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Let X be a scheme of finite type over C, and m € Zxo.

The m-th jet scheme of X, denoted by Jm(X), is a scheme of finite type
characterized by the functorial property : V C-algebra A,

Hom(Spec A, Jm(X)) = Hom(Spec A[t]/(t™1), X).

In particular,

{C-points of Tm(X)} < {C[t]/(t""")-points of X}.
Examples :

> Jo(X) =X, (X)X TX.

» If X C AV is affine, defined by equations f,. .., f,, then
JIm(X) C AN s affine, defined by equations expressing that

Vj=

1L,...,r, fi(xo+xit+--+xxt")=0 mod [t"].

[m] = = =
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o Jm(X) reduced = X reduced,
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irreducible.

More interesting : there are deep connexions between the geometry of Jm(X)
and the singularities of X (predicted by Nash, 95).
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o Jm(X) smooth <= X smooth (if so, dim Jmn(X) = (m + 1) dim X),
o | Tm(X) irreducible = X irreducible |

® Jm(X) reduced = X reduced,

e Jm(X) normal = X normal, etc.
» Remark (Kolchin) : Joo(X) := I'Lnjm(X) is irreducible <= X is
irreducible.

More interesting : there are deep connexions between the geometry of Jm(X)
and the singularities of X (predicted by Nash, 95).

Assume that X is a complete intersection (and irreducible). Then,
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Deep connexions between the geometry of Jm(X) and that of X.
o Jm(X) smooth <= X smooth (if so, dim Jmn(X) = (m + 1) dim X),
o | Tm(X) irreducible = X irreducible |
o Jm(X) reduced = X reduced,

e Jm(X) normal = X normal, etc.

» Remark (Kolchin) : Joo(X) := I'Lnjm(X) is irreducible <= X is
irreducible.

More interesting : there are deep connexions between the geometry of Jm(X)
and the singularities of X (predicted by Nash, 95).

Assume that X is a complete intersection (and irreducible). Then,
X has rational singularities <= V' m € Zzo, Jn(X) is irreducible.

» This was conjectured by D. Eisenbud and E. Frenkel in order to apply it to

the nilpotent cone of a reductive Lie algebra... o - _
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Let G be a complex connected simple algebraic group, and g its Lie algebra.
Then

In(g) = g @ C[e]/(¢™)
is the generalized Takiff Lie algebra, with Lie bracket

Vx,y €g,Vk, 1€ Zz, [x® tk,y® t’] =[xy]l® !,
Let NV be the nilpotent cone of g,

N = SpecC[g]/C[g]$ = SpecClal/(p1, - -, Pico)-

By Kostant, AV is a complete intersection, irreducible, reduced and normal.
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Let G be a complex connected simple algebraic group, and g its Lie algebra.
Then

In(g) = g @ C[e]/ (™)
is the generalized Takiff Lie algebra, with Lie bracket

Vx,y €9, Vk1€Zso, [x@t y@t]=[xylet"
Let \V be the nilpotent cone of g,

N = SpecClg]/Clg]$ = SpecClal/(p1. - - -, Pika)-

By Kostant, AV is a complete intersection, irreducible, reduced and normal.
Furthermore, by Hesselink, it has rational singularities.

¥m >0, Jn(N) is irreducible. Moreover, C[7m(g)] is free over C[Jm(g)]7().
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Recall that ' = Oyeg, with Oyeg the regular nilpotent orbit of g.
Let O be a nonzero nilpotent orbit of g.

Let m > 1. Is Jn(O) irreducible ?

» Answer : rarely ! !l

Main motivation :

O is a complete intersection (c.i.) <= O = Oreq, ie., O = N.

» Question (Brion) : can we give another proof of that result using jets?
» |dea to answer :

Oisac.i. == O isnormal by Serre’s criterion (Panyushev, 91’ + Kaledin, 06')
= O has rational singularities (Panyushev, or Hinich, 91')

[m] = = =
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Recall that ' = Oyeg, with Oyeg the regular nilpotent orbit of g.
Let O be a nonzero nilpotent orbit of g.

Let m > 1. Is Jn(O) irreducible ?

» Answer : rarely ! !l

Main motivation :

O is a complete intersection (c.i.) <= O = Oreq, ie., O = N.

» Question (Brion) : can we give another proof of that result using jets?
» |dea to answer :

Oisac.i. == O isnormal by Serre’s criterion (Panyushev, 91’ + Kaledin, 06')

= O has rational singularities (Panyushev, or Hinich, 91')

= Jm(O) is irreducible for any m > 1 (Mustat3)...
[} = =
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Main results :

* For a large number of O, J,(O) is reducible for any m > 1.
% Type A. Assume that g = s(,(C).
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OA <— A

If X is not rectangular (i.e., A1 = --- = M), then Jn(Ox) is reducible for any
m> 1.

