Dual superconformal symmetry of scattering amplitudes in $\mathcal{N}=4$ super Yang-Mills theory part I

Gregory Korchemsky
Université Paris XI, LPT, Orsay

Based on work in collaboration with
James Drummond, Johannes Henn, and Emery Sokatchev (LAPTH, Annecy)

Outline

\checkmark On-shell gluon scattering amplitudes
\checkmark Iterative structure at weak/strong coupling in $\mathcal{N}=4$ SYM
\checkmark Dual conformal invariance - hidden symmetry of planar amplitudes
\checkmark Maximally helicity violating (MHV) scattering amplitude/Wilson loop duality in $\mathcal{N}=4 \mathrm{SYM}$

Why $\mathcal{N}=4$ super Yang-Mills theory is interesting?

\checkmark Four-dimensional gauge theory with extended spectrum of physical states/symmetries

$$
2 \text { gluons with helicity } \pm 1, \quad 6 \text { scalars with helicity } 0, \quad 8 \text { gaugino with helicity } \pm \frac{1}{2}
$$

all in the adjoint of the $S U\left(N_{c}\right)$ gauge group
\checkmark All classical symmetries survive at quantum level:
x Beta-function vanishes to all loops \Longrightarrow the theory is (super)conformal
x The theory contains only two free parameters: 't Hooft coupling constant $\lambda=g_{\mathrm{YM}}^{2} N_{c}$ and the number of colors N_{c}
\checkmark Why $\mathcal{N}=4$ SYM theory is fascinating?
x At weak coupling, the number of contributing Feynman integrals is MUCH bigger compared to QCD ... but the final answer is MUCH simpler (examples to follow)
x At strong coupling, the conjectured AdS/CFT correspondence [Maldacena],[Gubser,Klebanov,PPolyakov],[Witten] Strongly coupled planar $\mathcal{N}=4$ SYM \Longleftrightarrow Weakly coupled string theory on $\operatorname{AdS}_{5} \times$ S 5
x Final goal (dream):
$\mathcal{N}=4$ SYM theory is a unique example of the four-dimensional gauge theory that can be/ should be/ would be solved exactly for arbitrary value of the coupling constant!!!

Why scattering amplitudes?

\checkmark On-shell matrix elements of S-matrix:
x Probe (hidden) symmetries of gauge theory
x Are independent on gauge choice
\times Nontrivial functions of Mandelstam variables $s_{i j}=\left(p_{i}+p_{j}\right)^{2}$
\checkmark Simpler than QCD amplitudes but they share many of the same properties
\checkmark In planar $\mathcal{N}=4$ SYM theory they seem to have a remarkable structure
\checkmark All-order conjectures and a proposal for strong coupling via AdS/CFT
\checkmark Hints for new symmetry - dual superconformal invariance

On-shell gluon scattering amplitudes in $\mathcal{N}=4$ SYM

\checkmark Gluon scattering amplitudes in $\mathcal{N}=4$ SYM

\checkmark Color-ordered planar partial amplitudes

$$
\mathcal{A}_{n}=\operatorname{tr}\left[T^{a_{1}} T^{a_{2}} \ldots T^{a_{n}}\right] A_{n}^{h_{1}, h_{2}, \ldots, h_{n}}\left(p_{1}, p_{2}, \ldots, p_{n}\right)+[\text { Bose symmetry }]
$$

\times Color-ordered amplitudes are classified according to their helicity content $h_{i}= \pm 1$
x Supersymmetry relations:

$$
A^{++\ldots+}=A^{-+\ldots+}=0, \quad A^{(\mathrm{MHV})}=A^{--+\ldots+}, \quad A^{(\mathrm{next}-\mathrm{MHV})}=A^{---+\ldots+},
$$

\times The $n=4$ and $n=5$ planar gluon amplitudes are all MHV

$$
\left\{A_{4}^{++--}, \quad A_{4}^{+-+-}, \ldots\right\}, \quad\left\{A_{5}^{+++--}, \quad A_{5}^{+-+--}, \ldots\right\}
$$

x Weak/strong coupling corrections to all MHV amplitudes are described by a single function of 't Hooft coupling and kinematical invariants!

