Duality + integrability of quantum Q-systems for classical root systems

Rinat Kedem¹

University of Illinois

Varna, August 17 2022

¹Joint with Philippe Di Francesco

Plan

Fusion relations as discrete dynamical systems

Quantization

Macdonald-Koornwinder operators in q-Whittaker limit

Heisenberg spin chain: T-system \rightsquigarrow Q-system for $\mathfrak{g} = \mathfrak{sl}_N$

Commuting transfer matrices $\{T_{i,j,k} = T_{V(k\omega_i)(q^j\zeta)}\}$

Fusion:
$$T_{i,j,k+1}T_{i,j,k-1} = T_{i,j+1,k}T_{i,j-1,k} - T_{i-1,j,k}T_{i+1,j,k}$$
, $T_{0,j,k} = 1 = T_N$

Asymptotics $\zeta \to \infty$, $T_{i,j,k} \to Q_{i,k}$:

Q-system:
$$Q_{i,k+1}Q_{i,k-1} = Q_{i,k}^2 - Q_{i-1,k}Q_{i+1,k}, \quad Q_{0,k} = 1 = Q_{N+1,k}.$$

Discrete evolution equations in k:

- 1. Integrable: Hamiltonians $\{H_a(Q_{i,k},Q_{i,k+1})\}_{a=1}^{N-1}$ independent of k;
- 2. Cluster algebra:

3. Has canonical Quantization

Other classical root systems

Fusion relations, Q-systems for each affine root system, classical ones are

Quantum **Q-systems:** $\mathfrak{g} \to (R, R^*)$ (Macdonald notation)

g	$A_N^{(1)}$	$B_N^{(1)}$	$C_N^{(1)}$	$D_N^{(1)}$	$A_{2N-1}^{(2)}$	$A_{2N}^{(2)}$	$D_{N+1}^{(2)}$
R	A_N	B_N	C_N	D_N	C_N	BC_N	B_N
R^*	A_N	C_N	B_N	D_N	C_N	BC_N	B_N

Q-systems for the classical root systems

Characters of finite-dimensional KR-modules satisfy the Q-system

$$Q_{a,k+1}Q_{a,k-1} = Q_{a,k}^2 - \prod_{b \neq a} Q_{b,k}^{-C_{ba}}, \qquad 1 \le a \le r, \quad k \in \mathbb{Z}$$

 $(C = \mathsf{Cartan} \; \mathsf{matrix} \; \mathsf{of} \; R)$

Except for

$$\begin{split} B_{N}^{(1)} & : & \mathsf{Q}_{N-1,k+1} \mathsf{Q}_{N-1,k-1} = \mathsf{Q}_{N-1,k}^{2} - \mathsf{Q}_{N-2,k} \mathsf{Q}_{N,2k}; \\ & \mathsf{Q}_{N,k+1} \mathsf{Q}_{N,k-1} = \mathsf{Q}_{N,k}^{2} - \mathsf{Q}_{N-1,\left \lfloor \frac{k}{2} \right \rfloor} \mathsf{Q}_{N-1,\left \lfloor \frac{k+1}{2} \right \rfloor}; \\ C_{N}^{(1)} & : & \mathsf{Q}_{N-1,k+1} \mathsf{Q}_{N-1,k-1} = \mathsf{Q}_{N-1,k}^{2} - \mathsf{Q}_{N-2,k} \mathsf{Q}_{N,\left \lfloor \frac{k}{2} \right \rfloor} \mathsf{Q}_{N,\left \lfloor \frac{k+1}{2} \right \rfloor}; \\ & \mathsf{Q}_{N,k+1} \mathsf{Q}_{N,k-1} = \mathsf{Q}_{N,k}^{2} - \mathsf{Q}_{N-1,2k}; \\ A_{2n}^{(2)} & : & \mathsf{Q}_{N,k+1} \mathsf{Q}_{N,k-1} = \mathsf{Q}_{N,k}^{2} - \mathsf{Q}_{N-1,k} \mathsf{Q}_{N,k}. \end{split}$$

cluster algebra mutations relations*

Our goals:

