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Let X be a scheme of finite type over C, and m ∈ Z>0.

Definition (jet scheme).

The m-th jet scheme of X , denoted by Jm(X ), is a scheme of finite type

characterized by the functorial property : ∀ C-algebra A,

Hom(Spec A,Jm(X )) = Hom(Spec A[t]/(tm+1),X ).

In particular,

{C-points of Jm(X )}←→{C[t]/(tm+1)-points of X}.

Examples :

I J0(X ) ∼= X , J1(X ) ∼= TX .

I If X ⊂ AN is affine, defined by equations f1, . . . , fr , then

Jm(X ) ⊂ AN(m+1) is affine, defined by equations expressing that

∀ j = 1, . . . , r , fj (x0 + x1t + · · ·+ xmtm) ≡ 0 mod [tm+1].
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Deep connexions between the geometry of Jm(X ) and that of X .

• Jm(X ) smooth ⇐⇒ X smooth (if so, dimJm(X ) = (m + 1) dim X ),

• Jm(X ) irreducible =⇒ X irreducible ,

• Jm(X ) reduced =⇒ X reduced,

• Jm(X ) normal =⇒ X normal, etc.

I Remark (Kolchin) : J∞(X ) := lim←−Jm(X ) is irreducible ⇐⇒ X is

irreducible.

More interesting : there are deep connexions between the geometry of Jm(X )

and the singularities of X (predicted by Nash, 95’).

Theorem (M. Mustaţă, 2001).

Assume that X is a complete intersection (and irreducible). Then,

X has rational singularities ⇐⇒ ∀m ∈ Z>0, Jm(X ) is irreducible.

I This was conjectured by D. Eisenbud and E. Frenkel in order to apply it to

the nilpotent cone of a reductive Lie algebra...
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Let G be a complex connected simple algebraic group, and g its Lie algebra.

Then

Jm(g) ∼= g⊗ C[t]/(tm+1)

is the generalized Takiff Lie algebra, with Lie bracket

∀ x , y ∈ g, ∀ k, l ∈ Z>0, [x ⊗ tk , y ⊗ t l ] = [x , y ]⊗ tk+l .

Let N be the nilpotent cone of g,

N = SpecC[g]/C[g]G
+.
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Then
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Let N be the nilpotent cone of g,

N = SpecC[g]/C[g]G
+ = SpecC[g]/(p1, . . . , prk g).

By Kostant, N is a complete intersection, irreducible, reduced and normal.

Furthermore, by Hesselink, it has rational singularities.

Theorem (Mustaţă / Eisenbud-Frenkel, 2001).

∀m > 0, Jm(N ) is irreducible. Moreover, C[Jm(g)] is free over C[Jm(g)]Jm(G).
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Recall that N = Oreg, with Oreg the regular nilpotent orbit of g.

Let O be a nonzero nilpotent orbit of g.

Question.

Let m > 1. Is Jm(O) irreducible ?

I Answer : rarely ! ! !

Main motivation :

I Question (Brion) : can we give another proof of that result using jets ?

I Idea to answer :

O is a c. i. =⇒ O is normal by Serre’s criterion (Panyushev, 91’ + Kaledin, 06’)

=⇒ O has rational singularities (Panyushev, or Hinich, 91’)

=⇒ Jm(O) is irreducible for any m > 1 (Mustaţă)...
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Jet schemes of nilpotent orbit closures



Jet schemes
Nilpotent orbit closures
Little nilpotent orbits

Induced nilpotent orbits
Other remarks

Recall that N = Oreg, with Oreg the regular nilpotent orbit of g.

Let O be a nonzero nilpotent orbit of g.

Question.

Let m > 1. Is Jm(O) irreducible ?

I Answer : rarely ! ! !

Main motivation :

I Question (Brion) : can we give another proof of that result using jets ?

I Idea to answer :

O is a c. i. =⇒ O is normal by Serre’s criterion (Panyushev, 91’ + Kaledin, 06’)

=⇒ O has rational singularities (Panyushev, or Hinich, 91’)

=⇒ Jm(O) is irreducible for any m > 1 (Mustaţă)...
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Jet schemes of nilpotent orbit closures



Jet schemes
Nilpotent orbit closures
Little nilpotent orbits

Induced nilpotent orbits
Other remarks

Recall that N = Oreg, with Oreg the regular nilpotent orbit of g.

Let O be a nonzero nilpotent orbit of g.

Question.

Let m > 1. Is Jm(O) irreducible ?

I Answer : rarely ! ! !

Main motivation :

Theorem (Namikawa, 2013 / Brion-Fu, 2014).

O is a complete intersection (c.i.) ⇐⇒ O = Oreg, i.e., O = N .

I Question (Brion) : can we give another proof of that result using jets ?

I Idea to answer :
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Main results :

∗ For a large number of O, Jm(O) is reducible for any m > 1.

∗ Type A. Assume that g = sln(C).