MHV superamplitude

\checkmark On-shell helicity states in $\mathcal{N}=4$ SYM:

$$
\left.\left.G^{ \pm} \text {(gluons } h= \pm 1\right), \quad \Gamma_{A}, \bar{\Gamma}^{A} \text { (gluinos } h=\frac{1}{2}\right), \quad S_{A B}(\text { scalars } h=0)
$$

\checkmark Can be combined into a single on-shell superstate

$$
\begin{aligned}
\Phi(p, \eta) & =G^{+}(p)+\eta^{A} \Gamma_{A}(p)+\frac{1}{2} \eta^{A} \eta^{B} S_{A B}(p) \\
& +\frac{1}{3!} \eta^{A} \eta^{B} \eta^{C} \epsilon_{A B C D} \bar{\Gamma}^{D}(p)+\frac{1}{4!} \eta^{A} \eta^{B} \eta^{C} \eta^{D} \epsilon_{A B C D} G^{-}(p)
\end{aligned}
$$

\checkmark Combine all MHV amplitudes into a single MHV superamplitude

$$
\begin{aligned}
\mathcal{A}_{n}^{\mathrm{MHV}} & =\left(\eta_{1}\right)^{4}\left(\eta_{2}\right)^{4} \times A\left(G_{1}^{-} G_{2}^{-} G_{3}^{+} \ldots G_{n}^{+}\right) \\
& +\left(\eta_{1}\right)^{4}\left(\eta_{2}\right)^{3} \eta_{3} \times A\left(G_{1}^{-} \bar{\Gamma}_{2} \Gamma_{3} \ldots G_{n}^{+}\right) \\
& +\left(\eta_{1}\right)^{4}\left(\eta_{2}\right)^{2}\left(\eta_{3}\right)^{2} \times A\left(G_{1}^{-} \bar{S}_{2} S_{3} \ldots G_{n}^{+}\right)+\ldots
\end{aligned}
$$

Homogenous polynomial in η 's of degree 8

$$
\mathcal{A}_{n}^{\mathrm{MHV}}=i(2 \pi)^{4} \delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \underbrace{\frac{\delta^{(8)}\left(\sum_{i=1}^{n} \lambda_{i}^{\alpha} \eta_{i}^{A}\right)}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}}_{\text {tree amplitude }} \times \underbrace{M_{n}^{\mathrm{MHV}}\left(\left\{s_{i, i+1}\right\} ; a\right)}_{\text {universal function }}
$$

Four-gluon amplitude in $\mathcal{N}=4$ SYM at weak coupling

$$
\begin{equation*}
M_{4} \equiv \mathcal{A}_{4} / \mathcal{A}_{4}^{(\text {tree })}=1+a \prod_{1}^{2}+O\left(a^{2}\right), \quad a=\frac{g_{\mathrm{YM}}^{2} N_{c}}{8 \pi^{2}} \tag{Green,Schwarz,Brink'82}
\end{equation*}
$$

All-loop planar amplitudes can be split into (universal) IR divergent and (nontrivial) finite part

$$
M_{4}(s, t)=\operatorname{Div}\left(s, t, \epsilon_{\mathrm{IR}}\right) \operatorname{Fin}(s / t)
$$

\checkmark IR divergences appear to all loops as poles in $\epsilon_{\text {IR }}$ (in dim.reg. with $D=4-2 \epsilon_{\text {IR }}$)
\checkmark IR divergences exponentiate (in any gauge theory!)

$$
\operatorname{Div}\left(s, t, \epsilon_{\mathrm{IR}}\right)=\exp \left\{-\frac{1}{2} \sum_{l=1}^{\infty} a^{l}\left(\frac{\Gamma_{\mathrm{cusp}}^{(l)}}{\left(l \epsilon_{\mathrm{IR}}\right)^{2}}+\frac{G^{(l)}}{l \epsilon_{\mathrm{IR}}}\right)\left[\left(-s / \mu^{2}\right)^{l \epsilon_{\mathrm{IR}}}+\left(-t / \mu^{2}\right)^{l \epsilon_{\mathrm{IR}}}\right]\right\}
$$

\checkmark IR divergences are in one-to-one correspondence with UV divergences of cusped Wilson loops
$\Gamma_{\text {cusp }}(a)=\sum_{l} a^{l} \Gamma_{\text {cusp }}^{(l)}=$ cusp anomalous dimension of Wilson loops

$$
G(a)=\sum_{l} a^{l} G_{\text {cusp }}^{(l)}=\text { collinear anomalous dimension }
$$

\checkmark What about finite part of the amplitude Fin (s / t) ? Does it have a simple structure?

$$
\operatorname{Fin}_{\mathrm{QCD}}(s / t)=[4 \text { pages long mess }], \quad \operatorname{Fin}_{\mathcal{N}=4}(s / t)=\text { BDS conjecture }
$$