- Integrable structure for any g
- Quantization, solutions as q-difference operators

Unifying framework: Macdonald-Koornwinder theory

Quantization of Q-systems $Q_{a,k+1}Q_{a,k-1} = Q_{a,k}^2 - M_{a,k}$

Canonical quantization of the associated cluster algebras*: $Q \rightsquigarrow \mathcal{Q}$

Noncommuting variables:

$$\begin{aligned} \mathcal{Q}_{a,t_ak+i}\mathcal{Q}_{b,t_bk+j} &= q^{\Lambda_{ab}j-\Lambda_{ba}i}\mathcal{Q}_{b,t_bk+j}\mathcal{Q}_{a,t_ak+i}, \quad i,j=0,1. \\ &\Lambda_{a,b} = \omega_a^* \cdot \omega_b, \, \omega_a, \, \, \omega_a^* \, \, \text{fundamental weights of} \, \, R, R^* \\ &t_a = 2 \, \, \text{for short roots,} \, \, t_a = 1 \, \, \text{for long roots} \end{aligned}$$

Noncommutative evolutions:

$$q^{\Lambda_{aa}}\mathcal{Q}_{a,k+1}\mathcal{Q}_{a,k-1} = \mathcal{Q}_{a,k}^2 - :\mathcal{M}_{a,k}:, \quad a \in \Pi, k \in \mathbb{Z}$$

 $:\mathcal{M}_{a,k}:=$ normal/Weyl ordered product

Example:
$$R = R^* = \mathfrak{sl}_N$$

$$\begin{array}{rcl} \mathcal{Q}_{a,k}\mathcal{Q}_{b,k+i} & = & q^{\min(a,b)i}\mathcal{Q}_{b,k+i}\mathcal{Q}_{a,k}, & i = 0,1; \\ q^{a}\mathcal{Q}_{a,k+1}\mathcal{Q}_{a,k-1} & = & \mathcal{Q}_{a,k}^{2} - \mathcal{Q}_{a-1,k}\mathcal{Q}_{a+1,k}. & & \mathsf{Q}_{0,k} = 1, \mathsf{Q}_{N+1,k} = 0 \end{array}$$

The program

For each affine root system, we want to:

- 1. Prove integrability of quantum Q-systems
- 2. Find N quantum relativistic Toda Hamiltonians
- 3. Find solutions of quantum Q-systems as q-difference operators

The following program in type $A_{N-1}^{(1)}$ generalizes to the classical affine root systems $X_N^{(r)}$, X=ABCD, r=1,2.

Ingredients:

- 1. Duality (bi-spectrality) in Macdonald-Koornwinder theory
- 2. "Fourier transform" and q-Whittaker limit
- 3. $\tau_+ \in SL_2(\mathbb{Z})$ -action on DAHA commutes with Toda Hamiltonians, Baxter Q-operator, acts as time-translation

Macdonald's equations and their universal solutions

Macdonald eigenvalue equation:

$$\mathcal{D}_1(X)P_{\lambda}(X) = e_1(S)P_{\lambda}(X)$$

- The variable $S = (s_1, ..., s_N)$ encodes λ : $s_i = q^{\lambda_i} t^{N-i}$.
- $e_a(S)$ are the elementary symmetric functions in s_i .

