

Jet schemes of nilpotent orbit closures

Anne Moreau

(joint work with Rupert Yu)

University of Poitiers, France

June, 15th 2015

Let X be a scheme of finite type over \mathbb{C} , and $m \in \mathbb{Z}_{\geq 0}$.

Let X be a scheme of finite type over \mathbb{C} , and $m \in \mathbb{Z}_{\geq 0}$.

Definition (jet scheme).

The *m -th jet scheme of X* , denoted by $\mathcal{J}_m(X)$, is a scheme of finite type characterized by the functorial property : $\forall \mathbb{C}$ -algebra A ,

$$\text{Hom}(\text{Spec } A, \mathcal{J}_m(X)) = \text{Hom}(\text{Spec } A[t]/(t^{m+1}), X).$$

Let X be a scheme of finite type over \mathbb{C} , and $m \in \mathbb{Z}_{\geq 0}$.

Definition (jet scheme).

The *m -th jet scheme of X* , denoted by $\mathcal{J}_m(X)$, is a scheme of finite type characterized by the functorial property : $\forall \mathbb{C}$ -algebra A ,

$$\mathrm{Hom}(\mathrm{Spec} A, \mathcal{J}_m(X)) = \mathrm{Hom}(\mathrm{Spec} A[t]/(t^{m+1}), X).$$

In particular,

$$\{\mathbb{C}\text{-points of } \mathcal{J}_m(X)\} \longleftrightarrow \{\mathbb{C}[t]/(t^{m+1})\text{-points of } X\}.$$

Let X be a scheme of finite type over \mathbb{C} , and $m \in \mathbb{Z}_{\geq 0}$.

Definition (jet scheme).

The *m -th jet scheme of X* , denoted by $\mathcal{J}_m(X)$, is a scheme of finite type characterized by the functorial property : $\forall \mathbb{C}$ -algebra A ,

$$\text{Hom}(\text{Spec } A, \mathcal{J}_m(X)) = \text{Hom}(\text{Spec } A[t]/(t^{m+1}), X).$$

In particular,

$$\{\mathbb{C}\text{-points of } \mathcal{J}_m(X)\} \longleftrightarrow \{\mathbb{C}[t]/(t^{m+1})\text{-points of } X\}.$$

Examples :

Let X be a scheme of finite type over \mathbb{C} , and $m \in \mathbb{Z}_{\geq 0}$.

Definition (jet scheme).

The *m -th jet scheme of X* , denoted by $\mathcal{J}_m(X)$, is a scheme of finite type characterized by the functorial property : $\forall \mathbb{C}$ -algebra A ,

$$\text{Hom}(\text{Spec } A, \mathcal{J}_m(X)) = \text{Hom}(\text{Spec } A[t]/(t^{m+1}), X).$$

In particular,

$$\{\mathbb{C}\text{-points of } \mathcal{J}_m(X)\} \longleftrightarrow \{\mathbb{C}[t]/(t^{m+1})\text{-points of } X\}.$$

Examples :

- $\mathcal{J}_0(X) \cong X$, $\mathcal{J}_1(X) \cong TX$.

Let X be a scheme of finite type over \mathbb{C} , and $m \in \mathbb{Z}_{\geq 0}$.

Definition (jet scheme).

The *m -th jet scheme of X* , denoted by $\mathcal{J}_m(X)$, is a scheme of finite type characterized by the functorial property : $\forall \mathbb{C}$ -algebra A ,

$$\text{Hom}(\text{Spec } A, \mathcal{J}_m(X)) = \text{Hom}(\text{Spec } A[t]/(t^{m+1}), X).$$

In particular,

$$\{\mathbb{C}\text{-points of } \mathcal{J}_m(X)\} \longleftrightarrow \{\mathbb{C}[t]/(t^{m+1})\text{-points of } X\}.$$

Examples :

- ▶ $\mathcal{J}_0(X) \cong X$, $\mathcal{J}_1(X) \cong TX$.
- ▶ If $X \subset \mathbb{A}^N$ is affine, defined by equations f_1, \dots, f_r , then $\mathcal{J}_m(X) \subset \mathbb{A}^{N(m+1)}$ is affine, defined by equations expressing that

$$\forall j = 1, \dots, r, \quad f_j(x_0 + x_1 t + \dots + x_m t^m) \equiv 0 \pmod{[t^{m+1}]}.$$

Deep connexions between the geometry of $\mathcal{J}_m(X)$ and that of X .

Deep connexions between the geometry of $\mathcal{J}_m(X)$ and that of X .

- $\mathcal{J}_m(X)$ smooth $\implies X$ smooth

Deep connexions between the geometry of $\mathcal{J}_m(X)$ and that of X .

- $\mathcal{J}_m(X)$ smooth $\iff X$ smooth (if so, $\dim \mathcal{J}_m(X) = (m+1) \dim X$),

Deep connexions between the geometry of $\mathcal{J}_m(X)$ and that of X .

- $\mathcal{J}_m(X)$ smooth $\iff X$ smooth (if so, $\dim \mathcal{J}_m(X) = (m+1) \dim X$),
- $\boxed{\mathcal{J}_m(X) \text{ irreducible} \implies X \text{ irreducible}}$,
- $\mathcal{J}_m(X)$ reduced $\implies X$ reduced,
- $\mathcal{J}_m(X)$ normal $\implies X$ normal, etc.

Deep connexions between the geometry of $\mathcal{J}_m(X)$ and that of X .

- $\mathcal{J}_m(X)$ smooth $\iff X$ smooth (if so, $\dim \mathcal{J}_m(X) = (m+1) \dim X$),
- $\boxed{\mathcal{J}_m(X) \text{ irreducible} \implies X \text{ irreducible}}$,
- $\mathcal{J}_m(X)$ reduced $\implies X$ reduced,
- $\mathcal{J}_m(X)$ normal $\implies X$ normal, etc.

► Remark (Kolchin) : $\mathcal{J}_\infty(X) := \varprojlim \mathcal{J}_m(X)$ is irreducible $\iff X$ is irreducible.

Deep connexions between the geometry of $\mathcal{J}_m(X)$ and that of X .

- $\mathcal{J}_m(X)$ smooth $\iff X$ smooth (if so, $\dim \mathcal{J}_m(X) = (m+1) \dim X$),
- $\boxed{\mathcal{J}_m(X) \text{ irreducible} \implies X \text{ irreducible}}$,
- $\mathcal{J}_m(X)$ reduced $\implies X$ reduced,
- $\mathcal{J}_m(X)$ normal $\implies X$ normal, etc.

► Remark (Kolchin) : $\mathcal{J}_\infty(X) := \varprojlim \mathcal{J}_m(X)$ is irreducible $\iff X$ is irreducible.

More interesting : there are deep connexions between the geometry of $\mathcal{J}_m(X)$ and the singularities of X (predicted by Nash, 95').

Deep connexions between the geometry of $\mathcal{J}_m(X)$ and that of X .

- $\mathcal{J}_m(X)$ smooth $\iff X$ smooth (if so, $\dim \mathcal{J}_m(X) = (m+1) \dim X$),
- $\boxed{\mathcal{J}_m(X) \text{ irreducible} \implies X \text{ irreducible}}$,
- $\mathcal{J}_m(X)$ reduced $\implies X$ reduced,
- $\mathcal{J}_m(X)$ normal $\implies X$ normal, etc.