Four-gluon amplitude in $\mathcal{N}=4 \mathrm{SYM}$ at weak coupling II

\checkmark Bern-Dixon-Smirnov (BDS) conjecture:

$$
\operatorname{Fin}_{4}(s / t)=1+\frac{a}{2} \ln ^{2}(s / t)+O\left(a^{2}\right) \stackrel{\text { all loops }}{\Longrightarrow} \exp \left[\frac{1}{4} \Gamma_{\text {cusp }}(a) \ln ^{2}(s / t)\right]
$$

x Compared to QCD,
(i) the complicated functions of s / t are replaced by the elementary function $\ln ^{2}(s / t)$;
(ii) no higher powers of logs appear in Fin (s / t) at higher loops;
(iii) the coefficient of $\ln ^{2}(s / t)$ is determined by the cusp anomalous dimension $\Gamma_{\text {cusp }}(a)$ just like the coefficient of the double IR pole.
x The conjecture has been verified up to three loops
\times A similar conjecture exists for n-gluon MHV amplitudes
\times It has been confirmed for $n=5$ at two loops [Cachazo,Spradiin,Volovich'04], [Ber,Czakon,Kosower,Roiban,Smirnovo6]
x Agrees with the strong coupling prediction from the AdS/CFT correspondence [Alday,Maldacena'06]
\checkmark Surprising features of the finite part of the MHV amplitudes in planar $\mathcal{N}=4$ SYM:
Why should finite corrections exponentiate? and be related to the cusp anomaly of Wilson loop?

Dual conformal symmetry

Examine one-loop 'scalar box' diagram
\checkmark Change variables to go to a dual 'coordinate space' picture (not a Fourier transform!)

$$
p_{1}=x_{1}-x_{2} \equiv x_{12}, \quad p_{2}=x_{23}, \quad p_{3}=x_{34}, \quad p_{4}=x_{41}, \quad k=x_{15}
$$

$$
=\int \frac{d^{4} k\left(p_{1}+p_{2}\right)^{2}\left(p_{2}+p_{3}\right)^{2}}{k^{2}\left(k-p_{1}\right)^{2}\left(k-p_{1}-p_{2}\right)^{2}\left(k+p_{4}\right)^{2}}=\int \frac{d^{4} x_{5} x_{13}^{2} x_{24}^{2}}{x_{15}^{2} x_{25}^{2} x_{35}^{2} x_{45}^{2}}
$$

Check conformal invariance by inversion $x_{i}^{\mu} \rightarrow x_{i}^{\mu} / x_{i}^{2}$
[Broadhurst],[Drummond,Henn,Smirnov,Sokatchev]
\checkmark The integral is invariant under conformal $S O(2,4)$ transformations in the dual space!
\checkmark The symmetry is not related to conformal $S O(2,4)$ symmetry of $\mathcal{N}=4$ SYM
\checkmark All scalar integrals contributing to A_{4} up to four loops possess the dual conformal invariance!
\checkmark The dual conformal symmetry allows us to determine four- and five-gluon planar scattering amplitudes to all loops!
\checkmark Dual conformality is slightly broken by the infrared regulator
\checkmark For planar integrals only!

From gluon amplitudes to Wilson loops

Properties of gluon scattering amplitudes in $\mathcal{N}=4$ SYM:
(1) IR divergences of M_{4} are in one-to-one correspondence with UV div. of cusped Wilson loops
(2) Perturbative corrections to M_{4} possess a hidden dual conformal symmetry

Is it possible to identify the object in $\mathcal{N}=4$ SYM for which both properties are manifest?
Yes! The expectation value of light-like Wilson loop in $\mathcal{N}=4$ SYM
[Drummond-Henn-GK-Sokatchev]

$$
W\left(C_{4}\right)=\frac{1}{N_{c}}\langle 0| \operatorname{Tr} \mathrm{P} \exp \left(i g \oint_{C_{4}} d x^{\mu} A_{\mu}(x)\right)|0\rangle
$$

\checkmark Gauge invariant functional of the integration contour C_{4} in Minkowski space-time
\checkmark The contour is made out of 4 light-like segments $C_{4}=\ell_{1} \cup \ell_{2} \cup \ell_{3} \cup \ell_{4}$ joining the cusp points x_{i}^{μ}

$$
x_{i}^{\mu}-x_{i+1}^{\mu}=p_{i}^{\mu}=\text { on-shell gluon momenta }
$$

\checkmark The contour C_{4} has four light-like cusps $\mapsto W\left(C_{4}\right)$ has UV divergencies
\checkmark Conformal symmetry of $\mathcal{N}=4 \mathrm{SYM} \mapsto$ conformal invariance of $W\left(C_{4}\right)$ in dual coordinates x^{μ}

