

On Generalization of Weyl Group Orbit Functions

Lenka Háková

joint work with Agnieszka Tereszkiewicz

Lie Theory and Its Applications in Physics XI
Varna, 15-21 June, 2015

Motivation

- Weyl group orbit functions - related to Weyl groups of simple Lie algebras (groups).

Motivation

- Weyl group orbit functions - related to Weyl groups of simple Lie algebras (groups).
- Infinite families of multivariable complex functions.

Motivation

- Weyl group orbit functions - related to Weyl groups of simple Lie algebras (groups).
- Infinite families of multivariable complex functions.
- Useful tool in the representation theory of Lie algebras (Lie groups).

Motivation

- Weyl group orbit functions - related to Weyl groups of simple Lie algebras (groups).
- Infinite families of multivariable complex functions.
- Useful tool in the representation theory of Lie algebras (Lie groups).
- Continuous and discrete transforms based on orbit functions provide a Fourier-like analysis.

Outline

- 1 Weyl group orbit functions
 - Weyl group and affine Weyl group
 - Orbit functions
- 2 Irreducible characters and related functions
 - Irreducible characters of Weyl groups
 - Properties
 - Examples

Outline

- 1 Weyl group orbit functions
 - Weyl group and affine Weyl group
 - Orbit functions
- 2 Irreducible characters and related functions
 - Irreducible characters of Weyl groups
 - Properties
 - Examples

Weyl group

- Simple Lie algebras of rank n with the set of simple roots $\Delta = \{\alpha_1, \dots, \alpha_n\}$.

Weyl group

- Simple Lie algebras of rank n with the set of simple roots $\Delta = \{\alpha_1, \dots, \alpha_n\}$.
- Lie algebras B_n, C_n, F_4 and G_2 - roots of two lengths, short and long roots.

Weyl group

- Simple Lie algebras of rank n with the set of simple roots $\Delta = \{\alpha_1, \dots, \alpha_n\}$.
- Lie algebras B_n, C_n, F_4 and G_2 - roots of two lengths, short and long roots.
- Weight lattice: $P = \mathbb{Z}\omega_1 + \dots + \mathbb{Z}\omega_n$, where $2\frac{\langle \alpha_i, \omega_j \rangle}{\langle \alpha_i, \alpha_i \rangle} = \delta_{ij}$.

Weyl group

- Simple Lie algebras of rank n with the set of simple roots $\Delta = \{\alpha_1, \dots, \alpha_n\}$.
- Lie algebras B_n, C_n, F_4 and G_2 - roots of two lengths, short and long roots.
- Weight lattice: $P = \mathbb{Z}\omega_1 + \dots + \mathbb{Z}\omega_n$, where $2\frac{\langle \alpha_i, \omega_j \rangle}{\langle \alpha_i, \alpha_i \rangle} = \delta_{ij}$.
- Weyl group W - generated by reflections r_i with respect to the hyperplanes orthogonal to α_i , i.e., $r_i x = x - 2\frac{\langle \alpha_i, x \rangle}{\langle \alpha_i, \alpha_i \rangle}$.

Affine Weyl group

- Root system $W(\Delta)$ with the highest root ξ .

Affine Weyl group

- Root system $W(\Delta)$ with the highest root ξ .
- The affine Weyl group W^{aff} - generated by reflections r_i and r_0 , where

$$r_0x = r_\xi x + \xi, \quad r_\xi x = x - \frac{2\langle x, \xi \rangle}{\langle \xi, \xi \rangle} \xi.$$

