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This vev can be evaluated using supersymmetric localization.
In the planar limit, the vev takes the form

〈W〉 =
N

ξ
(eξ − 1) ≈ N

ξ
eξ .

Our goal is to use holography to extract this vev at strong
coupling at next-to-leading order.

The story will be very similar to the one for the 1/2 BPS
(circular) WL in N = 4 SYM

Erickson, Semenoff, Zarembo (2000)

〈W〉 =
2N√
λ
I1(
√
λ) ≈ Nλ−3/4

√
2

π
e
√
λ .
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Besides, extracting finite answers for the WL vev on the string
side is still an open problem [Giombi, Tseytlin (2020)]. A
successful strategy that has emerged in the past few years is to
compute ratio of WLs.

But there is only one loop operator that is under control in 5D
SYM at strong coupling.
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L = − 1
2g2YM

Tr
(
|F |2 − |DΦm|2 + Ψ̄ /DΨ− 1

2
[Φm,Φn]2 + Ψ̄Γm[Φm,Ψ]

)
.

We are using 10D language to write down the 5D fermions (Ψ
has 16 components but should be decomposed into a pair of 5D
spinors). The indices are m = 0, 1, . . . , 4 and R-symmetry is
SO(1, 4).

All fields transform in the adjoint of the gauge group SU(N).

YM theory in 5D is not conformal, indeed [g2
YM] = −1.

In fact the theory is non-renormalizable. Nevertheless, 5D
MSYM is expected to be UV completed in the 6D (2,0) SCFT.

Douglas (2010), Lambert, Papageorgakis, Schmidt-Sommerfeld (2010)
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When we place euclidean SYM on S5, we can preserve SUSY by
adding terms to the Lagrangian

Blau (2000)
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When we place euclidean SYM on S5, we can preserve SUSY by
adding terms to the Lagrangian

Blau (2000)

δL = − 1
R2 Tr

(
3ΦmΦm+ΦaΦ

a
)

+ 1
2RTr

(
Ψ̄Γ012Ψ−8Φ0 [Φ1,Φ2]

)
,

where a = 0, 1, 2.

The radius of S5 isR, and settingR →∞we recover maximal
(euclidean) 5D SYM on flat space.

The global symmetry group is SU(4|1, 1) (the R-symmetry is
SU(1, 1)×U(1).)

At large N a special role will be played by a ’t Hooft like
coupling constant

ξ =
g2

YMN

2πR
.
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This maps the problem of computing a class of observables to a
Matrix Model computation. At large N the partition function of
the matrix model can be written

Z =
1

N !

∫ N∏
i=1

dµie
−Seff , Seff =

2π2N

ξ

N∑
i=1

µ2
i −

N∑
j 6=i

log | sinh(π(µi − µj))|

In the saddle point expansion (for large N ) we can find the
distribution of eigenvalues

Mariño (2004)

ρ(µ) =
2

ξ
arctan

√
eξ − cosh2 πµ

coshπµ
.
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LOCALIZATION

Localization allows us to compute the Free energy (= log
Partition function). At strong coupling we find

F

N2
=
−ξ
6

+
π2

3ξ
− 2ζ(3)

ξ2
+O(e−ξ) +O(N−1) .

In this talk we will focus on the expectation value of a
supersymmetric Wilson loop that is compatible with
localization. The large N result is valid for all values of the
coupling ξ and takes the form

〈W〉 =
N

ξ
(eξ − 1) +O(N−1) .

Our goal is to reproduce and verify this result (its strong
coupling expansion) using holography.
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Maximal supersymmetric Yang-Mills in d = 5 is the
worldvolume theory on D4 branes in type IIA string theory.