► Remark (Kolchin) : $\mathcal{J}_\infty(X) := \varprojlim \mathcal{J}_m(X)$ is irreducible $\iff X$ is irreducible.

More interesting : there are deep connexions between the geometry of $\mathcal{J}_m(X)$ and the singularities of X (predicted by Nash, 95').

Theorem (M. Mustaţă, 2001).

Assume that X is a complete intersection (and irreducible). Then, X has rational singularities $\iff \forall m \in \mathbb{Z}_{\geq 0}, \mathcal{J}_m(X)$ is irreducible.

Deep connexions between the geometry of $\mathcal{J}_m(X)$ and that of X .

- $\mathcal{J}_m(X)$ smooth $\iff X$ smooth (if so, $\dim \mathcal{J}_m(X) = (m+1) \dim X$),
- $\boxed{\mathcal{J}_m(X) \text{ irreducible} \implies X \text{ irreducible}}$,
- $\mathcal{J}_m(X)$ reduced $\implies X$ reduced,
- $\mathcal{J}_m(X)$ normal $\implies X$ normal, etc.

► Remark (Kolchin) : $\mathcal{J}_\infty(X) := \varprojlim \mathcal{J}_m(X)$ is irreducible $\iff X$ is irreducible.

More interesting : there are deep connexions between the geometry of $\mathcal{J}_m(X)$ and the singularities of X (predicted by Nash, 95').

Theorem (M. Mustaţă, 2001).

Assume that X is a complete intersection (and irreducible). Then, X has rational singularities $\iff \forall m \in \mathbb{Z}_{\geq 0}$, $\mathcal{J}_m(X)$ is irreducible.

► This was conjectured by D. Eisenbud and E. Frenkel in order to apply it to the nilpotent cone of a reductive Lie algebra...

Let G be a complex connected simple algebraic group, and \mathfrak{g} its Lie algebra.

Let G be a complex connected simple algebraic group, and \mathfrak{g} its Lie algebra.
Then

$$\mathcal{J}_m(\mathfrak{g}) \cong \mathfrak{g} \otimes \mathbb{C}[t]/(t^{m+1})$$

is the *generalized Takiff Lie algebra*, with Lie bracket

$$\forall x, y \in \mathfrak{g}, \forall k, l \in \mathbb{Z}_{\geq 0}, \quad [x \otimes t^k, y \otimes t^l] = [x, y] \otimes t^{k+l}.$$

Let G be a complex connected simple algebraic group, and \mathfrak{g} its Lie algebra.
Then

$$\mathcal{J}_m(\mathfrak{g}) \cong \mathfrak{g} \otimes \mathbb{C}[t]/(t^{m+1})$$

is the *generalized Takiff Lie algebra*, with Lie bracket

$$\forall x, y \in \mathfrak{g}, \forall k, l \in \mathbb{Z}_{\geq 0}, \quad [x \otimes t^k, y \otimes t^l] = [x, y] \otimes t^{k+l}.$$

Let \mathcal{N} be the *nilpotent cone* of \mathfrak{g} ,

$$\mathcal{N} = \text{Spec } \mathbb{C}[\mathfrak{g}]/\mathbb{C}[\mathfrak{g}]_+^G.$$

Let G be a complex connected simple algebraic group, and \mathfrak{g} its Lie algebra.
Then

$$\mathcal{J}_m(\mathfrak{g}) \cong \mathfrak{g} \otimes \mathbb{C}[t]/(t^{m+1})$$

is the *generalized Takiff Lie algebra*, with Lie bracket

$$\forall x, y \in \mathfrak{g}, \forall k, l \in \mathbb{Z}_{\geq 0}, \quad [x \otimes t^k, y \otimes t^l] = [x, y] \otimes t^{k+l}.$$

Let \mathcal{N} be the *nilpotent cone* of \mathfrak{g} ,

$$\mathcal{N} = \text{Spec } \mathbb{C}[\mathfrak{g}]/\mathbb{C}[\mathfrak{g}]_+^G.$$

► By Chevalley, $\mathbb{C}[\mathfrak{g}]^G = \mathbb{C}[p_1, \dots, p_{\text{rk } \mathfrak{g}}]$.

Let G be a complex connected simple algebraic group, and \mathfrak{g} its Lie algebra.
 Then

$$\mathcal{J}_m(\mathfrak{g}) \cong \mathfrak{g} \otimes \mathbb{C}[t]/(t^{m+1})$$

is the *generalized Takiff Lie algebra*, with Lie bracket

$$\forall x, y \in \mathfrak{g}, \forall k, l \in \mathbb{Z}_{\geq 0}, \quad [x \otimes t^k, y \otimes t^l] = [x, y] \otimes t^{k+l}.$$

Let \mathcal{N} be the *nilpotent cone* of \mathfrak{g} ,

$$\mathcal{N} = \text{Spec } \mathbb{C}[\mathfrak{g}]/\mathbb{C}[\mathfrak{g}]_+^G = \text{Spec } \mathbb{C}[\mathfrak{g}]/(p_1, \dots, p_{\text{rk } \mathfrak{g}}).$$

► By Chevalley, $\mathbb{C}[\mathfrak{g}]^G = \mathbb{C}[p_1, \dots, p_{\text{rk } \mathfrak{g}}]$.

Let G be a complex connected simple algebraic group, and \mathfrak{g} its Lie algebra.
Then

$$\mathcal{J}_m(\mathfrak{g}) \cong \mathfrak{g} \otimes \mathbb{C}[t]/(t^{m+1})$$

is the *generalized Takiff Lie algebra*, with Lie bracket

$$\forall x, y \in \mathfrak{g}, \forall k, l \in \mathbb{Z}_{\geq 0}, \quad [x \otimes t^k, y \otimes t^l] = [x, y] \otimes t^{k+l}.$$

Let \mathcal{N} be the *nilpotent cone* of \mathfrak{g} ,

$$\mathcal{N} = \text{Spec } \mathbb{C}[\mathfrak{g}]/\mathbb{C}[\mathfrak{g}]_+^G = \text{Spec } \mathbb{C}[\mathfrak{g}]/(p_1, \dots, p_{\text{rk } \mathfrak{g}}).$$

By Kostant, \mathcal{N} is a complete intersection, irreducible, reduced and normal.

Let G be a complex connected simple algebraic group, and \mathfrak{g} its Lie algebra. Then

$$\mathcal{J}_m(\mathfrak{g}) \cong \mathfrak{g} \otimes \mathbb{C}[t]/(t^{m+1})$$

is the *generalized Takiff Lie algebra*, with Lie bracket

$$\forall x, y \in \mathfrak{g}, \forall k, l \in \mathbb{Z}_{\geq 0}, \quad [x \otimes t^k, y \otimes t^l] = [x, y] \otimes t^{k+l}.$$

Let \mathcal{N} be the *nilpotent cone* of \mathfrak{g} ,

$$\mathcal{N} = \text{Spec } \mathbb{C}[\mathfrak{g}]/\mathbb{C}[\mathfrak{g}]_+^G = \text{Spec } \mathbb{C}[\mathfrak{g}]/(p_1, \dots, p_{r_{\mathfrak{g}}}).$$

By Kostant, \mathcal{N} is a complete intersection, irreducible, reduced and normal. Furthermore, by Hesselink, it has rational singularities.