» If A= (n) or A= (1"), then J,,(Ox) is irreducible for any
m>1.

» If A= (27), n=2p, then J1(Ox) is reducible.
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* For a large number of O, J,(O) is reducible for any m > 1.
% Type A. Assume that g = s(,(C).

{nilpotent orbits of g} +— {A=(A1 == \), Zf.‘zl Ai =n}
OA <— A

If X is not rectangular (i.e., A1 = --- = M), then Jn(Ox) is reducible for any
m> 1.

» If A= (n) or A= (1"), then J,,(Ox) is irreducible for any
m>1.

» If A= (27), n=2p, then J1(Ox) is reducible.
» If X =(3%), n=6, then J1(Ox) is irreducible.
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Main results :

* For a large number of O, J,(O) is reducible for any m > 1.
% Type A. Assume that g = s(,(C).

{nilpotent orbits of g} +— {A=(A1 == \), Zf.‘zl Ai =n}
OA <— A

If X is not rectangular (i.e., A1 = --- = M), then Jn(Ox) is reducible for any
m> 1.

» If A= (n) or A= (1"), then J,,(Ox) is irreducible for any
m>1.

» If A= (27), n=2p, then J1(Ox) is reducible.

> If A =(3%), n=6, then J1(Oa) is irreducible. But we still can use
jets to conclude that % is not a c.i. (more complicated).

o F = DA
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We say that O is little if O is nonzero and dim O < %dim g.

» The minimal nilpotent orbit Omin is little.

» If g has type A, then O(p 14) is little for p > 0 and g > 0.

If O is little, then 7,(O) is reducible for any m > 1. More precisely,

' (0) Z T ((O)reg) = T’ (O) = Tm(G)-O,

and 0 € (O)sing = O\ O, where 7, : Tm(O) — O is the canonical projection

» ldea for m=1.
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We say that O is little if O is nonzero and dim O < %dim g. I

» The minimal nilpotent orbit Omin is little.

» If g has type A, then O(p 14) is little for p > 0 and g > 0.

If O is little, then 7,(O) is reducible for any m > 1. More precisely,

' (0) Z T ((O)reg) = T’ (O) = Tm(G)-O,

and 0 € (O)sing = O\ O, where 7, : Tm(O) — O is the canonical projection.

» Idea for m=1. @ is defined by equations f, ..., f, with deg f; > 2. So,
for all /,

(0 + tx) = *fi(x) =0 mod [t7],
whence 7; 1(0) 2 g and dim 7, *(0) > 2dim O = dim 7,*(0)...
[} = =

DA



Jet schemes
Nilpotent orbit closures

Little nilpotent orbits
Induced nilpotent orbits
Other remarks

Let p = [ & n be a parabolic subalgebra of g,

DA



Jet schemes
Nilpotent orbit closures

Little nilpotent orbits
Induced nilpotent orbits
Other remarks

Let p = [ & n be a parabolic subalgebra of g,
and let O be a nilpotent orbit of [.

DA



Jet schemes
Nilpotent orbit closures
Little nilpotent orbits
Induced nilpotent orbits
Other remarks
’

Let p = [ & n be a parabolic subalgebra of g,
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There exists a unique nilpotent orbit Oy of g such that Oy N (O + n) is dense
in O; + n. Moreover, and codimg(Oy) = codim((O). We write Oy = Ind}(Oy).
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There exists a unique nilpotent orbit Oy of g such that Oy N (O + n) is dense
in O + n. Moreover, and codimy(Og) = codim((O;). We write Oy = Ind}?(Oy).

Consider the following property :

(Pm) : 30' c 0\ 0O, dim7, (O') > dim 7, (O).

» If O verifies (Pm), then Jn(O) is reducible.
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Consider the following property :
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» If O verifies (Pm), then Jn(O) is reducible.
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Let p = [ & n be a parabolic subalgebra of g,
and let O be a nilpotent orbit of [.

There exists a unique nilpotent orbit Oy of g such that Oy N (O + n) is dense
in O + n. Moreover, and codimy(Og) = codim((O;). We write Oy = Ind}?(Oy).

Consider the following property :

(Pm) : 30' c 0\ 0O, dim7, (O') > dim 7, (O).

» If O verifies (Pm), then Jn(O) is reducible.

If Oy verifies (Pp,), then so does verifies Oy.
In particular, for any nilpotent orbit © induced from a little orbit, J»(O) is
reducible for any m.
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%

, 8 =

Ow2,3,1) Indi:igxslz XC(O(33,1) X 0(12))

sl
Inds[w XslyxC

(IS o1y xc(Os 1) X Ops)) X O2))
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* Consequences for the type A. Example : g = sli> and O = O(y2 3 ).