MHV scattering amplitudes/Wilson loop duality I

The one-loop expression for the light-like Wilson loop (with $x_{j k}^{2}=\left(x_{j}-x_{k}\right)^{2}$)
$\ln W\left(C_{4}\right)=$

$$
=\frac{g^{2}}{4 \pi^{2}} C_{F}\left\{-\frac{1}{\epsilon_{\mathrm{UV}}{ }^{2}}\left[\left(-x_{13}^{2} \mu^{2}\right)^{\epsilon_{\mathrm{UV}}}+\left(-x_{24}^{2} \mu^{2}\right)^{\epsilon_{\mathrm{UV}}}\right]+\frac{1}{2} \ln ^{2}\left(\frac{x_{13}^{2}}{x_{24}^{2}}\right)+\mathrm{const}\right\}+O\left(g^{4}\right)
$$

The one-loop expression for the gluon scattering amplitude

$$
\ln M_{4}(s, t)=\frac{g^{2}}{4 \pi^{2}} C_{F}\left\{-\frac{1}{\epsilon_{\mathrm{IR}}^{2}}\left[\left(-s / \mu_{\mathrm{IR}}^{2}\right)^{\epsilon_{\mathrm{IR}}}+\left(-t / \mu_{\mathrm{IR}}^{2}\right)^{\epsilon_{\mathrm{IR}}}\right]+\frac{1}{2} \ln ^{2}\left(\frac{s}{t}\right)+\mathrm{const}\right\}+O\left(g^{4}\right)
$$

\checkmark Identity the light-like segments with the on-shell gluon momenta $x_{i, i+1}^{\mu} \equiv x_{i}^{\mu}-x_{i+1}^{\mu}:=p_{i}^{\mu}$:

$$
x_{13}^{2} \mu^{2}:=s / \mu_{\mathrm{IR}}^{2}, \quad x_{24}^{2} \mu^{2}:=t / \mu_{\mathrm{IR}}^{2}, \quad x_{13}^{2} / x_{24}^{2}:=s / t
$$

UV divergencies of the light-like Wilson loop match IR divergences of the gluon amplitude the finite $\sim \ln ^{2}(s / t)$ corrections coincide to one loop!

MHV scattering amplitudes/Wilson loop duality II

MHV amplitudes are dual to light-like Wilson loops

$$
\left.\ln M_{n}^{(\mathrm{MHV})}=\ln W\left(C_{n}\right)+O\left(1 / N_{c}^{2}\right), \quad C_{n}=\text { light-like } n-\text { (poly }\right) \text { gon }
$$

\checkmark At strong coupling, the relation holds to leading order in $1 / \sqrt{\lambda}$
\checkmark At weak coupling, the duality relation was verified for:
$x n=4$ (rectangle) to two loops
$x \quad n \geq 5$ to one loop
[Brandhuber,Heslop,Travaglini]
$x n=5$ (pentagon) to two loops
[Drummond,Henn,GK,Sokatchev]
\checkmark For arbitrary coupling, conformal symmetry of light-like Wilson loops in $\mathcal{N}=4 \mathrm{SYM}+$ duality relation impose constraints on the finite part of the MHV amplitudes
\checkmark All-loop anomalous conformal Ward identities for the finite part of the MHV amplitudes
$\mathbb{D}=$ dilatations, $\quad \mathbb{K}^{\mu}=$ special conformal transformations
[Drummond,Henn,GK,Sokatchev]

$$
\begin{aligned}
\mathbb{D} F_{n} & \equiv \sum_{i=1}^{n}\left(x_{i} \cdot \partial_{x_{i}}\right) F_{n}=0 \\
\mathbb{K}^{\mu} F_{n} & \equiv \sum_{i=1}^{n}\left[2 x_{i}^{\mu}\left(x_{i} \cdot \partial_{x_{i}}\right)-x_{i}^{2} \partial_{x_{i}}^{\mu}\right] F_{n}=\frac{1}{2} \Gamma_{\operatorname{cusp}}(a) \sum_{i=1}^{n} x_{i, i+1}^{\mu} \ln \left(\frac{x_{i, i+2}^{2}}{x_{i-1, i+1}^{2}}\right)
\end{aligned}
$$

The same relations also hold at strong coupling

Finite part of MHV amplitudes

The consequences of the conformal Ward identity for the finite part of the Wilson loop/ MHV scattering amplitudes:
$\checkmark n=4,5$ are special: there are no conformal invariants (too few distances due to $x_{i, i+1}^{2}=0$)
\Longrightarrow the Ward identity has a unique all-loop solution (up to an additive constant)

$$
\begin{aligned}
& F_{4}=\frac{1}{4} \Gamma_{\text {cusp }}(a) \ln ^{2}\left(\frac{x_{13}^{2}}{x_{24}^{2}}\right)+\text { const }, \\
& F_{5}=-\frac{1}{8} \Gamma_{\text {cusp }}(a) \sum_{i=1}^{5} \ln \left(\frac{x_{i, i+2}^{2}}{x_{i, i+3}^{2}}\right) \ln \left(\frac{x_{i+1, i+3}^{2}}{x_{i+2, i+4}^{2}}\right)+\text { const }
\end{aligned}
$$