{ nilpotent orbits of g } ←→ {λ = (λ1 > · · · > λk ),
∑k

i=1 λi = n}
Oλ ←− λ

Theorem (M.-Yu, 2014).

If λ is not rectangular (i.e., λ1 = · · · = λk ), then Jm(Oλ) is reducible for any

m > 1.

I If λ = (n) or λ = (1n), then Jm(Oλ) is irreducible for any

m > 1.

I If λ = (2p), n = 2p, then J1(Oλ) is reducible.

I If λ = (32), n = 6, then J1(Oλ) is irreducible. But we still can use

jets to conclude that O(32) is not a c.i. (more complicated).
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Definition.

We say that O is little if O is nonzero and dimO 6 1
2

dim g.

I The minimal nilpotent orbit Omin is little.

I If g has type A, then O(2p ,1q) is little for p > 0 and q > 0.

Theorem (M.-Yu, 2014).

If O is little, then Jm(O) is reducible for any m > 1. More precisely,

π−1
m (0) 6⊂ π−1

m ((O)reg) = π−1
m (O) = Jm(G).O,

and 0 ∈ (O)sing = O \ O, where πm : Jm(O)→ O is the canonical projection.

I Idea for m = 1. O is defined by equations f1, . . . , fr with deg fi > 2. So,

for all i ,

fi (0 + tx) = t2fi (x) ≡ 0 mod [t2],

whence π−1
1 (0) ∼= g and dimπ−1

1 (0) > 2 dimO = dimπ−1
m (O)...
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Let p = l⊕ n be a parabolic subalgebra of g,

and let Ol be a nilpotent orbit of l.

Theorem (Lusztig-Spaltenstein, 1979).

There exists a unique nilpotent orbit Og of g such that Og ∩ (Ol + n) is dense

in Ol + n. Moreover, and codimg(Og) = codiml(Ol). We write Og = Indg
l (Ol).

Consider the following property :

(Pm) : ∃O′ ⊂ O \ O, dimπ−1
m (O′) > dimπ−1

m (O).

I If O verifies (Pm), then Jm(O) is reducible.

Theorem (M.-Yu, 2014).

If Ol verifies (Pm), then so does verifies Og.

In particular, for any nilpotent orbit O induced from a little orbit, Jm(O) is

reducible for any m.
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∗ Consequences for the type A.

Example : g = sl12 and O = O(42,3,1).

→ →

O(42,3,1) = Indsl12
sl10×sl2×C(O(33,1) ×O(12))

= Indsl12
sl10×sl2×C(Indsl10

sl7×sl3×C(O(23,1) ×O(13))×O(12))

∗ Types B`, C`, D` : we reach about 90% of nilpotent orbits for `� 0.

∗ Exceptional types : it remains unsolved cases.

Other consequences of the induction property :

Theorem (Räıs-Tauvel, 1992 / M.-Yu, 2015).

Let m ∈ Z>0. Then, Jm(N ) is normal ⇐⇒ m = 0.

More precisely, for m > 1, the singular locus of Jm(N ) is Jm(N ) \ π−1
m (Oreg)

and it has codimension 1 in Jm(N ).
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∗ Types B`, C`, D` : we reach about 90% of nilpotent orbits for `� 0.

∗ Exceptional types : it remains unsolved cases.

Other consequences of the induction property :

Theorem (Räıs-Tauvel, 1992 / M.-Yu, 2015).

Let m ∈ Z>0. Then, Jm(N ) is normal ⇐⇒ m = 0.

More precisely, for m > 1, the singular locus of Jm(N ) is Jm(N ) \ π−1
m (Oreg)

and it has codimension 1 in Jm(N ).
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I Other technics : by ”restriction” to certain Levi factors, we can deal with

some non-little rigid (i.e., non induced in a proper way) nilpotent orbits.

I Other remarks :

Theorem (Mustaţă, 2001)

If X is a c.i., then (J1(X ))reg = π−1
1 (Xreg).

I The above is true for any m if X = N (Räıs-Tauvel).

∗ Assume that g = sl6(C) and that O = O(32). Here, one can show that

π−1
1 (O(22,12)) ⊂ (J1(O(32)))reg.

So, O(32) is not a c.i.

∗ In turn, for g = sp4(C) (type C2
∼= B2) and O = O(22), one can show that

J1(O(22)) is irreducible and that

(J1(O(22)))reg = π−1
1 (O(22)).
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∗ Assume that g = sl6(C) and that O = O(32). Here, one can show that

π−1
1 (O(22,12)) ⊂ (J1(O(32)))reg.

So, O(32) is not a c.i.

∗ In turn, for g = sp4(C) (type C2
∼= B2) and O = O(22), one can show that

J1(O(22)) is irreducible and that

(J1(O(22)))reg = π−1
1 (O(22)).

Jet schemes of nilpotent orbit closures



Jet schemes
Nilpotent orbit closures
Little nilpotent orbits

Induced nilpotent orbits
Other remarks

Thank you !
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