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Plan

Fusion relations as discrete dynamical systems

Quantization

Macdonald-Koornwinder operators in q-Whittaker limit



Heisenberg spin chain: T-system ⇝ Q-system for g = slN
Commuting transfer matrices {Ti,j,k = TV (kωi)(qjζ)}

Fusion: Ti,j,k+1Ti,j,k−1 = Ti,j+1,kTi,j−1,k−Ti−1,j,kTi+1,j,k, T0,j,k = 1 = TN+1,j,k.

Asymptotics ζ → ∞, Ti,j,k → Qi,k:

Q-system: Qi,k+1Qi,k−1 = Q2
i,k−Qi−1,kQi+1,k, Q0,k = 1 = QN+1,k.

Discrete evolution equations in k:

1. Integrable: Hamiltonians {Ha(Qi,k, Qi,k+1)}N−1
a=1 independent of k;

2. Cluster algebra:

3. Has canonical Quantization



Other classical root systems

Fusion relations, Q-systems for each affine root system, classical ones are

Quantum Q-systems: g → (R,R∗) (Macdonald notation)

g A
(1)
N B

(1)
N C

(1)
N D

(1)
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(2)
2N−1 A

(2)
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(2)
N+1
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Q-systems for the classical root systems

Characters of finite-dimensional KR-modules satisfy the Q-system

Qa,k+1Qa,k−1 = Q2
a,k −

∏
b ̸=a

Q−Cba

b,k , 1 ≤ a ≤ r, k ∈ Z

(C = Cartan matrix of R)
Except for

B
(1)
N : QN−1,k+1QN−1,k−1 = Q2

N−1,k − QN−2,kQN,2k;

QN,k+1QN,k−1 = Q2
N,k − QN−1,⌊ k

2 ⌋QN−1,⌊ k+1
2 ⌋;

C
(1)
N : QN−1,k+1QN−1,k−1 = Q2

N−1,k − QN−2,kQN,⌊ k
2 ⌋QN,⌊ k+1

2 ⌋;

QN,k+1QN,k−1 = Q2
N,k − QN−1,2k;

A
(2)
2n : QN,k+1QN,k−1 = Q2

N,k − QN−1,kQN,k.

cluster algebra mutations relations*
Our goals:
• Integrable structure for any g
• Quantization, solutions as q-difference operators

Unifying framework: Macdonald-Koornwinder theory



Quantization of Q-systems Qa,k+1Qa,k−1 = Q2
a,k −Ma,k

Canonical quantization of the associated cluster algebras*: Q⇝ Q

Noncommuting variables:

Qa,tak+iQb,tbk+j = qΛabj−ΛbaiQb,tbk+jQa,tak+i, i, j = 0, 1.

Λa,b = ω∗
a · ωb, ωa, ω∗

a fundamental weights of R,R∗

ta = 2 for short roots, ta = 1 for long roots

Noncommutative evolutions:

qΛaaQa,k+1Qa,k−1 = Q2
a,k− :Ma,k:, a ∈ Π, k ∈ Z

:Ma,k:=normal/Weyl ordered product

Example: R = R∗ = slN

Qa,kQb,k+i = qmin(a,b)iQb,k+iQa,k, i = 0, 1;

qaQa,k+1Qa,k−1 = Q2
a,k −Qa−1,kQa+1,k. Q0,k = 1,QN+1,k = 0



The program

For each affine root system, we want to:

1. Prove integrability of quantum Q-systems

2. Find N quantum relativistic Toda Hamiltonians

3. Find solutions of quantum Q-systems as q-difference operators

The following program in type A
(1)
N−1 generalizes to the classical affine

root systems X
(r)
N , X = ABCD, r = 1, 2.

Ingredients:

1. Duality (bi-spectrality) in Macdonald-Koornwinder theory

2. “Fourier transform” and q-Whittaker limit

3. τ+ ∈ SL2(Z)-action on DAHA commutes with Toda Hamiltonians,
Baxter Q-operator, acts as time-translation



Macdonald’s equations and their universal solutions

Macdonald eigenvalue equation: D1(X)Pλ(X) = e1(S)Pλ(X)

• The variable S = (s1, ..., sN ) encodes λ: si = qλitN−i.
• ea(S) are the elementary symmetric functions in si.

Macdonald’s commuting difference operators act on the variables
X = (x1, ..., xN ):

Da(X) =
∑

I⊂[1,N]
|I|=a

∏
i∈I
j /∈I

txi − xj

xi − xj
ΓI , ΓI xj = qδj∈IxjΓI .

