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Plan

Fusion relations as discrete dynamical systems

Quantization

Macdonald-Koornwinder operators in g-Whittaker limit



Heisenberg spin chain: T-system ~» Q-system for g = sly
Commuting transfer matrices {75 = Tv (kw:)(q7¢) }

Fusion: T} ; k17T k-1 =T jo1,Tij-1,6—Tic156Tiv1,5k, Lo =1="Tx

Asymptotics ( — 00, T} j.x — Qix:

) _ 02 o
Q-system: Qik+1Qik-1= Q= Qi-1kQiv1,k, Qo =1=Qni1s

Discrete evolution equations in k:

1. Integrable: Hamiltonians {H,(Q; x, Qi x+1)}2—," independent of k;

a=1

2. Cluster algebra:

3. Has canonical Quantization



Other classical root systems

Fusion relations, Q-systems for each affine root system, classical ones are
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Quantum Q-systems: g — (R, R*) (Macdonald notation)
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Q-systems for the classical root systems

Characters of finite-dimensional KR-modules satisfy the Q-system

—Cha
Qa,k+1Qa,k—1 = Qik - H Qb)kb s 1<a<r, kcZ
b#a
(C = Cartan matrix of R)
Except for
Bg\}) QN1 r1QN—1 k-1 = Q?\]—l,k — Qn—2,QnN,2k;

2
QN r+1QNe—1 = QN .k — QN*LL%JQNA,U’%M
CJ(\}) b Qo k+1QN—1 k-1 = Q?\I—l,k - QN*MQN{%’jQN,L%j;

2
QN,k+1QN,k—1 = QN,k - QN—1,2k§

A Quar1Queo1 = Qe — Qno14Quge

cluster algebra mutations relations*
Our goals:
® Integrable structure for any g
® Quantization, solutions as g-difference operators

Unifying framework: Macdonald-Koornwinder-theory



Quantization of Q-systems Qg4 11Qu k1 = Qfl?k — M,

Canonical quantization of the associated cluster algebras*: Q ~ Q

Noncommuting variables:

NabJ—Npai s
Qatak+i Db toktj = q " Q4 ki Latuktis &7 =0,1.

Aap = W - Wy, wa, w; fundamental weights of R, R*
t, = 2 for short roots, t, = 1 for long roots

Noncommutative evolutions:
Aaa — 02 . .
¢"* Qak+1Qak-1= Qs j— May:, aclllkel

:Ma,:=normal/Weyl ordered product

Example: R = R* =sly

QuiQpiri = qon@iQ, 04, i=0,1;

2
“Qak+1Qak—1 = Qup— Qa-1,Qa+1k- Qor=1,Qn41.=0



The program

For each affine root system, we want to:
1. Prove integrability of quantum Q-systems
2. Find N quantum relativistic Toda Hamiltonians

3. Find solutions of quantum Q-systems as g-difference operators

The following program in type Ag\l,)_l generalizes to the classical affine
root systems X](\;), X =ABCD, r=1,2.

Ingredients:
1. Duality (bi-spectrality) in Macdonald-Koornwinder theory
2. “Fourier transform” and g-Whittaker limit

3. 74 € SLo(Z)-action on DAHA commutes with Toda Hamiltonians,
Baxter Q-operator, acts as time-translation



Macdonald’s equations and their universal solutions

Macdonald eigenvalue equation: D1(X)Pr(X) = e1(S)Pr(X)

e The variable S = (s1,...,5n) encodes \: s; = ¢tV 77,

e ¢,(5) are the elementary symmetric functions in s;.

Macdonald's commuting difference operators act on the variables
X = (21, .., zN):

te; —x
=2 1II 1_9671“1, Tpaj=q¥a;ly.