Exactly the functional forms of the BDS ansatz for the 4- and 5-point MHV amplitudes!
\checkmark Starting from $n=6$ there are conformal invariants in the form of cross-ratios

$$
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}, \quad u_{2}=\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}}, \quad u_{3}=\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}
$$

Hence the general solution of the Ward identity for $W\left(C_{n}\right)$ with $n \geq 6$ contains an arbitrary function of the conformal cross-ratios.
\checkmark The BDS ansatz is a solution of the conformal Ward identity for arbitrary n but does it actually work for $n \geq 6$ [Alday, Maldacena] [Bartels, Lipatov, Sabio Vera]? if not what is a missing function of $u_{1,2,3}$?

Discrepancy function

\checkmark We computed the two-loop hexagon Wilson loop $W\left(C_{6}\right)$...

... and found a discrepancy
$\ln W\left(C_{6}\right) \neq \ln \mathcal{M}_{6}^{(\mathrm{BDS})}$
\checkmark Bern-Dixon-Kosower-Roiban-Spradlin-Vergu-Volovich computed 6-gluon amplitude to 2 loops

... and found a discrepancy

$$
\ln \mathcal{M}_{6}^{(\mathrm{MHV})} \neq \ln \mathcal{M}_{6}^{(\mathrm{BDS})}
$$

The BDS ansatz fails for $n=6$ starting from two loops.
What about Wilson loop duality? $\quad \ln \mathcal{M}_{6}^{(\mathrm{MHV})} \stackrel{?}{=} \ln W\left(C_{6}\right)$

6-gluon amplitude/hexagon Wilson loop duality

\checkmark Comparison between the DHKS discrepancy function $\Delta_{\text {WL }}$ and the BDKRSVV results for the six-gluon amplitude Δ_{MHV} :

Kinematical point	$\left(u_{1}, u_{2}, u_{3}\right)$	$\Delta_{\mathrm{WL}}-\Delta_{\mathrm{WL}}^{(0)}$	$\Delta_{\mathrm{MHV}}-\Delta_{\mathrm{MHV}}^{(0)}$
$K^{(1)}$	$(1 / 4,1 / 4,1 / 4)$	$<10^{-5}$	-0.018 ± 0.023
$K^{(2)}$	$(0.547253,0.203822,0.88127)$	-2.75533	-2.753 ± 0.015
$K^{(3)}$	$(28 / 17,16 / 5,112 / 85)$	-4.74460	-4.7445 ± 0.0075
$K^{(4)}$	$(1 / 9,1 / 9,1 / 9)$	4.09138	4.12 ± 0.10
$K^{(5)}$	$(4 / 81,4 / 81,4 / 81)$	9.72553	10.00 ± 0.50

evaluated for different kinematical configurations, e.g.

$$
\begin{aligned}
K^{(1)}: & x_{13}^{2}=-0.7236200, \\
& x_{24}^{2}=-0.9213500,
\end{aligned} \quad x_{35}^{2}=-0.2723200, \quad x_{46}^{2}=-0.3582300, \quad x_{36}^{2}=-0.4825841,
$$

\checkmark Two nontrivial functions coincide with an accuracy $<10^{-4}$!
๒ The Wilson loop/MHV amplitude duality holds at $n=6$ to two loops!!
e We expect that the duality relation should also hold for arbitrary n to all loops!!!

All-loop MHV superamplitude

\checkmark All MHV amplitudes can be combined into a single superamplitude

$$
\mathcal{A}_{n}^{\mathrm{MHV}}\left(p_{1}, \eta_{1} ; \ldots ; p_{n}, \eta_{n}\right)=i(2 \pi)^{4} \frac{\delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \delta^{(8)}\left(\sum_{i=1}^{n} \lambda_{i}^{\alpha} \eta_{i}^{A}\right)}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle} M_{n}^{(\mathrm{MHV})},
$$

\times Perturbative corrections to all MHV amplitudes are factorized into a universal factor $M_{n}^{(\mathrm{MHV})}$
\times The all-loop MHV amplitudes appear as coefficients in the expansion of $\mathcal{A}_{n}^{\mathrm{MHV}}$ in powers of η 's

$$
\begin{equation*}
\mathcal{A}_{n}^{\mathrm{MHV}}=(2 \pi)^{4} \delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \sum_{1 \leq j<k \leq n}\left(\eta_{j}\right)^{4}\left(\eta_{k}\right)^{4} A_{n}^{(\mathrm{MHV})}\left(1^{+} \ldots j^{-} \ldots k^{-} \ldots n^{+}\right)+\ldots, \tag{1}
\end{equation*}
$$