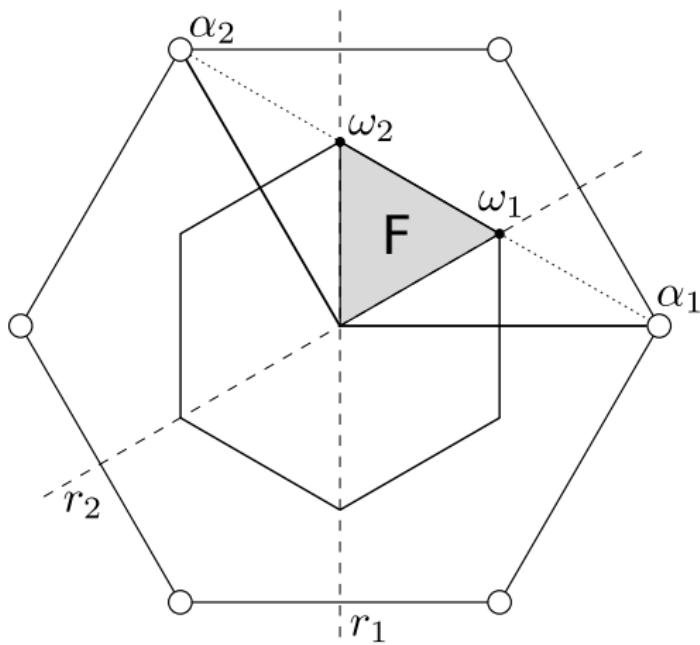
Affine Weyl group

- Root system $W(\Delta)$ with the highest root ξ .
- The affine Weyl group W^{aff} - generated by reflections r_i and r_0 , where

$$r_0x = r_\xi x + \xi, \quad r_\xi x = x - \frac{2\langle x, \xi \rangle}{\langle \xi, \xi \rangle} \xi.$$

- Its fundamental domain F - n -dimensional simplex.

Weyl group of A_2



Sign homomorphisms

- Homomorphisms $\sigma : W \rightarrow \{\pm 1\}$.

Sign homomorphisms

- Homomorphisms $\sigma : W \rightarrow \{\pm 1\}$.
- Four admissible mappings - the identity, the determinant and homomorphisms σ^s and σ^l , defined as

$$\sigma^s(r_\alpha) = \begin{cases} 1, & \alpha \text{ long root,} \\ -1, & \alpha \text{ short root,} \end{cases} \quad \sigma^l(r_\alpha) = \begin{cases} 1, & \alpha \text{ short root,} \\ -1, & \alpha \text{ long root.} \end{cases}$$

Sign homomorphisms

- Homomorphisms $\sigma : W \rightarrow \{\pm 1\}$.
- Four admissible mappings - the identity, the determinant and homomorphisms σ^s and σ^l , defined as

$$\sigma^s(r_\alpha) = \begin{cases} 1, & \alpha \text{ long root,} \\ -1, & \alpha \text{ short root,} \end{cases} \quad \sigma^l(r_\alpha) = \begin{cases} 1, & \alpha \text{ short root,} \\ -1, & \alpha \text{ long root.} \end{cases}$$

- Orbit functions - for every $x \in \mathbb{R}^n$ and every $\lambda \in P$,

$$\varphi_\lambda^\sigma = \sum_{w \in W} \sigma(w) e^{2\pi i \langle w\lambda, x \rangle}.$$

Sign homomorphisms

- Homomorphisms $\sigma : W \rightarrow \{\pm 1\}$.
- Four admissible mappings - the identity, the determinant and homomorphisms σ^s and σ^l , defined as

$$\sigma^s(r_\alpha) = \begin{cases} 1, & \alpha \text{ long root,} \\ -1, & \alpha \text{ short root,} \end{cases} \quad \sigma^l(r_\alpha) = \begin{cases} 1, & \alpha \text{ short root,} \\ -1, & \alpha \text{ long root.} \end{cases}$$

- Orbit functions - for every $x \in \mathbb{R}^n$ and every $\lambda \in P$,

$$\varphi_\lambda^\sigma = \sum_{w \in W} \sigma(w) e^{2\pi i \langle w\lambda, x \rangle}.$$

- Notation - $C-$, $S-$, S^s- , S^l- functions.

Properties of orbit functions

- Multivariable complex function with derivatives of all orders.

Properties of orbit functions

- Multivariable complex function with derivatives of all orders.
- (Anti)invariant with respect to the affine Weyl group W^{aff} .

Properties of orbit functions

- Multivariable complex function with derivatives of all orders.
- (Anti)invariant with respect to the affine Weyl group W^{aff} .
- Forming sets orthogonal with respect to a continuous and discrete inner product.