IC[1,N] i€l
[I|=a J&I

e Macdonald polynomials: Unique monic, polynomial solution Py\(X;gq,t)
for A dominant integral s[x-weight



Universal Macdonald functions

Write Py\(X;q,t) ~ P(X|S) with S = (s1,...,sn), s; =tV "ighi

Fact: Up to normalization, the eigenvalue equation
Dy (X)P(X]S) = e1(S)P(X]S)
has a unique solution as a series in {X ~® = ;1 /x;} of the form
P(X|S) = ¢** Z cs(S)X 7, x; = tNTigh,

BEQL

(Expand D;(X) as a power series in x;1/x;, then Eigenvalue equation is
a triangular system for coefficients)

[Shiraishi-Noumi, Stockman's basic Harish-Chandra series]



Two normalizations for universal solution P(X|S):
1. Macdonald polynomials:
POXIS) = 3 e (9)X 77, ) =1.
BEQ+

When X\ € Py the series truncates:

t’\'pP(l)(X\S)|‘ = P\(X), pi=N-—i

AEP,

Any Macdonald polynomial is a specialization of the universal
solution P(M(X]9).

2. Self-dual solutions:

PAX[S) = Y P9)x8, P9)= ]

= “ery

1—qg"S™¢
1— t_lq"S_O‘

Theorem [Macdonald’s Duality for the universal function]:

PP (X|S) = PP (S|X).



Duality = Pieri rules:
Starting from the Macdonald eigenvalue equations

Da(X)PP(X]S) = ea(S) PP (X|S)



Duality = Pieri rules:
Starting from the Macdonald eigenvalue equations
Da(X)PD(X]S) = ea(S)PD(X]S)
Rename the variables X < S,

Do (S)PP(S|X) = eq(X)PP(S|X)



Duality = Pieri rules:
Starting from the Macdonald eigenvalue equations
Da(X)PD(X]S) = ea(S)PD(X]S) (1)
Rename the variables X < S,
Da(S)PP(S|X) = eq(X) PP (S|X)
Use duality P (S|X) = PA)(X|S):

Da(S)PP(X|S) = ea(X) PP (X]S). (2)

Pieri rule — Specialize to A € Py: Hao(S)Pr(X) = eq(X)Pr(X),

Pieri operators = Hamiltonians H,(S) = t"*A~1(S) D,(S) A(S)t=7*
g-difference operators in S

Theorem: Equation (2) has a unique solution, up to normalization, as a
series in {ST%}. The two series, in X~ and S~%, must be equal!



The g-Whittaker limit ¢ — oo

q
4 Hall Littlewood Py(X;t™1)
0
= o
) & =
< or »
= e )
@ & =
X 1 Q
sl ® o
b= R <
e~ N +
A =
- =
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Hall Littlewood Py (X;t) °

Symmetry of Macdonald polynomials Py (X;q,t) = P\(X;¢ %, t71Y)



Duality, EV equations in g-Whittaker limit ¢ — oo

Duality: We lose symmetry: (s; =tV =ig")

A(S) =i (S) =+ 1, AX) =B = [J(-g"x).

PP(X|8) = PA(S|X)  —  T(X[A) = AX)KAX), A=
— 00

Eigenvalue equations: ¢,(S) — ¢*'+ A« = A% dominant term when
t — 00

Do(X)II(X|A) = A“TI(X]A),

IC[1,N] i€l
|I|=a J¢&I

The unique series solution TI(X|A) = X* 35 5q . cs(A)X 7 with ¢g = 1
truncates when A € P, to a class-I ¢g-Whittaker polynomial.



Pieri rules in the ¢-Whittaker limit

Ha(A)K(A|X) = ea(X)K(A|X)
Commuting operators H,(A) = relativistic quantum Toda Hamiltonians

N—-1
Hy(A) =) (1— AT, A~ =0, TiA; = gAT;.

=0

e ¢-difference operator in ¢* = A

Ho(A) = > [ @=An)1y

IC[1,N] i€,
[I|=a i—1¢I

Pieri rule has unique series solution of the form

K(AIX)=X* )" (X
BEQ+

(¢o = 1 gives fundamental g-Whittaker functions, weight p if X = ¢g“**)



SLy(Z)-action: Time translation operator

T4+ € SLy(Z) acts on the functional rep of DAHA via adjoint action of
Cherednik's Gaussian +:

N 2
v(X) = H e B , Ady(z) = x5, Ad,—: (1) = ¢z,

a=1

Define .
Dy y(X) := q_T'y_kDa(X)fyk.