• Macdonald polynomials: Unique monic, polynomial solution Pλ(X; q, t)
for λ dominant integral slN -weight



Universal Macdonald functions

Write Pλ(X; q, t)⇝ P (X|S) with S = (s1, ..., sN ), si = tN−iqλi

Fact: Up to normalization, the eigenvalue equation

D1(X)P (X|S) = e1(S)P (X|S)

has a unique solution as a series in {X−αi = xi+1/xi} of the form

P (X|S) = qµ·λ
∑
β∈Q+

cβ(S)X
−β , xi = tN−iqµi .

(Expand D1(X) as a power series in xi+1/xi, then Eigenvalue equation is
a triangular system for coefficients)

[Shiraishi-Noumi, Stockman’s basic Harish-Chandra series]



Two normalizations for universal solution P (X|S):
1. Macdonald polynomials:

P (1)(X|S) = qλ·µ
∑
β∈Q+

c
(1)
β (S)X−β , c

(1)
0 = 1.

When λ ∈ P+ the series truncates:

tλ·ρP (1)(X|S)|
∣∣∣
λ∈P+

= Pλ(X), ρi = N − i.

Any Macdonald polynomial is a specialization of the universal
solution P (1)(X|S).

2. Self-dual solutions:

P (2)(X|S) = qλ·µ
∑
β∈Q+

c
(2)
β (S)X−β , c

(2)
0 (S)=

∏
α∈R+
n>0

1− qnS−α

1− t−1qnS−α

Theorem [Macdonald’s Duality for the universal function]:

P (2)(X|S) = P (2)(S|X).



Duality =⇒ Pieri rules:

Starting from the Macdonald eigenvalue equations

Da(X)P (2)(X|S) = ea(S)P
(2)(X|S) (1)

Rename the variables X ↔ S,

Da(S)P
(2)(S|X) = ea(X)P (2)(S|X)

Use duality P (2)(S|X) = P (2)(X|S):

Da(S)P
(2)(X|S) = ea(X)P (2)(X|S). (2)

Pieri rule – Specialize to λ ∈ P+: Ha(S)Pλ(X) = ea(X)Pλ(X),

Pieri operators = Hamiltonians Ha(S) = tρ·λ∆−1(S) Da(S) ∆(S)t−ρ·λ

q-difference operators in S

Theorem: Equation (2) has a unique solution, up to normalization, as a
series in {S−αi}. The two series, in X−αi and S−αi , must be equal!
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The q-Whittaker limit t → ∞
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Symmetry of Macdonald polynomials Pλ(X; q, t) = Pλ(X; q−1, t−1)



Duality, EV equations in q-Whittaker limit t → ∞
Duality: We lose symmetry: (si = tN−iqλi)

∆(S) = c
(2)
0 (S) → 1, ∆(X) → ∆(X) =

∏
α∈Π
n>0

(1− qnX−α).

P (2)(X|S) = P (2)(S|X) −→
t→∞

Π(X|Λ) = ∆(X)K(Λ|X), Λi = qλi .

Eigenvalue equations: ea(S) → qλ1+···+λa = Λωa dominant term when
t → ∞

Da(X)Π(X|Λ) = ΛωaΠ(X|Λ), Da(X) =
∑

I⊂[1,N]
|I|=a

∏
i∈I
j /∈I

xi

xi − xj
ΓI

The unique series solution Π(X|Λ) = Xλ
∑

β∈Q+
cβ(Λ)X

−β with c0 = 1
truncates when λ ∈ P+ to a class-I q-Whittaker polynomial.



Pieri rules in the q-Whittaker limit

Ha(Λ)K(Λ|X) = ea(X)K(Λ|X)

Commuting operators Ha(Λ) = relativistic quantum Toda Hamiltonians

H1(Λ) =

N−1∑
i=0

(1− Λ−αi)Ti, Λ−α0 = 0, TiΛi = qΛiTi.

• q-difference operator in qλ = Λ

Ha(Λ) =
∑

I⊂[1,N]
|I|=a

∏
i∈I,

i−1/∈I

(1− Λ−αi−1)TI .

Pieri rule has unique series solution of the form

K(Λ|X) = Xλ
∑
β∈Q+

c̃β(X)Λ−β

(c̃0 = 1 gives fundamental q-Whittaker functions, weight µ if X = qµ+ρ)



SL2(Z)-action: Time translation operator
τ+ ∈ SL2(Z) acts on the functional rep of DAHA via adjoint action of
Cherednik’s Gaussian γ:

γ(X) =

N∏
a=1

e
(log xa)2

2 log q , Adγ(xi) = xi, Adγ−1(Γi) = q1/2xiΓi.

Define
Da,k(X) := q−

ak
2 γ−kDa(X)γk.

Theorem (Di Francesco-K, 19)
The q-difference operators Da,k(X) satisfy the A

(1)
N−1 quantum

Q-system.

