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CaLISTA COST Action

Join CaLISTA CA 21109!

https://site.unibo.it/calista/en

Colista

Working group 1: Cartan Geometry and Representation Theory

Working group 2: Integrable Systems and Supersymmetry

Working group 3: Noncommutative Geometry and Quantum
Homogeneous Spaces

@ Working group 4: Vision

@ Working group 5: Dissemination and Public Engagement

https://e-services.cost.eu/action/CA21109/working-groups/applications CGILSTA
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CaLISTA COST Action

Photographic Contest
A photographic contest on the theme of 'Symmetry in mathematics and
physics'
@ A picture on 'Symmetry in Mathematics and Physics’ should be sent to
the CaLISTA email address calistaeuproject@gmail.com

@ Short essay explaining why the picture is related 'Symmetry in
Mathematics and Physics'.

@ The prize is a maximum of 500 Euros of expenses reimbursement towards
the participation in the CaLISTA Workshop 'Geometry Informed Machine
Learning taking place the 2-5 September, 2024 in Paris.

@ The opening date is 1st of April and the closing date is 31st of May. The
decision will be made by mid June.
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Plan of the Talk

© The human visual pathway
@ Mathematical modeling of the visual cortex
© A sub-Riemannian approach to the question of border completion

@ A Deep Learning approach to border enhancement and light sensitivity
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1. The human visual pathway
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The visual cortex V1: The retinotopic map

A) Right visual hemifield B) Left visual cortex
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The visual cortex V1: The ice-cube model

In 1962 Hubel and Wiesel propose the ice-cube model for V1 (Nobel Prize
1980):

Striate cortex

=t 5
3 Color-sensitive
A blobs

Hypercolumn

Orientation

columns 1 .
Ocular-dominance

columns

D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functionc ISTA
architecture in the cat’s visual cortex. J. Physiol, 160:106-154, 1962.
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2. Mathematical modeling of the visual cortex
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Visual cortex as a fiber (contact) bundle

In 1989 Hoffman (Caltech) proposes a model for V1 as contact bundle.

V1 as global S! fiber bundle on R?:

R2X514>R27 (X7y)59'_>(xay)

W.C. Hoffmann. The visual cortex is a contact bundle. mathematics and
computation, 32:137-167, 1989.
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Contour detection in the visual cortex

How the visual cortex detects the contour of an image:

activated orientation
orientation columns hypercolumns

3 Visual Cortex V1

curve

plane of the image

At each point of V1 we have the information regarding all possible directions:
only the detected direction will be highlighted in the hypercolumn! C ISTA
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Anatomical model: orientation percept construction

@ R : V — R contour perceived on V C R?, base space of V1 =R? x S!
from retina

@ Hypercolumnar orientation detection: scalar function

O: v  — R
(X7 .y) — e(X7 y) = argmax9€[0,27r] {X(Q)R(Xv .y)}

where X = —sin0 9, + cosf 0, is a vector field on V1 = S* x R%.
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3. A sub Riemannian approach to the question of
border completion
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Analogy with the bicicle rear wheel path

On a bicicle we have a constraint on the direction to take not the path.
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Dictionary

Mathematics Bicycle Primary visual cortex

b=(x,y) position of the rear | point in the image of the retinotopic
wheel map of the visual field

v = f — b = | direction of motion detected orientation at b

(cos,sin0)

(b, v) point in configura- | hypercolumn
tion space

Z=v normal to rear wheel | orientation vector field
path

Q@ = R? x ST = | configuration space | V1 total space

SE(2) of bicycle
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The problem of border reconstruction

How do we complete a non existing border?
A B
So®

N/

Non-smooth
Fd
-—

David J. Field, Anthony Hayes, and Robert F. Hess. Contour integration by the
human visual system: Evidence for a local “association field”. Vision Research,

33(2):173-193, 1993.
Colista
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Distribution in R? x S! ¢ R3

The problem of border reconstruction via Sub-Riemannian metric
Idea: we build a geodesic on the whole space according to some metric and
then we project it on the distribution.

Xy = 6 Ox + sin 0 0,
(,7,6) = Dyey0) = span{ 1 = cos sin y}

Xo =0
We want to find curves «(t) that are tangent to the distribution:

7' (t) € span{

X1 = cos 8 0« + sin 69,
X2 = 0o

They will be the geodesics in a subriemannian metric!
How to find them: Hamilton equations!
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Sub-riemannian geodesics

Hamilton Equations for Subriemannian geodesics:

X = cos @ p; pL = p3p1
y=sinfp p2=—p3p1
0 =p> ps =0

Geodesic solutions, with 6 parameters to be determined from the initial
conditions

x(t) = [y vcos(wse) cos(0(s)) ds + xo

y(t) = £ [ vcos(wse) sin(6(s)) ds + yo

0(t) = FZ cos(wse) + o
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Compatibility with visive association fields
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4. A Deep Learning approach to border enhancement
and light sensitivity
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Light variations

The retina ganglions are capable of accounting for large light variations in
images.

Barn owl (Tyto alba)

Idea: study the mathematical modeling for lower visual system to impIemerC?ILSTA
Deep Learning neural network
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Retina Abstract Model

Photoreceptors ——>»

Horizontal cells ——> Ribbon synapse

Bipolar cells —>

Amacrine cells —

7

Ganglion cells —>

The corresponding between retina and ganglionic layer is bijective:
Every point receives information about a neighbourhood of a point in R.
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Correspondence Retina E and Ganglionic layer E’

o Bijection between Retina and Ganglionic layers:
ESE (1)
o Receptorial and ganglionic activation functions
R:E—R R :E —R
(x,¥) > R(x,y) (', y)— R,y

where we model the ganglionic activation as
R'(X,y") = / R(u,v)dudv
Up(x,y)

with G(x,y) = (x’,y’) and

Up(x,y) = {(u,v) € B2 (u—x)* + (v — y)? < o}
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alogies with the Deep Learning algorithm

Visual pathway

Lateral inhibition mechanism
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Primary visual cortex
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Convolutional Neural Network Models

Conv_1
Convolution
(5 x 5) kernel Max-Pooling
valid padding 2x2)

INPUT
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Convolution
(5 x 5) kernel
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nlchannels
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fc_3

Full[-Co;I'!e:led
Neural Network
RelU activation
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nconv:n@Tx7

Pre-cortical module

T 8T

81

nconv.n@7x?

(147 parameters)

LeNet-5
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LeCun et al Proc IEEE (1998)
(~ &0 DOO0 parameters)
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The dataset used to test our net (Retilenet)

Testing outside of training “illumination statistics”

p=-1 u=0 u=1
Consider an image X, with pixels x;. ‘H
We define the brightness change as
the mean offset
Xi — Xi— Ju Brightness change
and the contrast change as the o=01

a=1 a=10
rescaling
xi— (X

Contrast change
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esults
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Conclusions

We provide a sound mathematical modeling for the visual path for two
purposes:

@ Find a solution via Hamiltonian equations of the border completion
problem.

@ Implement a “precortical module” in a Deep Learning algorithm.

@ We make a network invariant for a specific transformation by altering its
structure

@ This invariance can emerge spontaneously, without altering the training

© The modification of the net consists of a minimal number of weights

Rita Fioresi, FaBiT, Unibo Mathematical models for the visual pathway and Deep Learning