Macdonald's commuting difference operators act on the variables $X=(x_1,...,x_N)$:

$$\mathcal{D}_a(X) = \sum_{\substack{I \subset [1,N] \\ |I| = a}} \prod_{\substack{i \in I \\ j \notin I}} \frac{tx_i - x_j}{x_i - x_j} \Gamma_I, \qquad \qquad \Gamma_I \ x_j = q^{\delta_{j \in I}} x_j \Gamma_I.$$

• Macdonald polynomials: Unique monic, polynomial solution $P_{\lambda}(X;q,t)$ for λ dominant integral \mathfrak{sl}_N -weight

Universal Macdonald functions

Write
$$P_{\lambda}(X;q,t) \rightsquigarrow P(X|S)$$
 with $S=(s_1,...,s_N)$, $s_i=t^{N-i}q^{\lambda_i}$

Fact: Up to normalization, the eigenvalue equation

$$\mathcal{D}_1(X)P(X|S) = e_1(S)P(X|S)$$

has a unique solution as a series in $\{X^{-\alpha_i}=x_{i+1}/x_i\}$ of the form

$$P(X|S) = q^{\mu \cdot \lambda} \sum_{\beta \in \mathbf{Q}_{+}} c_{\beta}(S) X^{-\beta}, \qquad x_{i} = t^{N-i} q^{\mu_{i}}.$$

(Expand $\mathcal{D}_1(X)$ as a power series in x_{i+1}/x_i , then Eigenvalue equation is a triangular system for coefficients)

[Shiraishi-Noumi, Stockman's basic Harish-Chandra series]

Two normalizations for universal solution P(X|S):

1. Macdonald polynomials:

$$P^{(1)}(X|S) = q^{\lambda \cdot \mu} \sum_{\beta \in \mathbf{Q}_+} c_{\beta}^{(1)}(S) X^{-\beta}, \quad c_0^{(1)} = 1.$$

When $\lambda \in P_+$ the series truncates:

$$t^{\lambda \cdot \rho} P^{(1)}(X|S) \Big|_{\lambda \in P_+} = P_{\lambda}(X), \qquad \rho_i = N - i.$$

Any Macdonald polynomial is a specialization of the universal solution $P^{(1)}(X|S)$.

2. Self-dual solutions:

$$P^{(2)}(X|S) = q^{\lambda \cdot \mu} \sum_{\beta \in \mathbb{Q}_+} c_{\beta}^{(2)}(S) X^{-\beta}, \quad c_0^{(2)}(S) = \prod_{\alpha \in R_+ \atop n > 0} \frac{1 - q^n S^{-\alpha}}{1 - t^{-1} q^n S^{-\alpha}}$$

Theorem [Macdonald's Duality for the universal function]:

$$P^{(2)}(X|S) = P^{(2)}(S|X).$$

Duality \Longrightarrow Pieri rules:

Starting from the Macdonald eigenvalue equations

$$\mathcal{D}_a(X)P^{(2)}(X|S) = e_a(S)P^{(2)}(X|S) \tag{1}$$

Duality \Longrightarrow Pieri rules:

Starting from the Macdonald eigenvalue equations

$$\mathcal{D}_a(X)P^{(2)}(X|S) = e_a(S)P^{(2)}(X|S) \tag{1}$$

Rename the variables $X \leftrightarrow S$,

$$\mathcal{D}_a(S)P^{(2)}(S|X) = e_a(X)P^{(2)}(S|X)$$

Duality ⇒ Pieri rules:

Starting from the Macdonald eigenvalue equations

$$\mathcal{D}_a(X)P^{(2)}(X|S) = e_a(S)P^{(2)}(X|S) \tag{1}$$

Rename the variables $X \leftrightarrow S$,

$$\mathcal{D}_a(S)P^{(2)}(S|X) = e_a(X)P^{(2)}(S|X)$$

Use duality $P^{(2)}(S|X) = P^{(2)}(X|S)$:

$$\mathcal{D}_a(S)P^{(2)}(X|S) = e_a(X)P^{(2)}(X|S). \tag{2}$$

Pieri rule – Specialize to $\lambda \in P_+$: $\mathcal{H}_a(S)P_\lambda(X) = e_a(X)P_\lambda(X),$

Pieri operators = Hamiltonians $\mathcal{H}_a(S)=t^{\rho\cdot\lambda}\Delta^{-1}(S)~\mathcal{D}_a(S)~\Delta(S)t^{-\rho\cdot\lambda}$ q-difference operators in S

Theorem: Equation (2) has a unique solution, up to normalization, as a series in $\{S^{-\alpha_i}\}$. The two series, in $X^{-\alpha_i}$ and $S^{-\alpha_i}$, must be equal!