× The function $M_{n}^{(\text {MHV })}$ is dual to light-like n-gon Wilson loop

$$
\ln M_{n}^{(\mathrm{MHV})}=\ln W_{n}+O\left(\epsilon, 1 / N^{2}\right)
$$

\checkmark The MHV superamplitude possesses a much bigger, dual superconformal symmetry which acts on the dual coordinates x_{i}^{μ} and their superpartners $\theta_{i \alpha}^{A}$
[Drummond, Henn, GK, Sokatchev]

$$
p_{i}^{\mu}=x_{i}^{\mu}-x_{i+1}^{\mu}, \quad \lambda_{i}^{\alpha} \eta_{i}=\theta_{i}^{\alpha}-\theta_{i+1}^{\alpha}
$$

Conclusions and recent developments

\checkmark MHV amplitudes in $\mathcal{N}=4$ theory
x possess the dual conformal symmetry both at weak and at strong coupling
x Dual to light-like Wilson loops
... but what about NMHV, NNMHV, etc. amplitudes?
\checkmark This symmetry is a part of much bigger dual superconformal symmetry of all planar superamplitudes in $\mathcal{N}=4 \mathrm{SYM}$
[Drummond,Henn,GK,Sokatchev]
x Relates various particle amplitudes with different helicity configurations (MHV, NMHV,...)
x Imposes non-trivial constraints on the loop corrections
\checkmark Dual superconformal symmetry is now explained better through the AdS/CFT correspondence by a combined bosonic [Kallosh,Tseytin] and fermionic T duality symmetry
\checkmark What is the generalisation of the Wilson loop/amplitude duality beyond MHV?

Back-up slides

What is the cusp anomalous dimension

\checkmark Cusp anomaly is a very 'unfortunate' feature of Wilson loops evaluated over an Euclidean closed contour with a cusp - generates the anomalous dimension

$$
\left\langle\operatorname{tr} \mathrm{P} \exp \left(i \oint_{C} d x \cdot A(x)\right)\right\rangle \sim\left(\Lambda_{\mathrm{UV}}\right)^{\Gamma_{\text {cusp }}(g, \vartheta)}
$$

\checkmark A very 'fortunate' property of Wilson loop - the cusp anomaly controls the infrared asymptotics of scattering amplitudes in gauge theories
x The integration contour C is defined by the particle momenta
x The cusp angle ϑ is related to the scattering angles in Minkowski space-time, $|\vartheta| \gg 1$

$$
\Gamma_{\text {cusp }}(g, \vartheta)=\vartheta \Gamma_{\text {cusp }}(g)+O\left(\vartheta^{0}\right),
$$

\checkmark The cusp anomalous dimension $\Gamma_{\text {cusp }}(g)$ is an ubiquitous observable in gauge theories: [GK89]
x Logarithmic scaling of anomalous dimensions of high-spin Wilson operators;
x IR singularities of on-shell gluon scattering amplitudes;
x Gluon Regge trajectory;
x Sudakov asymptotics of elastic form factors;
X ...

Four-gluon amplitude/Wilson loop duality in QCD

Finite part of four-gluon amplitude in QCD at two loops

$$
\operatorname{Fin}_{\mathrm{QCD}}{ }^{(2)}(s, t, u)=A(x, y, z)+O\left(1 / N_{c}^{2}, n_{f} / N_{c}\right)
$$

with notations $x=-\frac{t}{s}, y=-\frac{u}{s}, z=-\frac{u}{t}, X=\log x, Y=\log y, S=\log z$