Outline

- 1 Weyl group orbit functions
 - Weyl group and affine Weyl group
 - Orbit functions
- 2 Irreducible characters and related functions
 - Irreducible characters of Weyl groups
 - Properties
 - Examples

Irreducible characters

- Every finite group G can be written as a union of its conjugacy classes.

Irreducible characters

- Every finite group G can be written as a union of its conjugacy classes.
- Irreducible characters χ - class functions. The number of conjugacy classes equals the number of irreducible characters - character tables.

Irreducible characters

- Every finite group G can be written as a union of its conjugacy classes.
- Irreducible characters χ - class functions. The number of conjugacy classes equals the number of irreducible characters - character tables.
- Row orthogonality relation - for every pair χ_k, χ_l ,

$$\sum_{g \in G} \chi_k(g) \overline{\chi_l(g)} = |G| \delta_{kl}.$$

Irreducible characters

- Every finite group G can be written as a union of its conjugacy classes.
- Irreducible characters χ - class functions. The number of conjugacy classes equals the number of irreducible characters - character tables.
- Row orthogonality relation - for every pair χ_k, χ_l ,

$$\sum_{g \in G} \chi_k(g) \overline{\chi_l(g)} = |G| \delta_{kl}.$$

- For every element $g \in G$, $\chi(g^{-1}) = \overline{\chi(g)}$ - if every $g \in G$ is conjugated to its inverse then all the characters have real values.

Irreducible characters

- Every finite group G can be written as a union of its conjugacy classes.
- Irreducible characters χ - class functions. The number of conjugacy classes equals the number of irreducible characters - character tables.
- Row orthogonality relation - for every pair χ_k, χ_l ,

$$\sum_{g \in G} \chi_k(g) \overline{\chi_l(g)} = |G| \delta_{kl}.$$

- For every element $g \in G$, $\chi(g^{-1}) = \overline{\chi(g)}$ - if every $g \in G$ is conjugated to its inverse then all the characters have real values. This is the case of characters of Weyl groups.

Character tables of A_2 , C_2 and G_2

$[\rho]$	\mathcal{C}_1	\mathcal{C}_2	\mathcal{C}_3
χ_1	1	1	1
χ_2	1	1	-1
χ_3	2	-1	0

$[\rho]$	\mathcal{C}_1	\mathcal{C}_2	\mathcal{C}_3	\mathcal{C}_4	\mathcal{C}_5
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
χ_3	1	1	-1	1	-1
χ_4	1	1	-1	-1	1
χ_5	2	-2	0	0	0

$[\rho]$	\mathcal{C}_1	\mathcal{C}_2	\mathcal{C}_3	\mathcal{C}_4	\mathcal{C}_5	\mathcal{C}_6
χ_1	1	1	1	1	1	1
χ_2	1	1	1	1	-1	-1
χ_3	1	-1	1	-1	1	-1
χ_4	1	-1	1	-1	-1	1
χ_5	2	2	-1	-1	0	0
χ_6	2	-2	-1	1	0	0

Functions related to irreducible characters

Definition

Let W be a Weyl group of rank n with irreducible characters χ_1, \dots, χ_r . For every $x, \lambda \in \mathbb{R}^n$ and $i = 1, \dots, r$ we define

$$\phi_\lambda^k(x) = \sum_{w \in W} \chi_k(w) e^{2\pi i \langle w\lambda, x \rangle}.$$

Functions related to irreducible characters

Definition

Let W be a Weyl group of rank n with irreducible characters χ_1, \dots, χ_r . For every $x, \lambda \in \mathbb{R}^n$ and $i = 1, \dots, r$ we define

$$\phi_\lambda^k(x) = \sum_{w \in W} \chi_k(w) e^{2\pi i \langle w\lambda, x \rangle}.$$

- The trivial and alternating character induce $C-$ and $S-$ functions.

Functions related to irreducible characters

Definition

Let W be a Weyl group of rank n with irreducible characters χ_1, \dots, χ_r . For every $x, \lambda \in \mathbb{R}^n$ and $i = 1, \dots, r$ we define

$$\phi_\lambda^k(x) = \sum_{w \in W} \chi_k(w) e^{2\pi i \langle w\lambda, x \rangle}.$$

- The trivial and alternating character induce $C-$ and $S-$ functions.
- Sign homomorphisms σ^s and σ^l are the only two other possible linear characters.

