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o Weyl group orbit functions - related to Weyl groups of simple
Lie algebras (groups).

o Infinite families of multivariable complex functions.

o Useful tool in the representation theory of Lie algebras (Lie
groups).

o Continuous and discrete transforms based on orbit functions
provide a Fourier-like analysis.
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o Simple Lie algebras of rank n with the set of simple roots
A={og,...,an}.

o Lie algebras By, C,, F4 and G, - roots of two lengths, short
and long roots.

o Weight lattice: P = Zw1 + ... + Zw,, where 2<a,-, wj) = 0j;.

<Oéi, Oé,‘>
o Weyl group W - generated by reflections r; with respect to the
. aj, X
hyperplanes orthogonal to o;, i.e., rix = x — 2 (i, x) .
(i, ai)
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o Root system W/(A) with the highest root &.
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o The affine Weyl group W - generated by reflections r; and
ro, where
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o Root system W/(A) with the highest root &.

o The affine Weyl group W - generated by reflections r; and
ro, where

2{(x,)
(6,6

rnx =rex+§, rex=x-—

¢.

o Its fundamental domain F - n—dimensional simplex.

6/22



™

7/22



o Homomorphisms o : W — {£1}.
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o Homomorphisms o : W — {£1}.

o Four admissible mappings - the identity, the determinant and
homomorphisms o° and ¢/, defined as

R 1, « long root, | 1, « short root,
o%(ry) = o'(ra) =
—1, « short root, —1, « long root,.

o Orbit functions - for every x € R" and every A € P,

QPK _ Z (W)eZTI'Z (wA X>

weWw

o Notation - C—,S—, S°—, S'— functions.
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o Multivariable complex function with derivatives of all orders.

9/22
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o Multivariable complex function with derivatives of all orders.

o (Anti)invariant with respect to the affine Weyl group Waf.

o Forming sets orthogonal with respect to a continuous and
discrete inner product.
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o Every finite group G can be written as a union of its conjugacy
classes.
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o Every finite group G can be written as a union of its conjugacy
classes.

o Irreducible characters x - class functions. The number of
conjugacy classes equals the number of irreducible characters -
character tables.

o Row orthogonality relation - for every pair x, X/,

> xu(@)xi(g) =16Glou-
geG

o For every element g € G, x(g7) = x(g) - ifevery g € G is
conjugated to its inverse then all the characters have real
values. This is the case of characters of Weyl groups.
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[ Lol [ Co[Co[Cs|CalCs|

[Pl C]C]c] xil[1][1]1[1]1
xi[1[1]1 Xe [ 1] 1] 1]-1]-1
e [T 1] xs 1|1 ]-1]1]-1
sl 2 ]-1]0 xa | 1] 1T ]-1)-1]1

xs | 2| 2[0]0]0
Lol [ Co[Co|Cs|CafCs]GCs|
xi ]| 1] 1] 1]1]1]1
xa | T |1 |11 [-1]-1
xs || 1|11 ]-1|1]-1
Xa | 1|11 |-1[-1]1
xs | 2|2 |-1]-1[0]0
xe | 2 |2[-1]1[0]0
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Let W be a Weyl group of rank n with irreducible characters
X1,---,Xr- Forevery x, A\ € R" and i = 1,...,r we define

¢§(X) — Z Xk(W)ezm<W)"X>.

weW
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Let W be a Weyl group of rank n with irreducible characters
X1,---,Xr- Forevery x, A\ € R" and i = 1,...,r we define

¢l)<\(x) — Z Xk(W)ezm<W)"X).

weW

o The trivial and alternating character induce C— and S—
functions.

o Sign homomorphisms ¢ and o' are the only two other
possible linear characters.

o The definition includes all four families of orbit functions for
Bn, Cn and G2.
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o Trivial case A = 0 - C—function equals |W/|, the others are
identically zero.
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o Trivial case A = 0 - C—function equals |W/|, the others are
identically zero.

o Let x, x/ be any irreducible characters, w € W, ¢ € R and

x € R". Then
Pr(x) = ok (N)
DA (%) = ¢5(cx)
Dea(x) = P5(w1x)

o Product of two functions ¢*, ¢':

K)L() = Y xwlw)x()e™ AT,

w,weW
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For every 0 # A\, ju € PT = Z2%; + ... + ZZ%, and every pair of
irreducible characters xy, x; the following relation holds,

L AT = WPIFI 30 xulw)ind

S weEstab W(X\)

where dy is the degree of the character x; and F = Uwew wF.
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For every 0 # A\, ju € PT = Z2%; + ... + ZZ%, and every pair of
irreducible characters xy, x; the following relation holds,

L AT = WPIFI 30 xulw)ind

S weEstab W(X\)

where dy is the degree of the character x; and F = Uwew wF.
In particular, for A\, € P*+ = Nw; + ... + Nw, it holds that

é&w%mw=mwmmm.
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o The proof uses the orthogonality of characters, the
orthogonality of C—functions,

/F 1 ()L (X)dx = ||| W] stabuy (A) 6,
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o The proof uses the orthogonality of characters, the
orthogonality of C—functions,

[ SACOTIRIdx = [Fl1W | stabw (V)3
and the following property - for 0 # \, u € P,

D AL ) = D xk(@)xi (WD) (%).

wew W, wew
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o The proof uses the orthogonality of characters, the
orthogonality of C—functions,

[ SACOTIRIdx = [Fl1W | stabw (V)3
and the following property - for 0 # \, u € P,

D ()L, 0) = D XkW)x1(W)D5_ sy (%)-
wew W, WEW

o In a similar way, the discrete orthogonality relations are proven.
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o Weyl group W with irreducible characters 1, ..., xr.
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o Weyl group W with irreducible characters 1, ..., xr.

o We fix x; and X\ €)", we consider the corresponding function
¢} as a function of x € R”.

o The functions q&{/v)\, w € W, fulfil r — 1 linearly independent
relations: for each k # |,

Y Xk(W)ua(x) = 0.

weW
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o Conjugacy classes:

W(A2) ={id}U{n,n,nnntu{nrmn, nn}.
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o Conjugacy classes:

W(Az) = {Id} U {r]_, r, r1r2r1} U {r1r2, rgrl}.

o Three functions, one non-trivial.

° ¢§(X) — 2e2wz()\,x) _ e27m(r2r1)\,x) _ e27m(r1r2)\,x)

o Relations:

¢>‘(X) + ¢l’1r2)\(x) + ¢r2r1)\(x) =0
P2 (X) + B2A(X) + D2 a(x) =0
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The contour plot of the real part (left) and the imaginary part
(right) of the function ¢?1,0)(X)' The triangle denotes the
fundamental domain F of the affine Weyl group W(A>).

e ¢
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19/22



The contour plot of the real part (left) and the imaginary part
(right) of the function ¢?1,2)(X)- The triangle denotes the
fundamental domain F of the affine Weyl group W(Az).
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