, 8 =

%

Ow2,3,1) Indi:igxslz xc(0(33,1) X 0(12))
[ [
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* Types By, Co, Dy

: we reach about 90% of nilpotent orbits for £ > 0.
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x Types By, Cy, Dy : we reach about 90% of nilpotent orbits for £ >> 0.
* Exceptional types : it remains unsolved cases.
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* Consequences for the type A. Example : g = sli> and O = O(y2 3 ).

, 8 =

%

Ow2,3,1) Indi:igxslz xc(0(33,1) X 0(12))
Ind=h2

sligXslhp xC

(INd5%, o1y wc(O2 1) X O3)) X Opzzy)
* Types By, Co, Dy

: we reach about 90% of nilpotent orbits for £ > 0.
* Exceptional types :

: it remains unsolved cases.
Other consequences of the induction property :
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* Consequences for the type A. Example : g = sli> and O = O(y2 3 ).

, J . =

Owsy = Indi:iixsrzxc(o(?,l) X 0(12))
1§ 1§
— |nd5 12 (Indzl;OXEI;;XC(OQS’l) X 0(13)) X 0(12))

sligXslhp xC

x Types By, Cy, Dy : we reach about 90% of nilpotent orbits for £ >> 0.

* Exceptional types : it remains unsolved cases.

Other consequences of the induction property :

Let m € Zzo. Then, Jm(N) is normal <= m =0.
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* Consequences for the type A. Example : g = sliz and O = O(y2 3 ).

. HHE -

Owrpyy = Indi:iixslzxc(o(?,l)XO(IZ))

=

I I
= I“d:ligXsrzxc(lndjﬁomgxc(o(ﬁ,l) x 0(13)) x 0(12))

x Types By, Cy, Dy : we reach about 90% of nilpotent orbits for £ >> 0.

* Exceptional types : it remains unsolved cases.

Other consequences of the induction property :

Let m € Zzo. Then, Jm(N) is normal <= m =0.

More precisely, for m > 1, the singular locus of Jin(N) is Tm(N) \ 7 (Oreg)

and it has codimension 1 in Jn(N).
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» Other technics : by "restriction” to certain Levi factors, we can deal with
some non-little rigid (i.e., non induced in a proper way) nilpotent orbits.
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If X is a c.i., then (J1(X))reg = 77 *(Xreg)-
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» Other technics : by "restriction” to certain Levi factors, we can deal with

some non-little rigid (i.e., non induced in a proper way) nilpotent orbits.
» Other remarks :

If X is a c.i., then (Ji(X))reg = 71 *(Xreg)-

» The above is true for any m if X = A/ (Rais-Tauvel).
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» Other technics : by "restriction” to certain Levi factors, we can deal with

some non-little rigid (i.e., non induced in a proper way) nilpotent orbits.
» Other remarks :

If X is a c.i., then (J1(X))reg = 77 *(Xreg)-

» The above is true for any m if X = A/ (Rais-Tauvel).

* Assume that g = sls(C) and that O = O3.

DA



Jet schemes
Nilpotent orbit closures
Little nilpotent orbits
Induced nilpotent orbits
Other remarks

» Other technics : by "restriction” to certain Levi factors, we can deal with

some non-little rigid (i.e., non induced in a proper way) nilpotent orbits.
» Other remarks :

If X is a c.i., then (J1(X))reg = 77 *(Xreg)-

» The above is true for any m if X = A/ (Rais-Tauvel).

+ Assume that g = slg(C) and that O = O(s2). Here, one can show that

™1 1 (Op2,12)) C (T1(O(32)))reg-
So, Oz is not a c.i.
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» Other technics : by "restriction” to certain Levi factors, we can deal with

some non-little rigid (i.e., non induced in a proper way) nilpotent orbits.
» Other remarks :

If X is a c.i., then (J1(X))reg = 77 *(Xreg)-

» The above is true for any m if X = A/ (Rais-Tauvel).

+ Assume that g = slg(C) and that O = O(s2). Here, one can show that

™1 1 (Op2,12)) C (T1(O(32)))reg-
So, Oz is not a c.i.

# In turn, for g = sp,(C) (type G2 = Bs) and O = O(2), one can show that
J1(Oz2y) is irreducible and that

(T1(O2)))reg = 1 H(O22)).

=l = =
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Thank you'!

DA



	Jet schemes
	Nilpotent orbit closures
	Little nilpotent orbits
	Induced nilpotent orbits
	Other remarks