Let G be a complex connected simple algebraic group, and \mathfrak{g} its Lie algebra.
 Then

$$\mathcal{J}_m(\mathfrak{g}) \cong \mathfrak{g} \otimes \mathbb{C}[t]/(t^{m+1})$$

is the *generalized Takiff Lie algebra*, with Lie bracket

$$\forall x, y \in \mathfrak{g}, \forall k, l \in \mathbb{Z}_{\geq 0}, \quad [x \otimes t^k, y \otimes t^l] = [x, y] \otimes t^{k+l}.$$

Let \mathcal{N} be the *nilpotent cone* of \mathfrak{g} ,

$$\mathcal{N} = \text{Spec } \mathbb{C}[\mathfrak{g}]/\mathbb{C}[\mathfrak{g}]_+^G = \text{Spec } \mathbb{C}[\mathfrak{g}]/(p_1, \dots, p_{\text{rk } \mathfrak{g}}).$$

By Kostant, \mathcal{N} is a complete intersection, irreducible, reduced and normal.
 Furthermore, by Hesselink, it has rational singularities.

Theorem (Mustață / Eisenbud-Frenkel, 2001).

$\forall m \geq 0$, $\mathcal{J}_m(\mathcal{N})$ is irreducible. Moreover, $\mathbb{C}[\mathcal{J}_m(\mathfrak{g})]$ is free over $\mathbb{C}[\mathcal{J}_m(\mathfrak{g})]^{\mathcal{J}_m(G)}$.

Recall that $\mathcal{N} = \overline{\mathcal{O}_{\text{reg}}}$, with \mathcal{O}_{reg} the *regular nilpotent orbit* of \mathfrak{g} .

Recall that $\mathcal{N} = \overline{\mathcal{O}_{\text{reg}}}$, with \mathcal{O}_{reg} the *regular nilpotent orbit* of \mathfrak{g} .

Let \mathcal{O} be a nonzero nilpotent orbit of \mathfrak{g} .

Recall that $\mathcal{N} = \overline{\mathcal{O}_{\text{reg}}}$, with \mathcal{O}_{reg} the *regular nilpotent orbit* of \mathfrak{g} .

Let \mathcal{O} be a nonzero nilpotent orbit of \mathfrak{g} .

Question.

Let $m \geq 1$. Is $\mathcal{J}_m(\overline{\mathcal{O}})$ irreducible?

Recall that $\mathcal{N} = \overline{\mathcal{O}_{\text{reg}}}$, with \mathcal{O}_{reg} the *regular nilpotent orbit* of \mathfrak{g} .

Let \mathcal{O} be a nonzero nilpotent orbit of \mathfrak{g} .

Question.

Let $m \geq 1$. Is $\mathcal{J}_m(\overline{\mathcal{O}})$ irreducible ?

► Answer : rarely !!!

Recall that $\mathcal{N} = \overline{\mathcal{O}_{\text{reg}}}$, with \mathcal{O}_{reg} the *regular nilpotent orbit* of \mathfrak{g} .

Let \mathcal{O} be a nonzero nilpotent orbit of \mathfrak{g} .

Question.

Let $m \geq 1$. Is $\mathcal{J}_m(\overline{\mathcal{O}})$ irreducible ?

► Answer : rarely !!!

Main motivation :

Recall that $\mathcal{N} = \overline{\mathcal{O}_{\text{reg}}}$, with \mathcal{O}_{reg} the *regular nilpotent orbit* of \mathfrak{g} .

Let \mathcal{O} be a nonzero nilpotent orbit of \mathfrak{g} .

Question.

Let $m \geq 1$. Is $\mathcal{J}_m(\overline{\mathcal{O}})$ irreducible ?

► Answer : rarely !!!

Main motivation :

Theorem (Namikawa, 2013).

$\overline{\mathcal{O}}$ is a complete intersection (c.i.) $\iff \mathcal{O} = \mathcal{O}_{\text{reg}}$, i.e., $\overline{\mathcal{O}} = \mathcal{N}$.

Recall that $\mathcal{N} = \overline{\mathcal{O}_{\text{reg}}}$, with \mathcal{O}_{reg} the *regular nilpotent orbit* of \mathfrak{g} .

Let \mathcal{O} be a nonzero nilpotent orbit of \mathfrak{g} .

Question.

Let $m \geq 1$. Is $\mathcal{J}_m(\overline{\mathcal{O}})$ irreducible ?

► Answer : rarely !!!

Main motivation :

Theorem (Namikawa, 2013 / Brion-Fu, 2014).

$\overline{\mathcal{O}}$ is a complete intersection (c.i.) $\iff \mathcal{O} = \mathcal{O}_{\text{reg}}$, i.e., $\overline{\mathcal{O}} = \mathcal{N}$.

Recall that $\mathcal{N} = \overline{\mathcal{O}_{\text{reg}}}$, with \mathcal{O}_{reg} the *regular nilpotent orbit* of \mathfrak{g} .

Let \mathcal{O} be a nonzero nilpotent orbit of \mathfrak{g} .

Question.

Let $m \geq 1$. Is $\mathcal{J}_m(\overline{\mathcal{O}})$ irreducible ?

► Answer : rarely !!!

Main motivation :

Theorem (Namikawa, 2013 / Brion-Fu, 2014).

$\overline{\mathcal{O}}$ is a complete intersection (c.i.) $\iff \mathcal{O} = \mathcal{O}_{\text{reg}}$, i.e., $\overline{\mathcal{O}} = \mathcal{N}$.

► Question (Brion) : can we give another proof of that result using jets ?

Recall that $\mathcal{N} = \overline{\mathcal{O}_{\text{reg}}}$, with \mathcal{O}_{reg} the *regular nilpotent orbit* of \mathfrak{g} .

Let \mathcal{O} be a nonzero nilpotent orbit of \mathfrak{g} .

Question.

Let $m \geq 1$. Is $\mathcal{J}_m(\overline{\mathcal{O}})$ irreducible ?

► Answer : rarely !!!

Main motivation :

Theorem (Namikawa, 2013 / Brion-Fu, 2014).

$\overline{\mathcal{O}}$ is a complete intersection (c.i.) $\iff \mathcal{O} = \mathcal{O}_{\text{reg}}$, i.e., $\overline{\mathcal{O}} = \mathcal{N}$.

► Question (Brion) : can we give another proof of that result using jets ?

► Idea to answer :

Recall that $\mathcal{N} = \overline{\mathcal{O}_{\text{reg}}}$, with \mathcal{O}_{reg} the *regular nilpotent orbit* of \mathfrak{g} .

Let \mathcal{O} be a nonzero nilpotent orbit of \mathfrak{g} .

Question.

Let $m \geq 1$. Is $\mathcal{J}_m(\overline{\mathcal{O}})$ irreducible ?

► Answer : rarely !!!

Main motivation :

Theorem (Namikawa, 2013 / Brion-Fu, 2014).

$\overline{\mathcal{O}}$ is a complete intersection (c.i.) $\iff \mathcal{O} = \mathcal{O}_{\text{reg}}$, i.e., $\overline{\mathcal{O}} = \mathcal{N}$.

► Question (Brion) : can we give another proof of that result using jets ?

► Idea to answer :

$\overline{\mathcal{O}}$ is a c. i. $\implies \overline{\mathcal{O}}$ is normal by Serre's criterion (Panyushev, 91' + Kaledin, 06')

Recall that $\mathcal{N} = \overline{\mathcal{O}_{\text{reg}}}$, with \mathcal{O}_{reg} the *regular nilpotent orbit* of \mathfrak{g} .

