Spectral metrics on quantum projective spaces Joint work with Max Holst Mikkelsen

Jens Kaad

University of Southern Denmark

Tuesday, May 28

Let A be a unital C*-algebra. A state on A is a unital postive map $\mu : A \to \mathbb{C}$. The set of states is denoted by S(A) and becomes a compact Hausdorff space when equipped with the weak-*-topology (pointwise convergence).

Let A be a unital C*-algebra. A state on A is a unital postive map $\mu : A \to \mathbb{C}$. The set of states is denoted by S(A) and becomes a compact Hausdorff space when equipped with the weak-*-topology (pointwise convergence).

Example

Let X be a compact Hausdorff space. It holds that C(X) is a commutative unital C*-algebra and the state space S(C(X)) can be identified with the Radon probability measures on X.

Let \mathcal{A} be a dense unital *-subalgebra of a unital C*-algebra \mathcal{A} . Suppose that $L : \mathcal{A} \to [0, \infty)$ is a *-invariant seminorm with L(1) = 0.

 The Monge-Kantorovich metric is the (extended) metric on the state space ρ_L : S(A) × S(A) → [0,∞] defined by

$$\rho_L(\mu,\nu) := \sup \{ |\mu(x) - \nu(x)| : L(x) \le 1 \}.$$

Let \mathcal{A} be a dense unital *-subalgebra of a unital C*-algebra \mathcal{A} . Suppose that $L : \mathcal{A} \to [0, \infty)$ is a *-invariant seminorm with L(1) = 0.

 The Monge-Kantorovich metric is the (extended) metric on the state space ρ_L : S(A) × S(A) → [0,∞] defined by

$$\rho_L(\mu,\nu) := \sup \{ |\mu(x) - \nu(x)| : L(x) \le 1 \}.$$

Definition (Rieffel)

The pair (A, L) is a compact quantum metric space if the metric ρ_L metrizes the weak-*-topology on the state space S(A).

(4 同) 4 ヨ) 4 ヨ)

Example

Let X be a compact metric space with metric d and equip the Lipschitz functions $Lip(X) \subseteq C(X)$ with the seminorm

 $L_d(f) :=$ "Lipschitz constant of f".

It then holds that $(Lip(X), L_d)$ is a compact quantum metric space and $d(p,q) = \rho_{L_d}(ev_p, ev_q)$ for all $p, q \in X$.

Unital spectral triples

Definition

Let A be a unital C^{*}-algebra. A unital spectral triple (A, H, D)on A is given by

- A dense unital *-subalgebra A ⊆ A, called the coordinate algebra;
- A separable Hilbert space H equipped with a left action of A given by a unital *-homomorphism π : A → L(H);
- Solution A selfadjoint unbounded operator D : Dom(D) → H, called the abstract Dirac operator.

Such that the following holds:

Unital spectral triples

Definition

Let A be a unital C^{*}-algebra. A unital spectral triple (A, H, D)on A is given by

- A dense unital *-subalgebra A ⊆ A, called the coordinate algebra;
- A separable Hilbert space H equipped with a left action of A given by a unital *-homomorphism π : A → L(H);
- Solution A selfadjoint unbounded operator D : Dom(D) → H, called the abstract Dirac operator.

Such that the following holds:

 For every a ∈ A, the commutator [D, π(a)] : Dom(D) → H is well-defined and extends to a bounded operator δ(a) : H → H;

Let A be a unital C^{*}-algebra. A unital spectral triple (A, H, D)on A is given by

- A dense unital *-subalgebra A ⊆ A, called the coordinate algebra;
- A separable Hilbert space H equipped with a left action of A given by a unital *-homomorphism π : A → L(H);
- Solution A selfadjoint unbounded operator D : Dom(D) → H, called the abstract Dirac operator.

Such that the following holds:

- For every a ∈ A, the commutator [D, π(a)] : Dom(D) → H is well-defined and extends to a bounded operator δ(a) : H → H;
- The resolvent $(i + D)^{-1} : H \to H$ is a compact operator.

Example

Let *M* be a compact spin manifold and let $\mathcal{P}: \Gamma^{\infty}(M, S) \to \Gamma^{\infty}(M, S)$ denote the Dirac operator acting on the smooth sections of the spinor bundle *S*.

It holds that the triple (C[∞](M), L²(M, S), Ø) is a unital spectral triple on C(M).

Spectral metric spaces

Observation

Let (\mathcal{A}, H, D) be a unital spectral triple. The seminorm $L_D : \mathcal{A} \to [0, \infty)$ defined by $L_D(a) := \|\delta(a)\|$ is *-invariant and satisfies $L_D(1) = 0$.