Functions related to irreducible characters

Definition

Let W be a Weyl group of rank n with irreducible characters χ_1, \dots, χ_r . For every $x, \lambda \in \mathbb{R}^n$ and $i = 1, \dots, r$ we define

$$\phi_\lambda^k(x) = \sum_{w \in W} \chi_k(w) e^{2\pi i \langle w\lambda, x \rangle}.$$

- The trivial and alternating character induce $C-$ and $S-$ functions.
- Sign homomorphisms σ^s and σ^l are the only two other possible linear characters.
- The definition includes all four families of orbit functions for B_n , C_n and G_2 .

General properties

- Trivial case $\lambda = 0$ - C -function equals $|W|$, the others are identically zero.

General properties

- Trivial case $\lambda = 0$ - C -function equals $|W|$, the others are identically zero.
- Let χ_k, χ_l be any irreducible characters, $w \in W$, $c \in \mathbb{R}$ and $x \in \mathbb{R}^n$. Then

$$\phi_{\lambda}^k(x) = \phi_x^k(\lambda)$$

$$\phi_{c\lambda}^k(x) = \phi_{\lambda}^k(cx)$$

$$\phi_{w\lambda}^k(x) = \phi_{\lambda}^k(w^{-1}x)$$

General properties

- Trivial case $\lambda = 0$ - C -function equals $|W|$, the others are identically zero.
- Let χ_k, χ_l be any irreducible characters, $w \in W$, $c \in \mathbb{R}$ and $x \in \mathbb{R}^n$. Then

$$\phi_\lambda^k(x) = \phi_x^k(\lambda)$$

$$\phi_{c\lambda}^k(x) = \phi_\lambda^k(cx)$$

$$\phi_{w\lambda}^k(x) = \phi_\lambda^k(w^{-1}x)$$

- Product of two functions ϕ^k, ϕ^l :

$$\phi_\lambda^k(x)\phi_\mu^l(x) = \sum_{w, \tilde{w} \in W} \chi_k(w)\chi_l(\tilde{w}) e^{2\pi i \langle w\lambda + \tilde{w}\mu, x \rangle}.$$

Orthogonality

Theorem

For every $0 \neq \lambda, \mu \in P^+ = \mathbb{Z}^{\geq 0}\omega_1 + \dots + \mathbb{Z}^{\geq 0}\omega_n$ and every pair of irreducible characters χ_k, χ_l the following relation holds,

$$\int_{\widetilde{F}} \phi_\lambda^k(x) \overline{\phi_\mu^l(x)} dx = |W|^2 |F| \frac{1}{d_k} \sum_{w \in \text{stab } W(\lambda)} \chi_k(w) \delta_{\lambda\mu} \delta_{kl} ,$$

where d_k is the degree of the character χ_k and $\widetilde{F} = \bigcup_{w \in W} wF$.

Orthogonality

Theorem

For every $0 \neq \lambda, \mu \in P^+ = \mathbb{Z}^{\geq 0}\omega_1 + \dots + \mathbb{Z}^{\geq 0}\omega_n$ and every pair of irreducible characters χ_k, χ_l the following relation holds,

$$\int_{\widetilde{F}} \phi_\lambda^k(x) \overline{\phi_\mu^l(x)} dx = |W|^2 |F| \frac{1}{d_k} \sum_{w \in \text{stab } W(\lambda)} \chi_k(w) \delta_{\lambda\mu} \delta_{kl} ,$$

where d_k is the degree of the character χ_k and $\widetilde{F} = \bigcup_{w \in W} wF$.
In particular, for $\lambda, \mu \in P^{++} = \mathbb{N}\omega_1 + \dots + \mathbb{N}\omega_n$ it holds that

$$\int_{\widetilde{F}} \phi_\lambda^k(x) \overline{\phi_\mu^l(x)} dx = |F| |W|^2 \delta_{kl} \delta_{\lambda\mu} .$$