Let \mathcal{O} be a nonzero nilpotent orbit of \mathfrak{g} .

Question.

Let $m \geq 1$. Is $\mathcal{J}_m(\overline{\mathcal{O}})$ irreducible ?

► Answer : rarely !!!

Main motivation :

Theorem (Namikawa, 2013 / Brion-Fu, 2014).

$\overline{\mathcal{O}}$ is a complete intersection (c.i.) $\iff \mathcal{O} = \mathcal{O}_{\text{reg}}$, i.e., $\overline{\mathcal{O}} = \mathcal{N}$.

► Question (Brion) : can we give another proof of that result using jets ?

► Idea to answer :

$\overline{\mathcal{O}}$ is a c. i. $\implies \overline{\mathcal{O}}$ is normal by Serre's criterion (Panyushev, 91' + Kaledin, 06')
 $\implies \overline{\mathcal{O}}$ has rational singularities (Panyushev, or Hinich, 91')

Recall that $\mathcal{N} = \overline{\mathcal{O}_{\text{reg}}}$, with \mathcal{O}_{reg} the *regular nilpotent orbit* of \mathfrak{g} .

Let \mathcal{O} be a nonzero nilpotent orbit of \mathfrak{g} .

Question.

Let $m \geq 1$. Is $\mathcal{J}_m(\overline{\mathcal{O}})$ irreducible ?

► Answer : rarely !!!

Main motivation :

Theorem (Namikawa, 2013 / Brion-Fu, 2014).

$\overline{\mathcal{O}}$ is a complete intersection (c.i.) $\iff \mathcal{O} = \mathcal{O}_{\text{reg}}$, i.e., $\overline{\mathcal{O}} = \mathcal{N}$.

► Question (Brion) : can we give another proof of that result using jets ?

► Idea to answer :

$\overline{\mathcal{O}}$ is a c. i. $\implies \overline{\mathcal{O}}$ is normal by Serre's criterion (Panyushev, 91' + Kaledin, 06')
 $\implies \overline{\mathcal{O}}$ has rational singularities (Panyushev, or Hinich, 91')
 $\implies \mathcal{J}_m(\overline{\mathcal{O}})$ is irreducible for any $m \geq 1$ (Mustață)...

Main results :

Main results :

- * For a large number of \mathcal{O} , $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible for any $m \geq 1$.

Main results :

- * For a large number of \mathcal{O} , $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible for any $m \geq 1$.
- * Type A. Assume that $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$.

Main results :

- * For a large number of \mathcal{O} , $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible for any $m \geq 1$.
- * Type A. Assume that $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$.

$$\begin{array}{ccc} \{\text{nilpotent orbits of } \mathfrak{g}\} & \longleftrightarrow & \{\lambda = (\lambda_1 \geq \dots \geq \lambda_k), \sum_{i=1}^k \lambda_i = n\} \\ \mathcal{O}_\lambda & \longleftarrow & \lambda \end{array}$$

Main results :

- * For a large number of \mathcal{O} , $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible for any $m \geq 1$.
- * Type A. Assume that $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$.

$$\begin{array}{ccc} \{ \text{nilpotent orbits of } \mathfrak{g} \} & \longleftrightarrow & \{ \lambda = (\lambda_1 \geq \cdots \geq \lambda_k), \sum_{i=1}^k \lambda_i = n \} \\ \mathcal{O}_\lambda & \longleftarrow & \lambda \end{array}$$

Theorem (M.-Yu, 2014).

If λ is not *rectangular* (i.e., $\lambda_1 = \cdots = \lambda_k$), then $\mathcal{J}_m(\overline{\mathcal{O}_\lambda})$ is reducible for any $m \geq 1$.

Main results :

- * For a large number of \mathcal{O} , $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible for any $m \geq 1$.
- * Type A. Assume that $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$.

$$\begin{array}{ccc} \{ \text{nilpotent orbits of } \mathfrak{g} \} & \longleftrightarrow & \{ \lambda = (\lambda_1 \geq \cdots \geq \lambda_k), \sum_{i=1}^k \lambda_i = n \} \\ \mathcal{O}_\lambda & \longleftarrow & \lambda \end{array}$$

Theorem (M.-Yu, 2014).

If λ is not *rectangular* (i.e., $\lambda_1 = \cdots = \lambda_k$), then $\mathcal{J}_m(\overline{\mathcal{O}_\lambda})$ is reducible for any $m \geq 1$.

- If $\lambda = (n)$ or $\lambda = (1^n)$, then $\mathcal{J}_m(\overline{\mathcal{O}_\lambda})$ is irreducible for any $m \geq 1$.

Main results :

- * For a large number of \mathcal{O} , $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible for any $m \geq 1$.
- * Type A. Assume that $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$.

$$\begin{array}{ccc} \{ \text{nilpotent orbits of } \mathfrak{g} \} & \longleftrightarrow & \{ \lambda = (\lambda_1 \geq \cdots \geq \lambda_k), \sum_{i=1}^k \lambda_i = n \} \\ \mathcal{O}_\lambda & \longleftarrow & \lambda \end{array}$$

Theorem (M.-Yu, 2014).

If λ is not *rectangular* (i.e., $\lambda_1 = \cdots = \lambda_k$), then $\mathcal{J}_m(\overline{\mathcal{O}_\lambda})$ is reducible for any $m \geq 1$.

- If $\lambda = (n)$ or $\lambda = (1^n)$, then $\mathcal{J}_m(\overline{\mathcal{O}_\lambda})$ is irreducible for any $m \geq 1$.
- If $\lambda = (2^p)$, $n = 2p$, then $\mathcal{J}_1(\overline{\mathcal{O}_\lambda})$ is reducible.

Main results :

- * For a large number of \mathcal{O} , $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible for any $m \geq 1$.
- * Type A. Assume that $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$.

$$\begin{array}{ccc} \{ \text{nilpotent orbits of } \mathfrak{g} \} & \longleftrightarrow & \{ \lambda = (\lambda_1 \geq \cdots \geq \lambda_k), \sum_{i=1}^k \lambda_i = n \} \\ \mathcal{O}_\lambda & \longleftarrow & \lambda \end{array}$$

Theorem (M.-Yu, 2014).

If λ is not *rectangular* (i.e., $\lambda_1 = \cdots = \lambda_k$), then $\mathcal{J}_m(\overline{\mathcal{O}_\lambda})$ is reducible for any $m \geq 1$.

- If $\lambda = (n)$ or $\lambda = (1^n)$, then $\mathcal{J}_m(\overline{\mathcal{O}_\lambda})$ is irreducible for any $m \geq 1$.
- If $\lambda = (2^p)$, $n = 2p$, then $\mathcal{J}_1(\overline{\mathcal{O}_\lambda})$ is reducible.
- If $\lambda = (3^2)$, $n = 6$, then $\mathcal{J}_1(\overline{\mathcal{O}_\lambda})$ is irreducible.

Main results :

- * For a large number of \mathcal{O} , $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible for any $m \geq 1$.
- * Type A. Assume that $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$.

$$\begin{array}{ccc} \{ \text{nilpotent orbits of } \mathfrak{g} \} & \longleftrightarrow & \{ \lambda = (\lambda_1 \geq \cdots \geq \lambda_k), \sum_{i=1}^k \lambda_i = n \} \\ \mathcal{O}_\lambda & \longleftarrow & \lambda \end{array}$$

Theorem (M.-Yu, 2014).