∃ ► < ∃ ►</p>

Observation

Let (\mathcal{A}, H, D) be a unital spectral triple. The seminorm $L_D : \mathcal{A} \to [0, \infty)$ defined by $L_D(a) := \|\delta(a)\|$ is *-invariant and satisfies $L_D(1) = 0$.

Definition (Bellisard, Marcolli and Reihani)

A unital spectral triple (A, H, D) is a spectral metric space, if the pair (A, L_D) is a compact quantum metric space.

Observation

Let (\mathcal{A}, H, D) be a unital spectral triple. The seminorm $L_D : \mathcal{A} \to [0, \infty)$ defined by $L_D(a) := \|\delta(a)\|$ is *-invariant and satisfies $L_D(1) = 0$.

Definition (Bellisard, Marcolli and Reihani)

A unital spectral triple (A, H, D) is a spectral metric space, if the pair (A, L_D) is a compact quantum metric space.

Theorem (Connes)

If *M* is a **compact spin manifold**, then the unital spectral triple $(C^{\infty}(M), L^2(M, S), \emptyset)$ is a **spectral metric space** and the Monge-Kantorovich metric recovers the metric on *M* (induced by the Riemannian metric).

Definition (Woronowicz)

Let $q \in (0,1)$. The coordinate algebra for quantum SU(n) is a Hopf *-algebra $\mathcal{O}(SU_q(n))$ generated by n^2 elements u_{ij} subject to quadratic relations

•
$$u_{ik}u_{jk} = q \cdot u_{jk}u_{ik}$$
, $u_{ki}u_{kj} = q \cdot u_{kj}u_{ki}$ $i < j$

•
$$[u_{il}, u_{jk}] = 0$$
, $[u_{ik}, u_{jl}] = (q - q^{-1}) \cdot u_{il}u_{jk}$ $i < j$, $k < l$

together with the determinant relation saying that the quantum determinant equals 1.

Definition/Theorem (Drinfeld-Jimbo)

Let $q \in (0,1)$. The quantized enveloping algebra of $\mathfrak{su}(n)$ is a Hopf *-algebra $\mathcal{U}_q(\mathfrak{su}(n))$ which can be explicitly defined in terms of generators and relations.

• The quantized enveloping algebra acts on the coordinate algebra $\mathcal{O}(SU_q(n))$ via a non-degenerate dual pairing of Hopf *-algebras

 $\langle \cdot, \cdot \rangle : \mathcal{U}_q(\mathfrak{su}(n)) \times \mathcal{O}(SU_q(n)) \to \mathbb{C}.$

The coordinate algebra for quantum projective space $\mathcal{O}(\mathbb{C}P_q^{n-1})$ is the unital *-subalgebra of $\mathcal{O}(SU_q(n))$ generated by $u_{ni} \cdot u_{nj}^*$ for $i, j \in \{1, ..., n\}$.

何 ト イヨ ト イヨ ト

The q-deformed Dolbeault operator

$$\overline{\partial} + \overline{\partial}^{\dagger} : \Omega_{\boldsymbol{q}} \to \Omega_{\boldsymbol{q}}$$

acts on the q-deformed **antiholomorphic forms**. It can be explicitly defined in terms of the action of $U_q(\mathfrak{su}(n))$ on $\mathcal{O}(SU_q(n))$.

Remark

The Dolbeault operator induces an **essentially selfadjoint** *unbounded operator*

$$\overline{\partial} + \overline{\partial}^{\dagger} : \Omega_q \to L^2(\Omega_q, h)$$

on the Hilbert space completion of the antiholomorphic forms wrt. the Haar state $h : \mathcal{O}(SU_q(n)) \to \mathbb{C}$. We put D_q equal to the selfadjoint closure of the Dolbeault operator.

Remark

The Dolbeault operator induces an **essentially selfadjoint** *unbounded operator*

$$\overline{\partial} + \overline{\partial}^{\dagger} : \Omega_q \to L^2(\Omega_q, h)$$

on the Hilbert space completion of the antiholomorphic forms wrt. the Haar state $h : \mathcal{O}(SU_q(n)) \to \mathbb{C}$. We put D_q equal to the selfadjoint closure of the Dolbeault operator.

Theorem (D'Andrea, Dabrowski (and Landi for n = 3))

The data $(\mathcal{O}(\mathbb{C}P_q^{n-1}), L^2(\Omega_q, h), D_q)$ is a unital spectral triple.