The q-Whittaker limit $t \to \infty$

Duality, EV equations in q-Whittaker limit $t \to \infty$

Duality: We lose symmetry: $(s_i = t^{N-i}q^{\lambda_i})$

$$\Delta(S) = c_0^{(2)}(S) \to 1, \quad \Delta(X) \to \overline{\Delta}(X) = \prod_{\substack{\alpha \in \Pi \\ n \ge 0}} (1 - q^n X^{-\alpha}).$$

$$P^{(2)}(X|S) = P^{(2)}(S|X) \quad \underset{t \to \infty}{\longrightarrow} \quad \Pi(X|\Lambda) = \overline{\Delta}(X)K(\Lambda|X), \qquad \Lambda_i = q^{\lambda_i}.$$

Eigenvalue equations: $e_a(S) \to q^{\lambda_1+\dots+\lambda_a} = \Lambda^{\omega_a}$ dominant term when $t\to\infty$

$$D_a(X)\Pi(X|\Lambda) = \Lambda^{\omega_a}\Pi(X|\Lambda), \qquad D_a(X) = \sum_{\substack{I \subset [1,N] \\ |I| = a}} \prod_{\substack{i \in I \\ j \notin I}} \frac{x_i}{x_i - x_j} \Gamma_I$$

The unique series solution $\Pi(X|\Lambda)=X^{\lambda}\sum_{\beta\in \mathbb{Q}_{+}}c_{\beta}(\Lambda)X^{-\beta}$ with $c_{0}=1$ truncates when $\lambda\in P_{+}$ to a class-I q-Whittaker polynomial.

Pieri rules in the q-Whittaker limit

$$H_a(\Lambda)K(\Lambda|X) = e_a(X)K(\Lambda|X)$$

Commuting operators $H_a(\Lambda)=$ relativistic quantum Toda Hamiltonians

$$H_1(\Lambda) = \sum_{i=0}^{N-1} (1 - \Lambda^{-\alpha_i}) T_i, \qquad \Lambda^{-\alpha_0} = 0, \quad T_i \Lambda_i = q \Lambda_i T_i.$$

ullet q-difference operator in $q^\lambda = \Lambda$

$$H_a(\Lambda) = \sum_{\substack{I \subset [1,N] \\ |I| = a}} \prod_{\substack{i \in I, \\ i-1 \notin I}} (1 - \Lambda^{-\alpha_{i-1}}) T_I.$$

Pieri rule has unique series solution of the form

$$K(\Lambda|X) = X^{\lambda} \sum_{\beta \in \mathbf{Q}_{+}} \tilde{c}_{\beta}(X) \Lambda^{-\beta}$$

 $(\tilde{c}_0 = 1 \text{ gives fundamental } q\text{-Whittaker functions, weight } \mu \text{ if } X = q^{\mu + \rho})$

$SL_2(\mathbb{Z})$ -action: Time translation operator

 $\tau_+ \in \mathsf{SL}_2(\mathbb{Z})$ acts on the functional rep of DAHA via adjoint action of Cherednik's Gaussian γ :

$$\gamma(X) = \prod_{a=1}^{N} e^{\frac{(\log x_a)^2}{2\log q}}, \quad \operatorname{Ad}_{\gamma}(x_i) = x_i, \quad \operatorname{Ad}_{\gamma^{-1}}(\Gamma_i) = q^{1/2} x_i \Gamma_i.$$

Define

$$D_{a,k}(X) := q^{-\frac{ak}{2}} \gamma^{-k} D_a(X) \gamma^k.$$

Theorem (Di Francesco-K, 19)

The q-difference operators $D_{a,k}(X)$ satisfy the $A_{N-1}^{(1)}$ quantum Q-system.