If λ is not *rectangular* (i.e., $\lambda_1 = \cdots = \lambda_k$), then $\mathcal{J}_m(\overline{\mathcal{O}_\lambda})$ is reducible for any $m \geq 1$.

- If $\lambda = (n)$ or $\lambda = (1^n)$, then $\mathcal{J}_m(\overline{\mathcal{O}_\lambda})$ is irreducible for any $m \geq 1$.
- If $\lambda = (2^p)$, $n = 2p$, then $\mathcal{J}_1(\overline{\mathcal{O}_\lambda})$ is reducible.
- If $\lambda = (3^2)$, $n = 6$, then $\mathcal{J}_1(\overline{\mathcal{O}_\lambda})$ is irreducible. But we still can use jets to conclude that $\overline{\mathcal{O}_{(3^2)}}$ is not a c.i. (more complicated).

Definition.

We say that \mathcal{O} is *little* if \mathcal{O} is nonzero and $\dim \mathcal{O} \leq \frac{1}{2} \dim \mathfrak{g}$.

Definition.

We say that \mathcal{O} is *little* if \mathcal{O} is nonzero and $\dim \mathcal{O} \leq \frac{1}{2} \dim \mathfrak{g}$.

- ▶ The minimal nilpotent orbit \mathcal{O}_{\min} is little.

Definition.

We say that \mathcal{O} is *little* if \mathcal{O} is nonzero and $\dim \mathcal{O} \leq \frac{1}{2} \dim \mathfrak{g}$.

- ▶ The minimal nilpotent orbit \mathcal{O}_{\min} is little.
- ▶ If \mathfrak{g} has type A , then $\mathcal{O}_{(2^p, 1^q)}$ is little for $p > 0$ and $q > 0$.

Definition.

We say that \mathcal{O} is *little* if \mathcal{O} is nonzero and $\dim \mathcal{O} \leq \frac{1}{2} \dim \mathfrak{g}$.

- The minimal nilpotent orbit \mathcal{O}_{\min} is little.
- If \mathfrak{g} has type A , then $\mathcal{O}_{(2^p, 1^q)}$ is little for $p > 0$ and $q > 0$.

Theorem (M.-Yu, 2014).

If \mathcal{O} is little, then $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible for any $m \geq 1$.

Definition.

We say that \mathcal{O} is *little* if \mathcal{O} is nonzero and $\dim \mathcal{O} \leq \frac{1}{2} \dim \mathfrak{g}$.

- The minimal nilpotent orbit \mathcal{O}_{\min} is little.
- If \mathfrak{g} has type A , then $\mathcal{O}_{(2^p, 1^q)}$ is little for $p > 0$ and $q > 0$.

Theorem (M.-Yu, 2014).

If \mathcal{O} is little, then $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible for any $m \geq 1$. More precisely,

$$\pi_m^{-1}(0) \not\subset \pi_m^{-1}((\overline{\mathcal{O}})_{\text{reg}}) = \pi_m^{-1}(\mathcal{O}) = \mathcal{J}_m(G).\mathcal{O},$$

and $0 \in (\overline{\mathcal{O}})_{\text{sing}} = \overline{\mathcal{O}} \setminus \mathcal{O}$, where $\pi_m : \mathcal{J}_m(\overline{\mathcal{O}}) \rightarrow \overline{\mathcal{O}}$ is the canonical projection.

Definition.

We say that \mathcal{O} is *little* if \mathcal{O} is nonzero and $\dim \mathcal{O} \leq \frac{1}{2} \dim \mathfrak{g}$.

- The minimal nilpotent orbit \mathcal{O}_{\min} is little.
- If \mathfrak{g} has type A , then $\mathcal{O}_{(2^p, 1^q)}$ is little for $p > 0$ and $q > 0$.

Theorem (M.-Yu, 2014).

If \mathcal{O} is little, then $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible for any $m \geq 1$. More precisely,

$$\pi_m^{-1}(0) \not\subset \pi_m^{-1}((\overline{\mathcal{O}})_{\text{reg}}) = \pi_m^{-1}(\mathcal{O}) = \mathcal{J}_m(G).\mathcal{O},$$

and $0 \in (\overline{\mathcal{O}})_{\text{sing}} = \overline{\mathcal{O}} \setminus \mathcal{O}$, where $\pi_m : \mathcal{J}_m(\overline{\mathcal{O}}) \rightarrow \overline{\mathcal{O}}$ is the canonical projection.

- Idea for $m = 1$.

Definition.

We say that \mathcal{O} is *little* if \mathcal{O} is nonzero and $\dim \mathcal{O} \leq \frac{1}{2} \dim \mathfrak{g}$.

- The minimal nilpotent orbit \mathcal{O}_{\min} is little.
- If \mathfrak{g} has type A , then $\mathcal{O}_{(2^p, 1^q)}$ is little for $p > 0$ and $q > 0$.

Theorem (M.-Yu, 2014).

If \mathcal{O} is little, then $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible for any $m \geq 1$. More precisely,

$$\pi_m^{-1}(0) \not\subset \pi_m^{-1}((\overline{\mathcal{O}})_{\text{reg}}) = \pi_m^{-1}(\mathcal{O}) = \mathcal{J}_m(G).\mathcal{O},$$

and $0 \in (\overline{\mathcal{O}})_{\text{sing}} = \overline{\mathcal{O}} \setminus \mathcal{O}$, where $\pi_m : \mathcal{J}_m(\overline{\mathcal{O}}) \rightarrow \overline{\mathcal{O}}$ is the canonical projection.

- Idea for $m = 1$. $\overline{\mathcal{O}}$ is defined by equations f_1, \dots, f_r with $\deg f_i \geq 2$. So, for all i ,

$$f_i(0 + tx) = t^2 f_i(x) \equiv 0 \pmod{[t^2]},$$

whence $\pi_1^{-1}(0) \cong \mathfrak{g}$ and $\dim \pi_1^{-1}(0) \geq 2 \dim \mathcal{O} = \dim \pi_m^{-1}(\mathcal{O}) \dots$

Let $\mathfrak{p} = \mathfrak{l} \oplus \mathfrak{n}$ be a parabolic subalgebra of \mathfrak{g} ,

Let $\mathfrak{p} = \mathfrak{l} \oplus \mathfrak{n}$ be a parabolic subalgebra of \mathfrak{g} ,
and let $\mathcal{O}_{\mathfrak{l}}$ be a nilpotent orbit of \mathfrak{l} .

Let $\mathfrak{p} = \mathfrak{l} \oplus \mathfrak{n}$ be a parabolic subalgebra of \mathfrak{g} ,
and let \mathcal{O}_l be a nilpotent orbit of \mathfrak{l} .

Theorem (Lusztig-Spaltenstein, 1979).

There exists a unique nilpotent orbit \mathcal{O}_g of \mathfrak{g} such that $\mathcal{O}_g \cap (\mathcal{O}_l + \mathfrak{n})$ is dense in $\mathcal{O}_l + \mathfrak{n}$. Moreover, and $\text{codim}_{\mathfrak{g}}(\mathcal{O}_g) = \text{codim}_{\mathfrak{l}}(\mathcal{O}_l)$. We write $\mathcal{O}_g = \text{Ind}_{\mathfrak{l}}^{\mathfrak{g}}(\mathcal{O}_l)$.

