Mathematical models for the visual pathway and Deep Learning

Rita Fioresi, FaBiT, Unibo

Unibo, 2024

May 28, 2024

Rita Fioresi, FaBiT, Unibo Mathematical models for the visual pathway and Deep Learning

CaLISTA COST Action

Join CaLISTA CA 21109!

https://site.unibo.it/calista/en

- Working group 1: Cartan Geometry and Representation Theory
- Working group 2: Integrable Systems and Supersymmetry
- Working group 3: Noncommutative Geometry and Quantum Homogeneous Spaces
- Working group 4: Vision
- Working group 5: Dissemination and Public Engagement

https://e-services.cost.eu/action/CA21109/working-groups/applications

Photographic Contest

A photographic contest on the theme of 'Symmetry in mathematics and physics'

- A picture on 'Symmetry in Mathematics and Physics' should be sent to the CaLISTA email address calistaeuproject@gmail.com
- Short essay explaining why the picture is related 'Symmetry in Mathematics and Physics'.
- The prize is a maximum of 500 Euros of expenses reimbursement towards the participation in the CaLISTA Workshop 'Geometry Informed Machine Learning taking place the 2-5 September, 2024 in Paris.
- The opening date is 1st of April and the closing date is 31st of May. The decision will be made by mid June.

- The human visual pathway
- Mathematical modeling of the visual cortex
- **③** A sub-Riemannian approach to the question of border completion
- S A Deep Learning approach to border enhancement and light sensitivity

Bibliography

- R. Fioresi, A. Marraffa, J. Petkovic, A new perspective on border completion in visual cortex as bicycle rear wheel geodesics paths via sub Riemannian Hamiltonian formalism, Differential Geometry and its Applications, 10.1016/j.difgeo.2024.102125, 2024.
- J. Petkovic, R. Fioresi, A precortical module for robust CNNs to light variations, to appear in Neural Computations, 2024.
- L. Grementieri, R. Fioresi Model-centric Data Manifold: the Data Through the Eyes of the Model SIAM J. Imaging Sci. 15 (2022), no. 3, 1140–1156.

1. The human visual pathway

Calista

2

* E > < E</p>

The visual cortex V1: The retinotopic map

Rita Fioresi, FaBiT, Unibo Mathematical models for the visual pathway and Deep Learning

イロト イボト イヨト イヨト

a

э

In 1962 Hubel and Wiesel propose the ice-cube model for V1 (Nobel Prize 1980):

architecture in the cat's visual cortex. J. Physiol, 160:106–154, 1962.

2. Mathematical modeling of the visual cortex

In 1989 Hoffman (Caltech) proposes a model for V1 as contact bundle.

V1 as global S^1 fiber bundle on \mathbb{R}^2 :

$$\mathbb{R}^2 \times S^1 \longrightarrow \mathbb{R}^2, \qquad (x, y), \theta \mapsto (x, y)$$

W.C. Hoffmann. The visual cortex is a contact bundle. mathematics and computation, 32:137–167, 1989.

How the visual cortex detects the contour of an image:

At each point of V1 we have the information regarding **all** possible directions: only the detected direction will be highlighted in the hypercolumn!

- R: V → ℝ contour perceived on V ⊂ ℝ², base space of V1 = ℝ² × S¹
 from retina
- Weight and the second secon

$$egin{array}{rcl} \Theta: & V & \longrightarrow & \mathbb{R} \ & (x,y) & \longmapsto & \Theta(x,y) := \mathrm{argmax}_{ heta \in [0,2\pi]}ig\{X(heta)\mathcal{R}(x,y)ig\} \end{array}$$

where $X = -\sin\theta \,\partial_x + \cos\theta \,\partial_y$ is a vector field on $V1 = S^1 \times \mathbb{R}^2$.

3. A sub Riemannian approach to the question of border completion

Analogy with the bicicle rear wheel path

On a bicicle we have a constraint on the direction to take **not** the path.

Dictionary

Mathematics	Bicycle	Primary visual cortex
b = (x, y)	position of the rear wheel	point in the image of the retinotopic map of the visual field
v = f - b =	direction of motion	detected orientation at b
$(\cos \theta, \sin \theta)$		
(b, v)	point in configura-	hypercolumn
	tion space	
$Z = \dot{v}$	normal to rear wheel	orientation vector field
	path	
$Q \cong \mathbb{R}^2 imes S^1 \cong$	configuration space	V1 total space
SE(2)	of bicycle	

How do we complete a non existing border?