$$
\begin{aligned}
& A=\left\{\left(48 \mathrm{Li}_{4}(x)-48 \mathrm{Li}_{4}(y)-128 \mathrm{Li}_{4}(z)+40 \mathrm{Li}_{3}(x) X-64 \mathrm{Li}_{3}(x) Y-\frac{98}{3} \mathrm{Li}_{3}(x)+64 \mathrm{Li}_{3}(y) X-40 \mathrm{Li}_{3}(y) Y+18 \mathrm{Li}_{3}(y)\right.\right. \\
& +\frac{98}{3} \mathrm{Li}_{2}(x) X-\frac{16}{3} \mathrm{Li}_{2}(x) \pi^{2}-18 \mathrm{Li}_{2}(y) Y-\frac{37}{6} X^{4}+28 X^{3} Y-\frac{23}{3} X^{3}-16 X^{2} Y^{2}+\frac{49}{3} X^{2} Y-\frac{35}{3} X^{2} \pi^{2}-\frac{38}{3} X^{2} \\
& -\frac{22}{3} S X^{2}-\frac{20}{3} X Y^{3}-9 X Y^{2}+8 X Y \pi^{2}+10 X Y-\frac{31}{12} X \pi^{2}-22 \zeta_{3} X+\frac{22}{3} S X+\frac{37}{27} X+\frac{11}{6} Y^{4}-\frac{41}{9} Y^{3}-\frac{11}{3} Y^{2} \pi \\
& -\frac{22}{3} S Y^{2}+\frac{266}{9} Y^{2}-\frac{35}{12} Y \pi^{2}+\frac{418}{9} S Y+\frac{257}{9} Y+18 \zeta_{3} Y-\frac{31}{30} \pi^{4}-\frac{11}{9} S \pi^{2}+\frac{31}{9} \pi^{2}+\frac{242}{9} S^{2}+\frac{418}{9} \zeta_{3}+\frac{2156}{27} S \\
& \left.-\frac{11093}{81}-8 S \zeta_{3}\right) \frac{t^{2}}{s^{2}}+\left(-256 \mathrm{Li}_{4}(x)-96 \mathrm{Li}_{4}(y)+96 \mathrm{Li}_{4}(z)+80 \mathrm{Li}_{3}(x) X+48 \mathrm{Li}_{3}(x) Y-\frac{64}{3} \mathrm{Li}_{3}(x)-48 \mathrm{Li}_{3}(y) X\right. \\
& +96 \mathrm{Li}_{3}(y) Y-\frac{304}{3} \mathrm{Li}_{3}(y)+\frac{64}{3} \mathrm{Li}_{2}(x) X-\frac{32}{3} \mathrm{Li}_{2}(x) \pi^{2}+\frac{304}{3} \mathrm{Li}_{2}(y) Y+\frac{26}{3} X^{4}-\frac{64}{3} X^{3} Y-\frac{64}{3} X^{3}+20 X^{2} Y^{2} \\
& +\frac{136}{3} X^{2} Y+24 X^{2} \pi^{2}+76 X^{2}-\frac{88}{3} S X^{2}+\frac{8}{3} X Y^{3}+\frac{104}{3} X Y^{2}-\frac{16}{3} X Y \pi^{2}+\frac{176}{3} S X Y-\frac{136}{3} X Y-\frac{50}{3} X \pi^{2} \\
& -48 \zeta_{3} X+\frac{2350}{27} X+\frac{440}{3} S X+4 Y^{4}-\frac{176}{9} Y^{3}+\frac{4}{3} Y^{2} \pi^{2}-\frac{176}{3} S Y^{2}-\frac{494}{9} Y \pi^{2}+\frac{5392}{27} Y-64 \zeta_{3} Y+\frac{496}{45} \pi^{4} \\
& \left.-\frac{308}{9} S \pi^{2}+\frac{200}{9} \pi^{2}+\frac{968}{9} S^{2}+\frac{8624}{27} S-\frac{44372}{81}+\frac{1864}{9} \zeta_{3}-32 S \zeta_{3}\right) \frac{t}{u}+\left(\frac{88}{3} \operatorname{Li}_{3}(x)-\frac{88}{3} \operatorname{Li}_{2}(x) X+2 X^{4}-8 X^{3} Y\right. \\
& -\frac{220}{9} X^{3}+12 X^{2} Y^{2}+\frac{88}{3} X^{2} Y+\frac{8}{3} X^{2} \pi^{2}-\frac{88}{3} S X^{2}+\frac{304}{9} X^{2}-8 X Y^{3}-\frac{16}{3} X Y \pi^{2}+\frac{176}{3} S X Y-\frac{77}{3} X \pi^{2} \\
& +\frac{1616}{27} X+\frac{968}{9} S X-8 \zeta_{3} X+4 Y^{4}-\frac{176}{9} Y^{3}-\frac{20}{3} Y^{2} \pi^{2}-\frac{176}{3} S Y^{2}-\frac{638}{9} Y \pi^{2}-16 \zeta_{3} Y+\frac{5392}{27} Y-\frac{4}{15} \pi^{4}-\frac{308}{9} \\
& \left.-20 \pi^{2}-32 S \zeta_{3}+\frac{1408}{9} \zeta_{3}+\frac{968}{9} S^{2}-\frac{44372}{81}+\frac{8624}{27} S\right) \frac{t^{2}}{u^{2}}+\left(\frac{44}{3} \operatorname{Li}_{3}(x)-\frac{44}{3} \operatorname{Li}_{2}(x) X-X^{4}+\frac{110}{9} X^{3}-\frac{22}{3} X^{2} Y\right. \\
& +\frac{14}{3} X^{2} \pi^{2}+\frac{44}{3} S X^{2}-\frac{152}{9} X^{2}-10 X Y+\frac{11}{2} X \pi^{2}+4 \zeta_{3} X-\frac{484}{9} S X-\frac{808}{27} X+\frac{7}{30} \pi^{4}-\frac{31}{9} \pi^{2} \\
& \left.+\frac{11}{9} S \pi^{2}-\frac{418}{9} \zeta_{3}-\frac{242}{9} S^{2}-\frac{2156}{27} S+8 S \zeta_{3}+\frac{11093}{81}\right) \frac{u t}{s^{2}}+\left(-176 \operatorname{Li}_{4}(x)+88 \mathrm{Li}_{3}(x) X-168 \operatorname{Li}_{3}(x) Y-\ldots\right.
\end{aligned}
$$