Let $\mathfrak{p} = \mathfrak{l} \oplus \mathfrak{n}$ be a parabolic subalgebra of \mathfrak{g} ,
and let \mathcal{O}_l be a nilpotent orbit of \mathfrak{l} .

Theorem (Lusztig-Spaltenstein, 1979).

There exists a unique nilpotent orbit \mathcal{O}_g of \mathfrak{g} such that $\mathcal{O}_g \cap (\mathcal{O}_l + \mathfrak{n})$ is dense in $\mathcal{O}_l + \mathfrak{n}$. Moreover, and $\text{codim}_{\mathfrak{g}}(\mathcal{O}_g) = \text{codim}_{\mathfrak{l}}(\mathcal{O}_l)$. We write $\mathcal{O}_g = \text{Ind}_{\mathfrak{l}}^{\mathfrak{g}}(\mathcal{O}_l)$.

Consider the following property :

$$(P_m) : \quad \exists \mathcal{O}' \subset \overline{\mathcal{O}} \setminus \mathcal{O}, \dim \pi_m^{-1}(\mathcal{O}') \geq \dim \pi_m^{-1}(\mathcal{O}).$$

Let $\mathfrak{p} = \mathfrak{l} \oplus \mathfrak{n}$ be a parabolic subalgebra of \mathfrak{g} ,
and let \mathcal{O}_l be a nilpotent orbit of \mathfrak{l} .

Theorem (Lusztig-Spaltenstein, 1979).

There exists a unique nilpotent orbit \mathcal{O}_g of \mathfrak{g} such that $\mathcal{O}_g \cap (\mathcal{O}_l + \mathfrak{n})$ is dense in $\mathcal{O}_l + \mathfrak{n}$. Moreover, and $\text{codim}_g(\mathcal{O}_g) = \text{codim}_l(\mathcal{O}_l)$. We write $\mathcal{O}_g = \text{Ind}_l^g(\mathcal{O}_l)$.

Consider the following property :

$$(P_m) : \quad \exists \mathcal{O}' \subset \overline{\mathcal{O}} \setminus \mathcal{O}, \dim \pi_m^{-1}(\mathcal{O}') \geq \dim \pi_m^{-1}(\mathcal{O}).$$

► If \mathcal{O} verifies (P_m) , then $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible.

Let $\mathfrak{p} = \mathfrak{l} \oplus \mathfrak{n}$ be a parabolic subalgebra of \mathfrak{g} ,
and let \mathcal{O}_l be a nilpotent orbit of \mathfrak{l} .

Theorem (Lusztig-Spaltenstein, 1979).

There exists a unique nilpotent orbit \mathcal{O}_g of \mathfrak{g} such that $\mathcal{O}_g \cap (\mathcal{O}_l + \mathfrak{n})$ is dense in $\mathcal{O}_l + \mathfrak{n}$. Moreover, and $\text{codim}_g(\mathcal{O}_g) = \text{codim}_l(\mathcal{O}_l)$. We write $\mathcal{O}_g = \text{Ind}_l^g(\mathcal{O}_l)$.

Consider the following property :

$$(P_m) : \quad \exists \mathcal{O}' \subset \overline{\mathcal{O}} \setminus \mathcal{O}, \dim \pi_m^{-1}(\mathcal{O}') \geq \dim \pi_m^{-1}(\mathcal{O}).$$

► If \mathcal{O} verifies (P_m) , then $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible.

Theorem (M.-Yu, 2014).

If \mathcal{O}_l verifies (P_m) , then so does verifies \mathcal{O}_g .

Let $\mathfrak{p} = \mathfrak{l} \oplus \mathfrak{n}$ be a parabolic subalgebra of \mathfrak{g} ,
 and let \mathcal{O}_l be a nilpotent orbit of \mathfrak{l} .

Theorem (Lusztig-Spaltenstein, 1979).

There exists a unique nilpotent orbit \mathcal{O}_g of \mathfrak{g} such that $\mathcal{O}_g \cap (\mathcal{O}_l + \mathfrak{n})$ is dense in $\mathcal{O}_l + \mathfrak{n}$. Moreover, and $\text{codim}_g(\mathcal{O}_g) = \text{codim}_l(\mathcal{O}_l)$. We write $\mathcal{O}_g = \text{Ind}_l^g(\mathcal{O}_l)$.

Consider the following property :

$$(P_m) : \quad \exists \mathcal{O}' \subset \overline{\mathcal{O}} \setminus \mathcal{O}, \dim \pi_m^{-1}(\mathcal{O}') \geq \dim \pi_m^{-1}(\mathcal{O}).$$

► If \mathcal{O} verifies (P_m) , then $\mathcal{J}_m(\overline{\mathcal{O}})$ is reducible.

Theorem (M.-Yu, 2014).

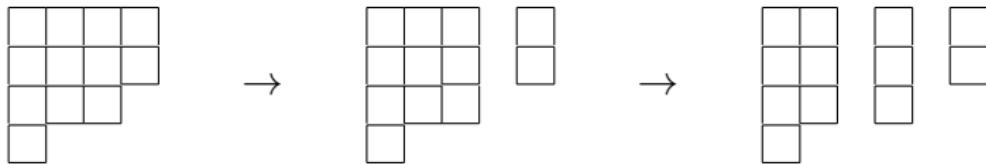
If \mathcal{O}_l verifies (P_m) , then so does verifies \mathcal{O}_g .

In particular, for any nilpotent orbit \mathcal{O} induced from a little orbit, $\mathcal{J}_m(\overline{\mathcal{O}})$ is
 reducible for any m .

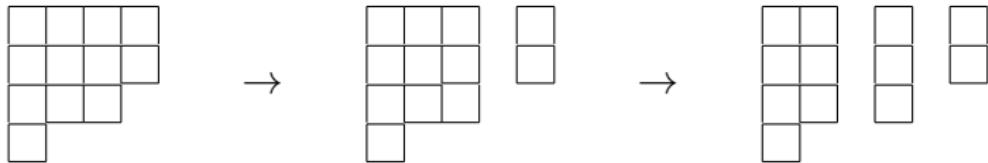
* Consequences for the type A.

- * Consequences for the type A. Example : $\mathfrak{g} = \mathfrak{sl}_{12}$ and $\mathcal{O} = \mathcal{O}_{(4^2,3,1)}$.

- * Consequences for the type A. Example : $\mathfrak{g} = \mathfrak{sl}_{12}$ and $\mathcal{O} = \mathcal{O}_{(4^2,3,1)}$.