The holographic dual to 5D SYM is given by the gravitational
geometry around D4 branes

ds2
10 = H−1/2ds2

|| +H1/2ds2
⊥ .

where ds2
||, ds2

⊥ are the metrics on flat 5D spacetimes and H is
harmonic on ds2

⊥.
Since we are interested in Euclidean 5D SYM on S5, we want
ds2
|| = dΩ2

5. We need a spherical brane solution.
For the case at hand there is a quick way to obtain this solution
by uplifting the near-horizon metric around flat D4s to 11D
where one obtaines AdS7 × S4. Then we can change
coordinates and reduce back to 10D carefully making sure
supersymmetry is not broken.



SPHERICAL D4 SOLUTION
Bobev, Bomans, FFG (2018)

ds2
10 = `2s(NπeΦ)2/3
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5)

sinh2 σ
+ dθ2 + cos2 θdΩ2
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ds2
10 = `2s(NπeΦ)2/3

[4(dσ2 + dΩ2
5)

sinh2 σ
+ dθ2 + cos2 θdΩ2

2

+
sin2 θ

1− 1
4 tanh2 σ sin2 θ

dφ2
]
,

eΦ =
ξ3/2

Nπ

(
coth2 σ − 1

4 sin2 θ
)3/4

.

The form fields B2, C1, and C3 are also nontrivial but their form
is not important.

This background exhibits SU(4|2) symmetry just like the QFT.

Evaluating the renormalized supergravity action we obtain a
leading order match with the QFT answer for the free energy
obtained by localization.

Bobev, Bomans, FFG, Minahan, Nedelin (2019)
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We now want to use the gravitational background to reproduce
the vev of the supersymmetric Wilson loop which we
computed directly in the QFT.

The prescription is to quantize a fundamental string in the
geometry with boundary conditions which are compatible with
the Wilson loop operator we are interested in. The vev should
be reproduced by the partition function of the string

〈W〉 = Zstring .

We will do this in a semi-classical expansion which matches the
strong coupling expansion in the QFT.

To leading order the string partition function is just the area of
a string sitting at its saddle point. Next to leading order is
given by the one-loop partition function∗ of the string.



Recall the answer from localization

log〈W〉 = ξ + log
N

ξ
+O(e−ξ) .

And compare with the string expansion

logZstring = −Area−W +O(e−ξ) .
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The classical solution (extremal area) is specified by

equator of S5 , θ = 0 , any point on S2 .

The worldsheet is a two-dimensional surface with metric

ds2
2 = e2ρ(dσ2 + dτ2) , e2ρ =

4ξ`2s
tanhσ sinh2 σ

.
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Computing the area of the worldsheet gives a divergent
answer. We must regularize.

There is a standard procedure to regularize the divergent area
of string worldsheets such as ours. We must identify the correct
boundary variables by performing a Legendre transform. This
introduces a new term in the action which can be thought of as
a counterterm action.

Drukker, Gross, Ooguri (1999)

Adding the counterterm to the classical action gives the
regularized area of the string:

Sclassical + Sct = Area = −ξ
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saddle point.
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We have 8 (physical) bosonic modes ζa, and 8 fermionic modes
θa

SK =
1

2π`2s

∫
e2ρ
(
ζaδabKaζb + θ̄aδabDθb

)
.

Ka = (Kx,Kx,Kx,Kx,Ky,Ky,Kz,Kz) .

Ka = e−2ρK̃a , D = e−3ρ/2D̃eρ/2 ,

K̃a = −∂2
σ − ∂2

τ + Ea , D̃ = i/∂ + τ3a+ v .

Here Ea, a, and v are potentials that depend on σ.
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Ka = e−2ρK̃a , D = e−3ρ/2D̃eρ/2 ,

K̃a = −∂2
σ − ∂2

τ + Ea , D̃ = i/∂ + τ3a+ v .

Explicitly the potentials are

Ex =
7 + 8 cosh 2σ

sinh2 2σ
, Ey =

1 + 2 cosh 2σ
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3
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i

2 coshσ
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Since the model is Gaussian the partition function is given by
determinants

ΓK =
1

2
log

(detKx)4(detKy)2(detKz)2

(detD)8
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The presence of the metric e2ρ complicates the computation of
the determinants. It would be useful if we could perform a
Weyl transformation to eliminate the metric.