Theorem (Di Francesco-K, 19)

The q-difference operators D, (X ) satisfy the Ag\})_l quantum
Q-system.

(1) DDy 41 = qmin(“b)Db7i+1Da7i, (q-Commutation relations)
(2)  ¢“Daps1Daj—1 =D, — Daty1,kDa-1,k, (Recursion relations)

The following proof is generalizable to other root systems.



“Fourier Transform:” From X to A variables

Useful trick: The Universal g-Whittaker functions are “complete”:
If {fi(X)}; are g-difference operators in X satisfying relations R, with

Fil@)TI(X]A) = fi(A)TI(X|A),

then {fZ(A)}l satisfy relations R°P with opposite multiplication.

Define ﬁa,ki Solutions of the quantum Q°P-system with initial data:
1. ﬁa_’o = ﬁa = A%,
2. ﬁa 1 = A¥eT%a where T¥ A% = gdab A\ TWa,

3. Da Lk k €. Z defined from QOp -system
q Da k—1Dq k1l = Da k= Da+1 xDa1 -

We already know D, o(X)II(X]|A) = lA)a70(A)H(X|A) (eigenvalue
equation).
We want to prove D, 1(X) is the FT of D, (A) for all k.



FT of y=Time translation operator=Baxter Q op

Theorem

1. There exists a unique g-difference operator g(A) such that
9Da (Mg~ = q** Do 1 (A):

N (102Ta> N
g(A) e 2logq H H 1 —an D‘a
a=1 n>0

a=1

2. g(A) commutes with the quantum Toda Hamiltonians H,(A).
3. g(A) is the Fourier transform of the Gaussian ~y(X):

Y(XOI(X]A) = g(MII(X[A).

Proof:
(1) Is by explicit calculation using Q°P-system; (2) by using explicit form
of Hamiltonians.



Proof of (3): 7(X)II(X]A) = g(A)II(X]|A).
1. Pieri rule Hy(A)K(A|X) = e1(X)K(A|X) has unique solution.
2. Act on Pieri with g(A), using [g(A), H1(A)] = 0:

g(M) Hy (M) K(A[X) = Hi(A)g(A) K (A]X) = eq(X)g(A) K (A|X),
= g(A)K(A|X) = const K(A|X).

3. Use expression of K(A|X) as a series in A~%, with leading term
2>, and the relation

g(M)z*g(A) ™! = ~(x)(1 4 lower) = const = v(X). O



Proof of (3): ~(X)II(X|A) = g(A)TI(X|A).
1. Pieri rule H1(A)K(A|X) = e1(X)K(A|X) has unique solution.
2. Act on Pieri with g(A), using [g(A), H1(A)] = 0:
9N H1(A)K(A[X) = Hi(A)g(A)K(AX) = eq(X)g(A)K(A]X),
— g(A)K(A|X) = const K (A|X).

3. Use expression of K(A|X) as a series in A~%, with leading term
2>, and the relation

g(M)z*g(A) ™! = ~(x)(1 4 lower) = const = v(X). O

Corollary:
1. FT of Da(A) = ¢ % g(A)Daog(A)~L is
Do k(X) = ¢~ % 1(X) ™ D 07(X).
2. Dg 1 (X) satisfy the quantum Q-system.
3. [g(A), Ho(A)] = 0: Conserved quantities of qQ-system are Toda
Hamiltonians.



Baxter Q-operator and g(A)

The exponential generating function of Toda Hamiltonians is the Baxter
Q-operator: A sequence of mutations in the extended cluster algebra

Mutations in a quantum cluster algebra act by adjoint action of
g-dilogarithms:

Q(u) = Q+(wWQ-(u"),  g(A)=Q(1)
The generating function for H,(A):

Tu) = Q4 (¢*w)Q (g +u)~ ZuaH



Generalization to BC-root systems

Koornwinder operators + higher g-difference operators (+van Diejen,
Macdonald, Rains...) depend on parameters o = (a, b, ¢, d)

1. Specialize « for each classical affine root system:

g a b c d R R
DYV | 1] -1 | ¢ —¢* | Dy | Dy
B](\}> 3 -1 q: —q? By Cn
cP |tz | —t3 |t3¢7 | —t3¢7 | Oy | Bu