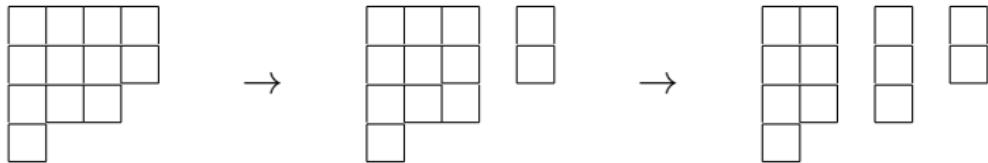


- * Consequences for the type A. Example : $\mathfrak{g} = \mathfrak{sl}_{12}$ and $\mathcal{O} = \mathcal{O}_{(4^2,3,1)}$.



$$\begin{aligned}
 \mathcal{O}_{(4^2,3,1)} &= \text{Ind}_{\mathfrak{sl}_{10} \times \mathfrak{sl}_2 \times \mathbb{C}}^{\mathfrak{sl}_{12}} (\mathcal{O}_{(3^3,1)} \times \mathcal{O}_{(1^2)}) \\
 &= \text{Ind}_{\mathfrak{sl}_{10} \times \mathfrak{sl}_2 \times \mathbb{C}}^{\mathfrak{sl}_{12}} (\text{Ind}_{\mathfrak{sl}_7 \times \mathfrak{sl}_3 \times \mathbb{C}}^{\mathfrak{sl}_{10}} (\textcolor{red}{\mathcal{O}_{(2^3,1)}} \times \mathcal{O}_{(1^3)}) \times \mathcal{O}_{(1^2)})
 \end{aligned}$$

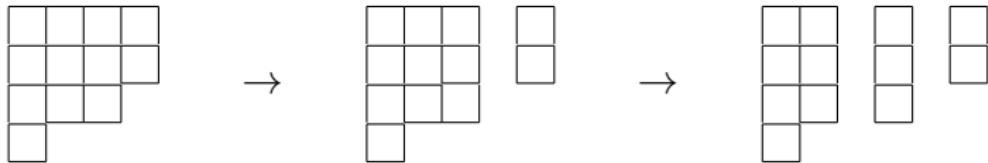
- * Consequences for the type A. Example : $\mathfrak{g} = \mathfrak{sl}_{12}$ and $\mathcal{O} = \mathcal{O}_{(4^2,3,1)}$.



$$\begin{aligned}
 \mathcal{O}_{(4^2,3,1)} &= \text{Ind}_{\mathfrak{sl}_{10} \times \mathfrak{sl}_2 \times \mathbb{C}}^{\mathfrak{sl}_{12}} (\mathcal{O}_{(3^3,1)} \times \mathcal{O}_{(1^2)}) \\
 &= \text{Ind}_{\mathfrak{sl}_{10} \times \mathfrak{sl}_2 \times \mathbb{C}}^{\mathfrak{sl}_{12}} (\text{Ind}_{\mathfrak{sl}_7 \times \mathfrak{sl}_3 \times \mathbb{C}}^{\mathfrak{sl}_{10}} (\textcolor{red}{\mathcal{O}_{(2^3,1)}} \times \mathcal{O}_{(1^3)}) \times \mathcal{O}_{(1^2)})
 \end{aligned}$$

- * Types B_ℓ , C_ℓ , D_ℓ : we reach about 90% of nilpotent orbits for $\ell \gg 0$.

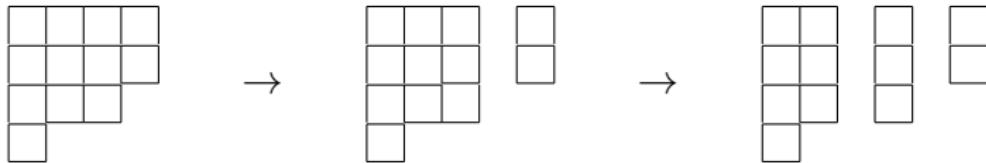
- * Consequences for the type A. Example : $\mathfrak{g} = \mathfrak{sl}_{12}$ and $\mathcal{O} = \mathcal{O}_{(4^2,3,1)}$.



$$\begin{aligned}
 \mathcal{O}_{(4^2,3,1)} &= \text{Ind}_{\mathfrak{sl}_{10} \times \mathfrak{sl}_2 \times \mathbb{C}}^{\mathfrak{sl}_{12}} (\mathcal{O}_{(3^3,1)} \times \mathcal{O}_{(1^2)}) \\
 &= \text{Ind}_{\mathfrak{sl}_{10} \times \mathfrak{sl}_2 \times \mathbb{C}}^{\mathfrak{sl}_{12}} (\text{Ind}_{\mathfrak{sl}_7 \times \mathfrak{sl}_3 \times \mathbb{C}}^{\mathfrak{sl}_{10}} (\mathcal{O}_{(2^3,1)} \times \mathcal{O}_{(1^3)}) \times \mathcal{O}_{(1^2)})
 \end{aligned}$$

- * Types B_ℓ , C_ℓ , D_ℓ : we reach about 90% of nilpotent orbits for $\ell \gg 0$.
- * Exceptional types : it remains unsolved cases.

- * Consequences for the type A. Example : $\mathfrak{g} = \mathfrak{sl}_{12}$ and $\mathcal{O} = \mathcal{O}_{(4^2,3,1)}$.

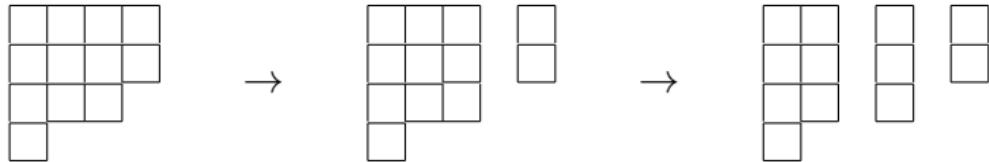


$$\begin{aligned}
 \mathcal{O}_{(4^2,3,1)} &= \text{Ind}_{\mathfrak{sl}_{10} \times \mathfrak{sl}_2 \times \mathbb{C}}^{\mathfrak{sl}_{12}} (\mathcal{O}_{(3^3,1)} \times \mathcal{O}_{(1^2)}) \\
 &= \text{Ind}_{\mathfrak{sl}_{10} \times \mathfrak{sl}_2 \times \mathbb{C}}^{\mathfrak{sl}_{12}} (\text{Ind}_{\mathfrak{sl}_7 \times \mathfrak{sl}_3 \times \mathbb{C}}^{\mathfrak{sl}_{10}} (\textcolor{red}{\mathcal{O}_{(2^3,1)}} \times \mathcal{O}_{(1^3)}) \times \mathcal{O}_{(1^2)})
 \end{aligned}$$

- * Types B_ℓ , C_ℓ , D_ℓ : we reach about 90% of nilpotent orbits for $\ell \gg 0$.
- * Exceptional types : it remains unsolved cases.

Other consequences of the induction property :

- * Consequences for the type A. Example : $\mathfrak{g} = \mathfrak{sl}_{12}$ and $\mathcal{O} = \mathcal{O}_{(4^2,3,1)}$.



$$\begin{aligned}
 \mathcal{O}_{(4^2,3,1)} &= \text{Ind}_{\mathfrak{sl}_{10} \times \mathfrak{sl}_2 \times \mathbb{C}}^{\mathfrak{sl}_{12}} (\mathcal{O}_{(3^3,1)} \times \mathcal{O}_{(1^2)}) \\
 &= \text{Ind}_{\mathfrak{sl}_{10} \times \mathfrak{sl}_2 \times \mathbb{C}}^{\mathfrak{sl}_{12}} (\text{Ind}_{\mathfrak{sl}_7 \times \mathfrak{sl}_3 \times \mathbb{C}}^{\mathfrak{sl}_{10}} (\text{Ind}_{\mathfrak{sl}_7 \times \mathfrak{sl}_3 \times \mathbb{C}}^{\mathfrak{sl}_{10}} (\mathcal{O}_{(2^3,1)} \times \mathcal{O}_{(1^3)}) \times \mathcal{O}_{(1^2)}) \times \mathcal{O}_{(1^2)})
 \end{aligned}$$

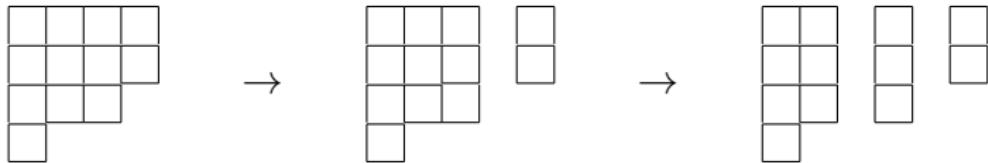
- * Types B_ℓ , C_ℓ , D_ℓ : we reach about 90% of nilpotent orbits for $\ell \gg 0$.
- * Exceptional types : it remains unsolved cases.

