = \widetilde{\xi}^{2(J+1)} \begin{pmatrix} g^{-2} \widehat{\mathcal{H}}_{\emptyset\emptyset} & g^{-1} \widehat{\mathcal{H}}_{\emptyset A} & g^{-1} \widehat{\mathcal{H}}_{\emptyset X} \\ g^{-1} \widehat{\mathcal{H}}_{A\emptyset} & \widehat{\mathcal{H}}_{AA} & \widehat{\mathcal{H}}_{AX} \\ g^{-1} \widehat{\mathcal{H}}_{X\emptyset} & \widehat{\mathcal{H}}_{XA} & \widehat{\mathcal{H}}_{XX} \end{pmatrix} + O(g) \, .$$

In the double-scaling limit we have chosen, some eigenvalues will diverge, some will go to zero. We focus on those which remain finite:

$$\widehat{\mathcal{H}}\Psi=E\Psi\,,\quad ext{with}\quad E=E_0+O(g)\,,\quad E_0
eq 0\,. \tag{1}$$

(ロ)、(型)、(E)、(E)、 E) のQ()

At leading order, only the above 3×3 submatrix is relevant. Writing

$$\Psi = egin{pmatrix} \Psi_{\emptyset,0}(x_1,\ldots,x_J) \ \Psi^\mu_{\mathcal{A},0}(x_0,x_1,\ldots,x_J) \ \Psi^\mu_{X,0}(x_0,x_1,\ldots,x_J) \end{pmatrix} + O(g)\,,$$

we get $\Psi_{\emptyset,0}=0$ and

$$\tilde{\xi}^{2(J+1)}\widehat{\mathfrak{H}}\begin{pmatrix}\Psi_{F,0}\\\Psi_{X,0}\end{pmatrix}=E_0\begin{pmatrix}\Psi_{F,0}\\\Psi_{X,0}\end{pmatrix}$$

for $\Psi_{F,0}^{\mu\nu} = \partial_0^{\mu} \Psi_{A,0}^{\nu} - \partial_0^{\nu} \Psi_{A,0}^{\mu}$, and some 2 × 2 matrix $\hat{\mathfrak{H}}$ depending on all 9 matrix elements of $\hat{\mathcal{H}}_{res}$.

 $\widehat{\mathfrak{H}}$ is a complicated matrix of integral operators but it is local (contrary to $\widehat{\mathcal{H}}_{\mathsf{res}}$) and can be inverted:

$$\begin{split} \widehat{\mathfrak{H}}^{-1} &= \begin{pmatrix} \theta \cdot \partial_0 \, x_{j_0}^2 x_{10}^2 \, \partial_0 \cdot \partial^{(\theta)} & 2 \, \theta \cdot \partial_0 \left(\frac{\theta \cdot x_{10}}{x_{j_0}^2} - \frac{\theta \cdot x_{10}}{x_{j_0}^2} \right) x_{j_0}^2 x_{10}^2 \\ 2 \left(\frac{x_{10} \cdot \partial^{(\theta)}}{x_{10}^2} - \frac{x_{j_0} \cdot \partial^{(\theta)}}{x_{j_0}^2} \right) x_{j_0}^2 x_{10}^2 \, \partial_0 \cdot \partial^{(\theta)} & \partial_{0,\mu} \, x_{j_0}^2 x_{10}^2 \, \partial_0^{\mu} + 8 \, x_{10} \cdot x_{j_0} \end{pmatrix} \\ & \times \frac{\prod_{i=1}^{J-1} x_{i,i+1}^2 \prod_{i=1}^{J} \Box_i}{(-4)^{J+1}} \,, \end{split}$$

where θ^{μ} is a polarisation vector such that $\{\theta^{\mu}, \theta^{\nu}\} = 0$. It encodes the tensor structure: $\Psi^{\mu\nu} \mapsto \Psi = \theta^{\mu}\theta^{\nu}\Psi_{\mu\nu}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\widehat{\mathfrak{H}}$ is a complicated matrix of integral operators but it is local (contrary to $\widehat{\mathcal{H}}_{\mathsf{res}}$) and can be inverted:

where θ^{μ} is a polarisation vector such that $\{\theta^{\mu}, \theta^{\nu}\} = 0$. It encodes the tensor structure: $\Psi^{\mu\nu} \mapsto \Psi = \theta^{\mu}\theta^{\nu}\Psi_{\mu\nu}$.

There is conformal symmetry, but we have not yet been able to prove integrability.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(日) (個) (目) (日) (日) (の)

• One can devise a double-scaling limit for any charged operator in $\mathcal{N} = 4$ SYM such that an iterative structure emerges.

(ロ)、(型)、(E)、(E)、 E) のQ()

- One can devise a double-scaling limit for any charged operator in $\mathcal{N} = 4$ SYM such that an iterative structure emerges.
- In most cases, this involves mixing with other operators having the same R-symmetry charges, including fishnet operators.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- One can devise a double-scaling limit for any charged operator in *N* = 4 SYM such that an iterative structure emerges.
- In most cases, this involves mixing with other operators having the same R-symmetry charges, including fishnet operators.
- Regarding holography, the fishchain picture appears to be generic.

- One can devise a double-scaling limit for any charged operator in *N* = 4 SYM such that an iterative structure emerges.
- In most cases, this involves mixing with other operators having the same R-symmetry charges, including fishnet operators.
- Regarding holography, the fishchain picture appears to be generic.
- The graph-building operator $\widehat{\mathcal{H}}$ can also be used to study corrections in g. For instance, corrections to the fishnet limit.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

- One can devise a double-scaling limit for any charged operator in $\mathcal{N} = 4$ SYM such that an iterative structure emerges.
- In most cases, this involves mixing with other operators having the same R-symmetry charges, including fishnet operators.
- Regarding holography, the fishchain picture appears to be generic.
- The graph-building operator H can also be used to study corrections in g. For instance, corrections to the fishnet limit.
- For uncharged operators, one needs to modify the scheme since one cannot start from γ-deformed N = 4. But it should be possible to directly twist the correlators. [Cavaglià, Grabner, Gromov, and Sever (2020)]

Thank you for your attention!

<□ > < @ > < E > < E > E のQ @