(1) Da,iDb,i+1 = qmin(ab)Db,i+1Da,i, (q-Commutation relations)

(2) qaDa,k+1Da,k−1 = D2
a,k −Da+1,kDa−1,k, (Recursion relations)

The following proof is generalizable to other root systems.



“Fourier Transform:” From X to Λ variables

Useful trick: The Universal q-Whittaker functions are “complete”:
If {fi(X)}i are q-difference operators in X satisfying relations R, with

fi(x)Π(X|Λ) = f̂i(Λ)Π(X|Λ),

then {f̂i(Λ)}i satisfy relations Rop with opposite multiplication.

Define D̂a,k: Solutions of the quantum Qop-system with initial data:

1. D̂a,0 = D̂a = Λωa ;

2. D̂a,1 = ΛωaTωa , where TωaΛαb = qδabΛαbTωa ;

3. D̂a,k, k ∈ Z defined from Qop-system
qaD̂a,k−1D̂a,k+1 = D̂2

a,k − D̂a+1,kD̂a−1,k.

We already know Da,0(X)Π(X|Λ) = D̂a,0(Λ)Π(X|Λ) (eigenvalue
equation).

We want to prove Da,k(X) is the FT of D̂a,k(Λ) for all k.



FT of γ=Time translation operator=Baxter Q op

Theorem
1. There exists a unique q-difference operator g(Λ) such that

gD̂a,k(Λ)g
−1 = qa/2D̂a,k+1(Λ):

g(Λ) =

N∏
a=1

e
(log Ta)2

2 log q

N−1∏
a=1

∏
n≥0

(1− qnΛ−αa)−1.

2. g(Λ) commutes with the quantum Toda Hamiltonians Ha(Λ).

3. g(Λ) is the Fourier transform of the Gaussian γ(X):

γ(X)Π(X|Λ) = g(Λ)Π(X|Λ).

Proof:
(1) Is by explicit calculation using Qop-system; (2) by using explicit form
of Hamiltonians.



Proof of (3): γ(X)Π(X|Λ) = g(Λ)Π(X|Λ).
1. Pieri rule H1(Λ)K(Λ|X) = e1(X)K(Λ|X) has unique solution.

2. Act on Pieri with g(Λ), using [g(Λ), H1(Λ)] = 0:

g(Λ)H1(Λ)K(Λ|X) = H1(Λ)g(Λ)K(Λ|X) = ea(X)g(Λ)K(Λ|X),

=⇒ g(Λ)K(Λ|X) = const K(Λ|X).

3. Use expression of K(Λ|X) as a series in Λ−αa , with leading term
xλ, and the relation

g(Λ)xλg(Λ)−1 = γ(x)(1 + lower) =⇒ const = γ(X). □

Corollary:

1. FT of D̂a,k(Λ) = q−
ak
2 g(Λ)D̂a,0g(Λ)

−1 is

Da,k(X) = q−
ak
2 γ(X)−1Da,0γ(X).

2. Da,k(X) satisfy the quantum Q-system.

3. [g(Λ), Ha(Λ)] = 0: Conserved quantities of qQ-system are Toda
Hamiltonians.
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Baxter Q-operator and g(Λ)
The exponential generating function of Toda Hamiltonians is the Baxter
Q-operator: A sequence of mutations in the extended cluster algebra

u u−1

Mutations in a quantum cluster algebra act by adjoint action of
q-dilogarithms:

Q(u) = Q+(u)Q−(u
−1), g(Λ) = Q(1)

The generating function for Ha(Λ):

T (u) = Q+(q
1
2u)Q+(q

− 1
2u)−1 =

N∑
a=0

uaHa(Λ)



Generalization to BC-root systems
Koornwinder operators + higher q-difference operators (+van Diejen,
Macdonald, Rains...) depend on parameters α = (a, b, c, d)

1. Specialize α for each classical affine root system:

g a b c d R R∗

D
(1)
N 1 −1 q

1
2 −q

1
2 DN DN

B
(1)
N t −1 q

1
2 −q

1
2 BN CN

C
(1)
N t

1
2 −t

1
2 t

1
2 q

1
2 −t

1
2 q

1
2 CN BN

A
(2)
2N−1 t

1
2 −t

1
2 q

1
2 −q

1
2 CN CN

D
(2)
N+1 t −1 t q

1
2 −q

1
2 BN BN

A
(2)
2N t −1 t

1
2 q

1
2 −t

1
2 q

1
2 BCN BCN

2. Act on BC-symmetric Laurent polynomials, invariant under
permutations of variables + inversions.



Universal Koornwinder function: Eigenvalue equations

Koornwinder operator: D(α)
1 (X) =

∑
ϵ=±1

N∑
i=1

Φi,ϵ(X)Γϵ
i + φ(X),

Φi,ϵ(X) =

∏
α=a,b,c,d

(1− αxϵ
i)

(1− x2ϵ
i )(1− qx2ϵ

i )

∏
j ̸=i

ϵ′=±1

txϵ
i/x

ϵ′

j − 1

xϵ
i/x

ϵ′
j − 1

Eigenvalue equation

D
(α)
1 (X)P (α)(X|S) = ê1(S)P

(α)(X|S), ê1(S) =

N∑
i=1

(si + s−1
i )

Unique solution, up to normalization c0(S), of the form

P (a,b,c,d)(X|S) = qλ·µ
∑

β∈Q+(BN )

cβ(S)X
−β .