Ag\?_l tz | —t2 q% fq% Cn Cn
D§3)+1 t -1 tqz —q2 By By
A<22A), t 1 |tz q% —t3 q% BCNx | BCn

2. Act on BC-symmetric Laurent polynomials, invariant under
permutations of variables + inversions.



Universal Koornwinder function: Eigenvalue equations

N
Koornwinder operator: DYI) (X) = Z Z Qi (XI5 + (X)),

e=*+11i=1

H (1 - axf)

_ ta s —1
¢i€ X) — a=a,b,c,d i {
S e T H wi/z§ — 1
el=41
Eigenvalue equation
N
DIV (X)P)(X|S) =& (S$)P(X|S),  @(S) =D (si+s7)

=1

Unique solution, up to normalization ¢ (.S), of the form

PEbeh(X]S) =" Y es(S)X P
BEQ+(Bn)



Two natural normalizations of universal function
1. Koornwinder polynomials: ¢(S) =1
P@(X]S) — P\ (X)

If A€ P (Cy), si = “detN ig*i: Weyl-symmetric Laurent
polynomial in X.

2. “Self-Dual”:
. N (325 0)oc (qx'; £ @)oo
co(8) =ACD(s) =]] —
=1 L d(a*l.i?q)oo e;<ij1 ( tz; aQ)

* [ abe / / d
(CL,b,C,d) :( qu77 %7 %’ ql:lc )
Duality/bispectrality theorem for Koornwinder functions:

P(X|S) = P*(S|X)




Toda Hamiltonians
® Eigenvalue equation + duality = Pieri rules:

DI (X)P@(X|S) = &(S)P(X|S) (Eigenvalue eq.)
DINSPO(SIX) = &(X)P(SIX) (X« S)
DI (9P (X|S) = @(X)P@)(X|S)  (Duality)
DIN(SP(SIX) = EGX)PO(S|X) (o a’)

® Specialize a = (a, b, ¢, d) to g, g¢-Whittaker limit ¢t — oo :
Commuting Toda Hamiltonians H'® (A)

HZ-(Q)(A) = tli>m tp*')‘A(g*)(S)_ngg*)(S)A(g*)(S)t_p*'A
Pieri operators for g-Whittaker functions:
HP (I (X) = & ()Y (X)
Eigenvalue equation in g-Whittaker limit:

DI () (X) = A TP (X)



Time translation operators for all classical g

1. g-Whittaker limit D% (X) = lim;_ D\ (X3 q,1);
2. Define Dg’gk) (X) = q~h@wi/24(X)~1D(X) (i long label, +...)

3. Def: lA)Z(gk) (A)=solutions of quantum Q°P-system, initial data
D = A%iTe

4. Construct unique time-translation operator g(9)(A) such that

~

DS (A) = g1 2g@ (M) DI (0)g @ (A) !

Theorem: The functions g(®)(A) exist, unique, commute with the
Toda Hamiltonians.

5. Corollary: The Fourier transforms Dgf’k)(X) satisfy the quantum

Q-systems (functional representation).
6. Thm/Conj: g(®)(A) are evaluations of Baxter Q-operators.



Summary

1. Solutions of quantum Q-systems are 7 -translated (special choice
of) Macdonald-Koornwinder operators in g-Whittaker limit with
specialized (a, b, ¢, d).

2. Elements in the spherical DAHA: Cluster algebra structure in
sDAHA.

3. Integrability: Hamiltonians = Pieri operators in ¢g-Whittaker limit.

4. Time translation operators g(A) = “Baxter Q" at specialized
spectral parameter

5. At finite ¢, Translated Macdonald operators D, (X q,t) satisfy
(quotient of) quantum toroidal algebra in type A. Algebra in other
types?

6. Exceptional types?



Exchange matrices for the Q-systems

For g = X](\}), the quiver/exchange matrix is skew-symmetric:

with C the Cartan matrix of R.

For g = Ag\)rq or Dﬁll,

For g = AS\),: Not a cluster algebra.
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