Other consequences of the induction property :

Theorem (Raïs-Tauvel, 1992 / M.-Yu, 2015).

Let $m \in \mathbb{Z}_{\geq 0}$. Then, $\mathcal{J}_m(\mathcal{N})$ is normal $\iff m = 0$.

- * Consequences for the type A. Example : $\mathfrak{g} = \mathfrak{sl}_{12}$ and $\mathcal{O} = \mathcal{O}_{(4^2,3,1)}$.



$$\begin{aligned}
 \mathcal{O}_{(4^2,3,1)} &= \text{Ind}_{\mathfrak{sl}_{10} \times \mathfrak{sl}_2 \times \mathbb{C}}^{\mathfrak{sl}_{12}} (\mathcal{O}_{(3^3,1)} \times \mathcal{O}_{(1^2)}) \\
 &= \text{Ind}_{\mathfrak{sl}_{10} \times \mathfrak{sl}_2 \times \mathbb{C}}^{\mathfrak{sl}_{12}} (\text{Ind}_{\mathfrak{sl}_7 \times \mathfrak{sl}_3 \times \mathbb{C}}^{\mathfrak{sl}_{10}} (\text{Ind}_{\mathfrak{sl}_7 \times \mathfrak{sl}_3 \times \mathbb{C}}^{\mathfrak{sl}_{10}} (\mathcal{O}_{(2^3,1)} \times \mathcal{O}_{(1^3)}) \times \mathcal{O}_{(1^2)}) \times \mathcal{O}_{(1^2)})
 \end{aligned}$$

- * Types B_ℓ , C_ℓ , D_ℓ : we reach about 90% of nilpotent orbits for $\ell \gg 0$.
- * Exceptional types : it remains unsolved cases.

Other consequences of the induction property :

Theorem (Raïs-Tauvel, 1992 / M.-Yu, 2015).

Let $m \in \mathbb{Z}_{\geq 0}$. Then, $\mathcal{J}_m(\mathcal{N})$ is normal $\iff m = 0$.

More precisely, for $m \geq 1$, the singular locus of $\mathcal{J}_m(\mathcal{N})$ is $\mathcal{J}_m(\mathcal{N}) \setminus \pi_m^{-1}(\mathcal{O}_{\text{reg}})$ and it has codimension 1 in $\mathcal{J}_m(\mathcal{N})$.

- Other technics : by "restriction" to certain Levi factors, we can deal with some non-little *rigid* (i.e., non induced in a proper way) nilpotent orbits.

- ▶ Other technics : by "restriction" to certain Levi factors, we can deal with some non-little *rigid* (i.e., non induced in a proper way) nilpotent orbits.
- ▶ Other remarks :

- ▶ Other technics : by "restriction" to certain Levi factors, we can deal with some non-little *rigid* (i.e., non induced in a proper way) nilpotent orbits.
- ▶ Other remarks :

Theorem (Mustaţă, 2001)

If X is a c.i., then $(\mathcal{J}_1(X))_{\text{reg}} = \pi_1^{-1}(X_{\text{reg}})$.

- ▶ Other technics : by "restriction" to certain Levi factors, we can deal with some non-little *rigid* (i.e., non induced in a proper way) nilpotent orbits.
- ▶ Other remarks :

Theorem (Mustaţă, 2001)

If X is a c.i., then $(\mathcal{J}_1(X))_{\text{reg}} = \pi_1^{-1}(X_{\text{reg}})$.

- ▶ The above is true for any m if $X = \mathcal{N}$ (Raïs-Tauvel).

- ▶ Other technics : by "restriction" to certain Levi factors, we can deal with some non-little *rigid* (i.e., non induced in a proper way) nilpotent orbits.
- ▶ Other remarks :

Theorem (Mustaţă, 2001)

If X is a c.i., then $(\mathcal{J}_1(X))_{\text{reg}} = \pi_1^{-1}(X_{\text{reg}})$.

- ▶ The above is true for any m if $X = \mathcal{N}$ (Raïs-Tauvel).
- * Assume that $\mathfrak{g} = \mathfrak{sl}_6(\mathbb{C})$ and that $\mathcal{O} = \mathcal{O}_{(3^2)}$.

- ▶ Other technics : by "restriction" to certain Levi factors, we can deal with some non-little *rigid* (i.e., non induced in a proper way) nilpotent orbits.
- ▶ Other remarks :

Theorem (Mustaţă, 2001)

If X is a c.i., then $(\mathcal{J}_1(X))_{\text{reg}} = \pi_1^{-1}(X_{\text{reg}})$.

- ▶ The above is true for any m if $X = \mathcal{N}$ (Raïs-Tauvel).
- * Assume that $\mathfrak{g} = \mathfrak{sl}_6(\mathbb{C})$ and that $\mathcal{O} = \mathcal{O}_{(3^2)}$. Here, one can show that

$$\pi_1^{-1}(\mathcal{O}_{(2^2, 1^2)}) \subset (\mathcal{J}_1(\overline{\mathcal{O}_{(3^2)}}))_{\text{reg}}.$$

So, $\overline{\mathcal{O}_{(3^2)}}$ is not a c.i.

- ▶ Other technics : by "restriction" to certain Levi factors, we can deal with some non-little *rigid* (i.e., non induced in a proper way) nilpotent orbits.
- ▶ Other remarks :

Theorem (Mustaţă, 2001)

If X is a c.i., then $(\mathcal{J}_1(X))_{\text{reg}} = \pi_1^{-1}(X_{\text{reg}})$.

- ▶ The above is true for any m if $X = \mathcal{N}$ (Raïs-Tauvel).
- * Assume that $\mathfrak{g} = \mathfrak{sl}_6(\mathbb{C})$ and that $\mathcal{O} = \mathcal{O}_{(3^2)}$. Here, one can show that

$$\pi_1^{-1}(\mathcal{O}_{(2^2, 1^2)}) \subset (\mathcal{J}_1(\overline{\mathcal{O}_{(3^2)}}))_{\text{reg}}.$$
 So, $\overline{\mathcal{O}_{(3^2)}}$ is not a c.i.
- * In turn, for $\mathfrak{g} = \mathfrak{sp}_4(\mathbb{C})$ (type $C_2 \cong B_2$) and $\mathcal{O} = \mathcal{O}_{(2^2)}$, one can show that $\mathcal{J}_1(\overline{\mathcal{O}_{(2^2)}})$ is irreducible and that

$$(\mathcal{J}_1(\overline{\mathcal{O}_{(2^2)}}))_{\text{reg}} = \pi_1^{-1}(\mathcal{O}_{(2^2)}).$$

Thank you !