This should be allowed in string theory since the worldsheet
theory is Weyl invariant.

The explicitly Weyl anomaly of our one-loop theory is however
non-trivial! We have neglected to take into account the running
dilaton.

W = ΓK + SFT , SFT =
1

4π

∫
e2ρΦRρ .

The combined object W is Weyl invariant: W [ρ] = W [0].
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We must be careful! the Weyl factor is ill-defined for large σ

e2ρ =
4ξ`2s

tanhσ sinh2 σ
→ 16ξ`2se

−2σ .

This is the ‘center’ of the worldsheet, the σ coordinate breaks
down there

ds2
2 → 16ξ`2s(dr

2 + r2dτ2) , r = e−σ .

Blindly Weyl rescaling the metric away changes the topology of
the worldsheet from a disc to a cylinder. This issue was first
pointed out in a different but related context.

Cagnazzo, Medina-Rincon, Zarembo (2017)
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Before Weyl rescaling, we cut the worldsheet in two pieces

For the cylinder piece, Ricci scalar vanishes and so SFT = 0.

For the small cap, the operators become exactly free
(Ea = a = 0), and the partition function is trivial.

Combining the two answers, we have

W = ΓK̃(R)− log
Nπ

ξ3/2
.
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The one-loop partition function can be computed using various
methods, we use the phase shift method first used in this
context in

Chen-Lin, Medina-Rincon, Zarembo (2017)

ΓK̃(R) = 2 log π + log(Λe−R) .

The divergence log(Λe−R) is universal and expected for a
worldsheet with disc topology.

Drukker, Gross, Tseytlin (2000); Giombi, Tseytlin (2020)

But it prevents a comparison with the QFT.

We need to construct a finite ratio of string disc partition
functions for which the universal divergences cancel.
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string in AdS4 ×CP 3)

Aguilera-Damia, Faraggi, Pando Zayas, Rathee, Silva (2018); Medina-Rincon (2019)

The two divergent answers must be computed using the same
regularization scheme. In particular the cutoff R must be
replaced by a diffeomorphism invariant cutoff given by the
area of the cap

Cagnazzo, Medina-Rincon, Zarembo (2017)

A =
2π

`2s

∫ ∞
R

e2ρdσ ∼ T e−2R .

Sidenote: This replacement introduces the factor ∼
√
T as

discussed by Giombi and Tseytlin.
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The two type IIA partition functions are

logZSYM
string = ξ + log

4NSYM

ξ
√
π
− log(Λ

√
A) ,

logZABJM
string = π

√
2λ+ log

NABJM

π3/2λ
− log(Λ

√
A) .
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RATIO

The two type IIA partition functions are

logZSYM
string = ξ + log

4NSYM

ξ
√
π
− log(Λ

√
A) ,

logZABJM
string = π

√
2λ+ log

NABJM

π3/2λ
− log(Λ

√
A) .

And the ratio is
ZSYM

string

ZABJM
string

=

NSYM
ξ eξ

NABJM
4πλ eπ

√
2λ
.

This matches perfectly the QFT answers!



OUTLOOK

D Latitude WL in 5D – Can we compute their vev on matrix
model or string side?

D SYM in other dimensions – QFT answer exist for 3D, can
we reproduce the answer from string side?

WIP. w. Pieter Bomans and Valentina Giangreco M. Puletti

D N = 2∗ for arbitrary mass, The QFT prediction is a highly
nontrivial function of the mass

Chen-Lin, Gordon, Zarembo (2014)

With current technology we should be able to reproduce
it/verify it in string theory

WIP. w. Valentina Giangreco M. Puletti and Konstantin Zarembo

D We should understand the cancellation of divergences on
the string side without computing ratios.
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