- (1) $D_{a,i}D_{b,i+1} = q^{\min(ab)}D_{b,i+1}D_{a,i}$, (q-Commutation relations)
- (2) $q^a D_{a,k+1} D_{a,k-1} = D_{a,k}^2 D_{a+1,k} D_{a-1,k}$, (Recursion relations)

The following proof is generalizable to other root systems.

"Fourier Transform:" From X to Λ variables

Useful trick: The Universal q-Whittaker functions are "complete": If $\{f_i(X)\}_i$ are q-difference operators in X satisfying relations R, with

$$f_i(x)\Pi(X|\Lambda) = \hat{f}_i(\Lambda)\Pi(X|\Lambda),$$

then $\{\hat{f}_i(\Lambda)\}_i$ satisfy relations R^{op} with opposite multiplication.

Define $\widehat{D}_{a,k}$: Solutions of the quantum Q^{op}-system with initial data:

- 1. $\widehat{D}_{a,0}=\widehat{D}_a=\Lambda^{\omega_a}$;
- 2. $\widehat{D}_{a,1} = \Lambda^{\omega_a} T^{\omega_a}$, where $T^{\omega_a} \Lambda^{\alpha_b} = q^{\delta_{ab}} \Lambda^{\alpha_b} T^{\omega_a}$;
- 3. $\widehat{D}_{a,k}, k \in \mathbb{Z}$ defined from \mathbb{Q}^{op} -system $q^a \widehat{D}_{a,k-1} \widehat{D}_{a,k+1} = \widehat{D}_{a,k}^2 \widehat{D}_{a+1,k} \widehat{D}_{a-1,k}.$

We already know $D_{a,0}(X)\Pi(X|\Lambda)=\widehat{D}_{a,0}(\Lambda)\Pi(X|\Lambda)$ (eigenvalue equation).

We want to prove $D_{a,k}(X)$ is the FT of $\widehat{D}_{a,k}(\Lambda)$ for all k.

FT of γ =Time translation operator=Baxter Q op

Theorem

1. There exists a unique q-difference operator $g(\Lambda)$ such that $g\widehat{D}_{a,k}(\Lambda)g^{-1}=q^{a/2}\widehat{D}_{a,k+1}(\Lambda)$:

$$g(\Lambda) = \prod_{a=1}^{N} e^{\frac{(\log T_a)^2}{2\log q}} \prod_{a=1}^{N-1} \prod_{n\geq 0} (1 - q^n \Lambda^{-\alpha_a})^{-1}.$$

- 2. $g(\Lambda)$ commutes with the quantum Toda Hamiltonians $H_a(\Lambda)$.
- 3. $g(\Lambda)$ is the Fourier transform of the Gaussian $\gamma(X)$:

$$\gamma(X)\Pi(X|\Lambda) = g(\Lambda)\Pi(X|\Lambda).$$

Proof:

(1) Is by explicit calculation using Q^{op} -system; (2) by using explicit form of Hamiltonians.

Proof of (3): $\gamma(X)\Pi(X|\Lambda) = g(\Lambda)\Pi(X|\Lambda)$.

- 1. Pieri rule $H_1(\Lambda)K(\Lambda|X)=e_1(X)K(\Lambda|X)$ has unique solution.
- 2. Act on Pieri with $g(\Lambda)$, using $[g(\Lambda), H_1(\Lambda)] = 0$:

$$\begin{split} g(\Lambda)H_1(\Lambda)K(\Lambda|X) &= H_1(\Lambda)g(\Lambda)K(\Lambda|X) = e_a(X)g(\Lambda)K(\Lambda|X), \\ \Longrightarrow g(\Lambda)K(\Lambda|X) &= \mathrm{const}\ K(\Lambda|X). \end{split}$$

3. Use expression of $K(\Lambda|X)$ as a series in $\Lambda^{-\alpha_a}$, with leading term x^{λ} , and the relation

$$g(\Lambda)x^{\lambda}g(\Lambda)^{-1} = \gamma(x)(1 + \text{lower}) \Longrightarrow \text{const} = \gamma(X).$$

Proof of (3): $\gamma(X)\Pi(X|\Lambda) = g(\Lambda)\Pi(X|\Lambda)$.