David J. Field, Anthony Hayes, and Robert F. Hess. Contour integration by the human visual system: Evidence for a local "association field". Vision Research, 33(2):173–193, 1993.

The problem of border reconstruction via Sub-Riemannian metric Idea: we build a geodesic on the whole space according to some metric and then we **project** it on the distribution.

$$(x, y, \theta) \mapsto \mathcal{D}_{(x, y, \theta)} = \operatorname{span} \left\{ \begin{aligned} X_1 &= \cos \, \theta \, \partial_x + \sin \, \theta \, \partial_y \\ X_2 &= \partial_\theta \end{aligned} \right\}$$

We want to find curves $\gamma(t)$ that are **tangent** to the distribution:

$$\gamma'(t) \in \operatorname{span} \left\{ egin{array}{l} X_1 = \cos \, heta \, \partial_x + \sin \, heta \, \partial_y \ X_2 = \partial_ heta \end{array}
ight\}$$

They will be the geodesics in a subriemannian metric! How to find them: Hamilton equations!

Hamilton Equations for Subriemannian geodesics:

$$\begin{cases} \dot{x} = \cos \theta p_1 & \dot{p}_1 = p_3 p_1 \\ \dot{y} = \sin \theta p_1 & \dot{p}_2 = -p_3 p_1 \\ \dot{\theta} = p_2 & \dot{p}_3 = 0 \end{cases}$$

Geodesic solutions, with 6 parameters to be determined from the initial conditions

$$\begin{aligned} x(t) &= \int_0^t v \cos(\omega s\phi) \cos(\theta(s)) \, ds + x_0 \\ y(t) &= \pm \int_0^t v \cos(\omega s\phi) \sin(\theta(s)) \, ds + y_0 \\ \theta(t) &= \mp \frac{v}{\omega} \cos(\omega s\phi) + \theta_0 \end{aligned}$$

Compatibility with visive association fields

Rita Fioresi, FaBiT, Unibo Mathematical models for the visual pathway and Deep Learning

4. A Deep Learning approach to border enhancement and light sensitivity

Light variations

The retina ganglions are capable of accounting for large light variations in images.

Barn owl (Tyto alba)

Idea: study the mathematical modeling for lower visual system to implement Deep Learning neural network

The corresponding between retina and ganglionic layer is bijective: Every point receives information about a *neighbourhood* of a point in R.

• Bijection between Retina and Ganglionic layers:

$$E \xrightarrow{G} E'$$
 (1)

• Receptorial and ganglionic activation functions

$$\begin{array}{ll} \mathcal{R}: E \longrightarrow \mathbb{R} & \mathcal{R}': E' \longrightarrow \mathbb{R} \\ (x,y) \longmapsto \mathcal{R}(x,y) & (x',y') \longmapsto \mathcal{R}'(x',y') \end{array}$$

where we model the ganglionic activation as

$$\mathcal{R}'(x',y') = \int_{U_{\rho}(x,y)} \mathcal{R}(u,v) \, du \, dv$$

with G(x, y) = (x', y') and

$$U_{
ho}(x,y) = \left\{ (u,v) \in \mathbb{R}^2 : (u-x)^2 + (v-y)^2 \le
ho^2
ight\}$$

Convolutional Neural Network Models

∃ >

Rita Fioresi, FaBiT, Unibo Mathematical models for the visual pathway and Deep Learning

CalISTA

2

E + 4 E +

Testing outside of training "illumination statistics"

Consider an image \vec{x} , with pixels x_i . We define the **brightness change** as the mean offset

$$x_i \rightarrow x_i - \mu$$

and the **contrast change** as the rescaling

$$x_i
ightarrow rac{x_i - \langle \vec{x}
angle}{\sigma} + \langle \vec{x}
angle$$

Brightness change

Contrast change

Results

Dataset: FashionMNIST							
	μ			σ			
Model	-2.0	0	2.0	0.1	1.0	3.9	
LeNet-5	0.168	0.887	0.100	0.836	0.887	0.422	
BNLeNet-5	0.435	0.910	0.139	0.838	0.907	0.779	
RetiLeNet	0.770	0.880	0.781	0.805	0.880	0.806	

∃ → (4)∃

< 口 > < 同 >

We provide a sound mathematical modeling for the visual path for two purposes:

- Find a solution via Hamiltonian equations of the border completion problem.
- Implement a "precortical module" in a Deep Learning algorithm.
 - We make a network invariant for a specific transformation by altering its structure
 - ② This invariance can emerge spontaneously, without altering the training
 - The modification of the net consists of a minimal number of weights