Remark

The Dolbeault operator induces an **essentially selfadjoint** *unbounded operator*

$$\overline{\partial} + \overline{\partial}^{\dagger} : \Omega_q \to L^2(\Omega_q, h)$$

on the Hilbert space completion of the antiholomorphic forms wrt. the Haar state $h : \mathcal{O}(SU_q(n)) \to \mathbb{C}$. We put D_q equal to the selfadjoint closure of the Dolbeault operator.

Theorem (D'Andrea, Dabrowski (and Landi for n = 3))

The data $(\mathcal{O}(\mathbb{C}P_q^{n-1}), L^2(\Omega_q, h), D_q)$ is a unital spectral triple.

Theorem (Mikkelsen and K.)

The unital spectral triple $(\mathcal{O}(\mathbb{C}P_q^{n-1}), L^2(\Omega_q, h), D_q)$ is a spectral metric space.

4 日 ト 4 周 ト 4 ヨ ト 4 ヨ ト

Question

 Can we understand the continuity properties of the spectral metric spaces (O(CP_qⁿ⁻¹), L²(Ω_q, h), D_q) under variations of the deformation parameter q?

Question

- Can we understand the continuity properties of the spectral metric spaces (O(CP_qⁿ⁻¹), L²(Ω_q, h), D_q) under variations of the deformation parameter q?
- One possibility is to consider this question with respect to the **quantum Gromov-Hausdorff distance** introduced by Marc Rieffel.

Question

- Can we understand the continuity properties of the spectral metric spaces (O(CP_qⁿ⁻¹), L²(Ω_q, h), D_q) under variations of the deformation parameter q?
- One possibility is to consider this question with respect to the **quantum Gromov-Hausdorff distance** introduced by Marc Rieffel.
- Another, and more challenging option, is to apply the spectral propinquity which has recently been invented by Frédéric Latrémolière.

Lemma

The spectrum of $y := 1 - u_{nn}u_{nn}^*$ agrees with the quantized interval $I_q = \{q^{2k} \mid k \in \mathbb{N}_0\} \cup \{0\}$. Hence all polynomial expressions in y can be identified with a unital *-subalgebra $\mathcal{O}(I_q)$ of $C(I_q)$.

Lemma

The spectrum of $y := 1 - u_{nn}u_{nn}^*$ agrees with the quantized interval $I_q = \{q^{2k} \mid k \in \mathbb{N}_0\} \cup \{0\}$. Hence all polynomial expressions in y can be identified with a unital *-subalgebra $\mathcal{O}(I_q)$ of $C(I_q)$.

Theorem (Mikkelsen and K.)

It holds that $(\mathcal{O}(\mathbb{C}P_q^{n-1}), L^2(\Omega_q, h), D_q)$ is a spectral metric space if and only if $(\mathcal{O}(I_q), L^2(\Omega_q, h), D_q)$ is a spectral metric space.

Metric properties of the quantized interval and main theorem as a corollary

Definition

Define a metric d on the quantized interval I_q by the formula

$$d(q^{2k},q^{2m}) = \sum_{j=k}^{m-1} rac{q^j(1-q^2)}{\sqrt{1-q^{2(j+1)}}} \quad \textit{for } m > k$$

Metric properties of the quantized interval and main theorem as a corollary

Definition

Define a metric d on the quantized interval I_q by the formula

$$d(q^{2k},q^{2m}) = \sum_{j=k}^{m-1} rac{q^j(1-q^2)}{\sqrt{1-q^{2(j+1)}}} \quad \textit{for } m > k$$

Theorem (Mikkelsen and K.; Gotfredsen, K. and Kyed)

It holds that $L_d(f) \leq L_{D_q}(f)$ for all $f \in \mathcal{O}(I_q)$.

Metric properties of the quantized interval and main theorem as a corollary

Definition

Define a metric d on the quantized interval I_q by the formula

$$d(q^{2k},q^{2m}) = \sum_{j=k}^{m-1} rac{q^j(1-q^2)}{\sqrt{1-q^{2(j+1)}}} \quad \textit{for } m > k$$

Theorem (Mikkelsen and K.; Gotfredsen, K. and Kyed)

It holds that $L_d(f) \leq L_{D_q}(f)$ for all $f \in \mathcal{O}(I_q)$.

Corollary

A combination of the extension theorem and the above estimate shows that $(\mathcal{O}(\mathbb{C}P_q^{n-1}), L^2(\Omega_q, h), D_q)$ is a spectral metric space.