Four-gluon amplitude/Wilson loop duality in QCD II

\checkmark Planar four-gluon QCD scattering amplitude in the Regge limit $s \gg-t$ [Schnitzer'76],FFadin,Kuraev,Lipatov'76]

$$
\mathcal{M}_{4}^{(\mathrm{QCD})}(s, t) \sim(s /(-t))^{\omega_{R}(-t)}+\ldots
$$

The Regge trajectory $\omega_{R}(-t)$ is known to two loops
\checkmark The all-loop gluon Regge trajectory in QCD

$$
\left.\omega_{R}^{(\mathrm{QCD})}(-t)=\frac{1}{2} \int_{(-t)}^{\mu_{\mathrm{IR}}^{2}} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}} \Gamma_{\mathrm{cusp}}\left(a\left(k_{\perp}^{2}\right)\right)+\Gamma_{R}(a(-t))+\text { [poles in } 1 / \epsilon_{\mathrm{IR}}\right]
$$

\checkmark Rectangular Wilson loop in QCD in the Regge limit $\left|x_{13}^{2}\right| \gg\left|x_{24}^{2}\right|$

$$
W^{(\mathrm{QCD})}\left(C_{4}\right) \sim\left(x_{13}^{2} /\left(-x_{24}^{2}\right)\right)^{\omega_{\mathrm{W}}\left(-x_{24}^{2}\right)}+\ldots
$$

\checkmark The all-loop Wilson loop 'trajectory' in QCD

$$
\omega_{\mathrm{W}}^{(\mathrm{QCD})}(-t)=\frac{1}{2} \int_{(-t)}^{\mu_{\mathrm{UV}}^{2}} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}} \Gamma_{\mathrm{cusp}}\left(a\left(k_{\perp}^{2}\right)\right)+\Gamma_{\mathrm{W}}(a(-t))+\left[\text { poles in } 1 / \epsilon_{\mathrm{UV}}\right],
$$

\checkmark The duality relation holds in QCD in the Regge limit only!

$$
\ln \mathcal{M}_{4}^{(\mathrm{QCD})}(s, t)=\ln W^{(\mathrm{QCD})}\left(C_{4}\right)+O(t / s)
$$

while in $\mathcal{N}=4$ SYM it is exact for arbitrary t / s

Four-gluon amplitude from AdS/CFT

Alday-Maldacena proposal:
\checkmark On-shell scattering amplitude is described by a classical string world-sheet in AdS_{5}

\times On-shell gluon momenta $p_{1}^{\mu}, \ldots, p_{n}^{\mu}$ define sequence of light-like segments on the boundary
x The closed contour has n cusps with the dual coordinates x_{i}^{μ} (the same as at weak coupling!)

$$
x_{i, i+1}^{\mu} \equiv x_{i}^{\mu}-x_{i+1}^{\mu}:=p_{i}^{\mu}
$$

The dual conformal symmetry also exists at strong coupling!
\checkmark Is in agreement with the Bern-Dixon-Smirnov (BDS) ansatz for $n=4$ amplitudes
\checkmark Admits generalization to arbitrary n-gluon amplitudes but it is difficult to construct explicit solutions for 'minimal surface' in AdS
\checkmark Agreement with the BDS ansatz is also observed for $n=5$ gluon amplitudes [Komargodsk] but disagreement is found for $n \rightarrow \infty \mapsto$ the BDS ansatz needs to be modified [Alday,Maldacena]

The same questions to answer as at weak coupling:
Why should finite corrections exponentiate?
Why should they be related to the cusp anomaly of Wilson loop?