- 1. Pieri rule $H_1(\Lambda)K(\Lambda|X) = e_1(X)K(\Lambda|X)$ has unique solution.
- 2. Act on Pieri with $g(\Lambda)$, using $[g(\Lambda), H_1(\Lambda)] = 0$:

$$\begin{split} g(\Lambda)H_1(\Lambda)K(\Lambda|X) &= H_1(\Lambda)g(\Lambda)K(\Lambda|X) = e_a(X)g(\Lambda)K(\Lambda|X), \\ \Longrightarrow g(\Lambda)K(\Lambda|X) &= \mathrm{const}\ K(\Lambda|X). \end{split}$$

3. Use expression of $K(\Lambda|X)$ as a series in $\Lambda^{-\alpha_a}$, with leading term x^{λ} , and the relation

$$g(\Lambda)x^{\lambda}g(\Lambda)^{-1} = \gamma(x)(1 + \text{lower}) \Longrightarrow \text{const} = \gamma(X).$$

Corollary:

- 1. FT of $\widehat{D}_{a,k}(\Lambda)=q^{-\frac{ak}{2}}g(\Lambda)\widehat{D}_{a,0}g(\Lambda)^{-1}$ is $D_{a,k}(X)=q^{-\frac{ak}{2}}\gamma(X)^{-1}D_{a,0}\gamma(X).$
- 2. $D_{a,k}(X)$ satisfy the quantum Q-system.
- 3. $[g(\Lambda), H_a(\Lambda)] = 0$: Conserved quantities of qQ-system are Toda Hamiltonians.

Baxter Q-operator and $g(\Lambda)$

The exponential generating function of Toda Hamiltonians is the Baxter Q-operator: A sequence of mutations in the extended cluster algebra

Mutations in a quantum cluster algebra act by adjoint action of q-dilogarithms:

$$Q(u) = Q_{+}(u)Q_{-}(u^{-1}), \qquad g(\Lambda) = Q(1)$$

The generating function for $H_a(\Lambda)$:

$$T(u) = Q_{+}(q^{\frac{1}{2}}u)Q_{+}(q^{-\frac{1}{2}}u)^{-1} = \sum_{a=0}^{N} u^{a}H_{a}(\Lambda)$$

Generalization to BC-root systems

Koornwinder operators + higher q-difference operators (+van Diejen, Macdonald, Rains...) depend on parameters $\alpha=(a,b,c,d)$

1. Specialize α for each classical affine root system:

g	a	b	c	d	R	R^*
$D_N^{(1)}$	1	-1	$q^{\frac{1}{2}}$	$-q^{\frac{1}{2}}$	D_N	D_N
$B_N^{(1)}$	t	-1	$q^{\frac{1}{2}}$	$-q^{\frac{1}{2}}$	B_N	C_N
$C_N^{(1)}$	$t^{\frac{1}{2}}$	$-t^{\frac{1}{2}}$	$t^{\frac{1}{2}} q^{\frac{1}{2}}$	$-t^{\frac{1}{2}} q^{\frac{1}{2}}$	C_N	B_N
$A_{2N-1}^{(2)}$	$t^{\frac{1}{2}}$	$-t^{\frac{1}{2}}$	$q^{\frac{1}{2}}$	$-q^{\frac{1}{2}}$	C_N	C_N
$D_{N+1}^{(2)}$	t	-1	$t q^{\frac{1}{2}}$	$-q^{\frac{1}{2}}$	B_N	B_N
$A_{2N}^{(2)}$	t	-1	$t^{\frac{1}{2}} q^{\frac{1}{2}}$	$-t^{\frac{1}{2}}q^{\frac{1}{2}}$	BC_N	BC_N