Two natural normalizations of universal function

1. Koornwinder polynomials: c0(S) = 1

P (α)(X|S) → P
(α)
λ (X)

If λ ∈ P+(CN ), si =
√

abcd
q tN−iqλi : Weyl-symmetric Laurent

polynomial in X.

2. “Self-Dual”:

c0(S) = ∆(α∗)(S) =

N∏
i=1

( q
x2
i
; q)∞∏

α=a,b,c,d

(
q

α∗xi
; q)∞

∏
i<j

ϵ=±1

(
qxϵ

j

xi
; q)∞

(
qxϵ

j

txi
; q)∞

(a, b, c, d)∗ = (
√

abcd
q

,−
√

qac
bd

,
√

qac
bd

,
√

qad
bc

).

Duality/bispectrality theorem for Koornwinder functions:

P (X|S) = P ∗(S|X)



Toda Hamiltonians
• Eigenvalue equation + duality =⇒ Pieri rules:

D
(α)
i (X)P (α)(X|S) = êi(S)P

(α)(X|S) (Eigenvalue eq.)

D
(α)
i (S)P (α)(S|X) = êi(X)P (α)(S|X) (X ↔ S)

D
(α)
i (S)P (α∗)(X|S) = êi(X)P (α∗)(X|S) (Duality)

D
(α∗)
i (S)P (α)(S|X) = êi(X)P (α)(S|X) (α ↔ α∗)

• Specialize α = (a, b, c, d) to g, q-Whittaker limit t → ∞ :

Commuting Toda Hamiltonians H
(g)
i (Λ)

H
(g)
i (Λ) = lim

t→∞
tρ

∗·λ∆(g∗)(S)−1D
(g∗)
i (S)∆(g∗)(S)t−ρ∗·λ

Pieri operators for q-Whittaker functions:

H
(g)
i (Λ)Π

(g)
λ (X) = êi(X)Π

(g)
λ (X)

Eigenvalue equation in q-Whittaker limit:

D
(g)
i (X)Π

(g)
λ (X) = Λω∗

i Π
(g)
λ (X)



Time translation operators for all classical g

1. q-Whittaker limit D
(g)
i,0 (X) = limt→∞ D(g)

i (X; q, t);

2. Define D
(g)
i,k (X) = q−kωi·ω∗

i /2γ(X)−1D
(g)
i γ(X) (i long label, +...)

3. Def: D̂
(g)
i,k (Λ)=solutions of quantum Qop-system, initial data

D̂
(g)
i,0 = Λω∗

i D̂
(g)
i,1 = Λω∗

i Tωi

4. Construct unique time-translation operator g(g)(Λ) such that

D̂
(g)
i,k (Λ) = q−kωi·ω∗

i /2g(g)(Λ)D̂
(g)
i,0 (Λ)g

(g)(Λ)−1

Theorem: The functions g(g)(Λ) exist, unique, commute with the
Toda Hamiltonians.

5. Corollary: The Fourier transforms D
(g)
i,k (X) satisfy the quantum

Q-systems (functional representation).

6. Thm/Conj: g(g)(Λ) are evaluations of Baxter Q-operators.



Summary

1. Solutions of quantum Q-systems are τ+-translated (special choice
of) Macdonald-Koornwinder operators in q-Whittaker limit with
specialized (a, b, c, d).

2. Elements in the spherical DAHA: Cluster algebra structure in
sDAHA.

3. Integrability: Hamiltonians = Pieri operators in q-Whittaker limit.

4. Time translation operators g(Λ) = “Baxter Q” at specialized
spectral parameter

5. At finite t, Translated Macdonald operators Da,k(X; q, t) satisfy
(quotient of) quantum toroidal algebra in type A. Algebra in other
types?

6. Exceptional types?



Exchange matrices for the Q-systems

For g = X
(1)
N , the quiver/exchange matrix is skew-symmetric:

B =

 Ct − C −Ct

C 0


with C the Cartan matrix of R.

For g = A
(2)
2N−1 or D

(2)
N+1,

B =

 0 −C

C 0

 .

For g = A
(2)
2N : Not a cluster algebra.

*


	Fusion relations as discrete dynamical systems
	Quantization
	Macdonald-Koornwinder operators in q-Whittaker limit