2. Act on BC-symmetric Laurent polynomials, invariant under permutations of variables + inversions.

Universal Koornwinder function: Eigenvalue equations

$$\Phi_{i,\epsilon}(X) = \frac{\prod_{\alpha=a,b,c,d} (1 - \alpha x_i^{\epsilon})}{(1 - x_i^{2\epsilon})(1 - q x_i^{2\epsilon})} \prod_{\substack{j \neq i \\ \epsilon' = +1}} \frac{t x_i^{\epsilon} / x_j^{\epsilon'} - 1}{x_i^{\epsilon} / x_j^{\epsilon'} - 1}$$

Eigenvalue equation

$$D_1^{(\alpha)}(X)P^{(\alpha)}(X|S) = \widehat{e}_1(S)P^{(\alpha)}(X|S), \qquad \widehat{e}_1(S) = \sum_{i=1}^N (s_i + s_i^{-1})$$

Unique solution, up to normalization $c_0(S)$, of the form

$$P^{(a,b,c,d)}(X|S) = q^{\lambda \cdot \mu} \sum_{\beta \in \mathbb{Q}_+(B_N)} c_{\beta}(S) X^{-\beta}.$$

Two natural normalizations of universal function

1. Koornwinder polynomials: $c_0(S) = 1$

$$P^{(\alpha)}(X|S) \to P_{\lambda}^{(\alpha)}(X)$$

If $\lambda \in P_+(C_N)$, $s_i = \sqrt{\frac{abcd}{q}} t^{N-i} q^{\lambda_i}$: Weyl-symmetric Laurent polynomial in X.

2. "Self-Dual":

$$c_0(S) = \Delta^{(\alpha^*)}(S) = \prod_{i=1}^{N} \frac{(\frac{q}{x_i^2}; q)_{\infty}}{\prod_{\alpha = a, b, c, d} (\frac{q}{\alpha^* x_i}; q)_{\infty}} \prod_{\substack{i < j \\ \epsilon = \pm 1}} \frac{(\frac{q x_j^*}{x_i}; q)_{\infty}}{(\frac{q x_j^*}{t x_i}; q)_{\infty}}$$

$$(a,b,c,d)^* = (\sqrt{\frac{abcd}{q}}, -\sqrt{\frac{qac}{bd}}, \sqrt{\frac{qac}{bd}}, \sqrt{\frac{qad}{bc}}).$$

Duality/bispectrality theorem for Koornwinder functions:

$$P(X|S) = P^*(S|X)$$

Toda Hamiltonians

Eigenvalue equation + duality ⇒ Pieri rules:

$$\begin{array}{lcl} D_i^{(\alpha)}(X)P^{(\alpha)}(X|S) & = & \widehat{e}_i(S)P^{(\alpha)}(X|S) \quad \text{(Eigenvalue eq.)} \\ D_i^{(\alpha)}(S)P^{(\alpha)}(S|X) & = & \widehat{e}_i(X)P^{(\alpha)}(S|X) \quad & (X \leftrightarrow S) \\ D_i^{(\alpha)}(S)P^{(\alpha^*)}(X|S) & = & \widehat{e}_i(X)P^{(\alpha^*)}(X|S) \quad & \text{(Duality)} \\ D_i^{(\alpha^*)}(S)P^{(\alpha)}(S|X) & = & \widehat{e}_i(X)P^{(\alpha)}(S|X) \quad & (\alpha \leftrightarrow \alpha^*) \end{array}$$

• Specialize $\alpha=(a,b,c,d)$ to $\mathfrak{g},\ q$ -Whittaker limit $t\to\infty$: Commuting Toda Hamiltonians $H_i^{(\mathfrak{g})}(\Lambda)$

$$H_i^{(\mathfrak{g})}(\Lambda) = \lim_{t \to \infty} t^{\rho^* \cdot \lambda} \Delta^{(\mathfrak{g}^*)}(S)^{-1} D_i^{(\mathfrak{g}^*)}(S) \Delta^{(\mathfrak{g}^*)}(S) t^{-\rho^* \cdot \lambda}$$

Pieri operators for *q*-Whittaker functions:

$$H_i^{(\mathfrak{g})}(\Lambda)\Pi_{\lambda}^{(\mathfrak{g})}(X) = \widehat{e}_i(X)\Pi_{\lambda}^{(\mathfrak{g})}(X)$$

Eigenvalue equation in *q*-Whittaker limit:

$$D_i^{(\mathfrak{g})}(X)\Pi_{\lambda}^{(\mathfrak{g})}(X) = \mathbf{\Lambda}^{\omega_i^*}\Pi_{\lambda}^{(\mathfrak{g})}(X)$$

Time translation operators for all classical $\mathfrak g$

- 1. $q ext{-Whittaker limit }D_{i,0}^{(\mathfrak{g})}(X)=\lim_{t\to\infty}\mathcal{D}_i^{(\mathfrak{g})}(X;q,t);$
- 2. Define $D_{i,k}^{(\mathfrak{g})}(X)=q^{-k\omega_i\cdot\omega_i^*/2}\gamma(X)^{-1}D_i^{(\mathfrak{g})}\gamma(X)$ (i long label, +...)
- 3. **Def:** $\widehat{D}_{i,k}^{(\mathfrak{g})}(\Lambda)$ =solutions of quantum Q^{op}-system, initial data

$$\widehat{D}_{i,0}^{(\mathfrak{g})} = \Lambda^{\omega_i^*} \qquad \widehat{D}_{i,1}^{(\mathfrak{g})} = \Lambda^{\omega_i^*} T^{\omega_i}$$

4. Construct unique time-translation operator $g^{(\mathfrak{g})}(\Lambda)$ such that

$$\widehat{D}_{i,k}^{(\mathfrak{g})}(\Lambda) = q^{-k\omega_i \cdot \omega_i^*/2} g^{(\mathfrak{g})}(\Lambda) \widehat{D}_{i,0}^{(\mathfrak{g})}(\Lambda) g^{(\mathfrak{g})}(\Lambda)^{-1}$$

Theorem: The functions $g^{(\mathfrak{g})}(\Lambda)$ exist, unique, commute with the Toda Hamiltonians.

- 5. **Corollary:** The Fourier transforms $D_{i,k}^{(\mathfrak{g})}(X)$ satisfy the quantum Q-systems (functional representation).
- 6. Thm/Conj: $g^{(\mathfrak{g})}(\Lambda)$ are evaluations of Baxter Q-operators.

Summary

- 1. Solutions of quantum Q-systems are τ_+ -translated (special choice of) Macdonald-Koornwinder operators in q-Whittaker limit with specialized (a,b,c,d).
- Elements in the spherical DAHA: Cluster algebra structure in sDAHA.
- 3. Integrability: Hamiltonians = Pieri operators in q-Whittaker limit.
- 4. Time translation operators $g(\Lambda)=$ "Baxter Q" at specialized spectral parameter
- 5. At finite t, Translated Macdonald operators $D_{a,k}(X;q,t)$ satisfy (quotient of) quantum toroidal algebra in type A. Algebra in other types?
- 6. Exceptional types?

Exchange matrices for the Q-systems

For $\mathfrak{g}=X_N^{(1)}$, the quiver/exchange matrix is skew-symmetric:

$$B = \begin{bmatrix} C^t - C & -C^t \\ \hline C & 0 \end{bmatrix}$$

with C the Cartan matrix of R.

For
$$\mathfrak{g}=A_{2N-1}^{(2)}$$
 or $D_{N+1}^{(2)}$,

$$B = \begin{bmatrix} 0 & -C \\ \hline C & 0 \end{bmatrix}.$$

For $\mathfrak{g}=A_{2N}^{(2)}$: Not a cluster algebra.