Proof

- The proof uses the orthogonality of characters, the orthogonality of C –functions,

$$\int_F \phi_\lambda^1(x) \overline{\phi_\mu^1(x)} dx = |F| |W| |\text{stab}_W(\lambda)| \delta_{\lambda\mu},$$

Proof

- The proof uses the orthogonality of characters, the orthogonality of C -functions,

$$\int_F \phi_{\lambda}^1(x) \overline{\phi_{\mu}^1(x)} dx = |F| |W| \operatorname{stab}_W(\lambda) |\delta_{\lambda\mu}|,$$

and the following property - for $0 \neq \lambda, \mu \in P^+$,

$$\sum_{w \in W} \phi_{w\lambda}^k(x) \overline{\phi_{w\mu}^l(x)} = \sum_{\tilde{w}, \hat{w} \in W} \chi_k(\tilde{w}) \chi_l(\hat{w}) \phi_{\lambda - \tilde{w}\hat{w}\mu}^1(x).$$

Proof

- The proof uses the orthogonality of characters, the orthogonality of C -functions,

$$\int_F \phi_{\lambda}^1(x) \overline{\phi_{\mu}^1(x)} dx = |F| |W| |\text{stab}_W(\lambda)| \delta_{\lambda\mu},$$

and the following property - for $0 \neq \lambda, \mu \in P^+$,

$$\sum_{w \in W} \phi_{w\lambda}^k(x) \overline{\phi_{w\mu}^l(x)} = \sum_{\tilde{w}, \hat{w} \in W} \chi_k(\tilde{w}) \chi_l(\hat{w}) \phi_{\lambda - \tilde{w}\hat{w}\mu}^1(x).$$

- In a similar way, the discrete orthogonality relations are proven.

Linear independence

- Weyl group W with irreducible characters χ_1, \dots, χ_r .

Linear independence

- Weyl group W with irreducible characters χ_1, \dots, χ_r .
- We fix χ_I and $\lambda \in \rangle^n$, we consider the corresponding function ϕ_λ^I as a function of $x \in \mathbb{R}^n$.

Linear independence

- Weyl group W with irreducible characters χ_1, \dots, χ_r .
- We fix χ_I and $\lambda \in \rangle^n$, we consider the corresponding function ϕ_λ^I as a function of $x \in \mathbb{R}^n$.
- The functions $\phi_{w\lambda}^I$, $w \in W$, fulfil $r - 1$ linearly independent relations:

Linear independence

- Weyl group W with irreducible characters χ_1, \dots, χ_r .
- We fix χ_I and $\lambda \in \rangle^n$, we consider the corresponding function ϕ_λ^I as a function of $x \in \mathbb{R}^n$.
- The functions $\phi_{w\lambda}^I$, $w \in W$, fulfil $r - 1$ linearly independent relations: for each $k \neq I$,

$$\sum_{w \in W} \chi_k(w) \phi_{w\lambda}^I(x) = 0.$$

Weyl group of A_2

- Conjugacy classes:

$$W(A_2) = \{id\} \cup \{r_1, r_2, r_1 r_2 r_1\} \cup \{r_1 r_2, r_2 r_1\}.$$

Weyl group of A_2

- Conjugacy classes:

$$W(A_2) = \{id\} \cup \{r_1, r_2, r_1 r_2 r_1\} \cup \{r_1 r_2, r_2 r_1\}.$$

- Three functions, one non-trivial.

Weyl group of A_2

- Conjugacy classes:

$$W(A_2) = \{id\} \cup \{r_1, r_2, r_1 r_2 r_1\} \cup \{r_1 r_2, r_2 r_1\}.$$

- Three functions, one non-trivial.
- $\phi_\lambda^3(x) = 2e^{2\pi i \langle \lambda, x \rangle} - e^{2\pi i \langle r_2 r_1 \lambda, x \rangle} - e^{2\pi i \langle r_1 r_2 \lambda, x \rangle}$

Weyl group of A_2

- Conjugacy classes:

$$W(A_2) = \{id\} \cup \{r_1, r_2, r_1 r_2 r_1\} \cup \{r_1 r_2, r_2 r_1\}.$$

- Three functions, one non-trivial.

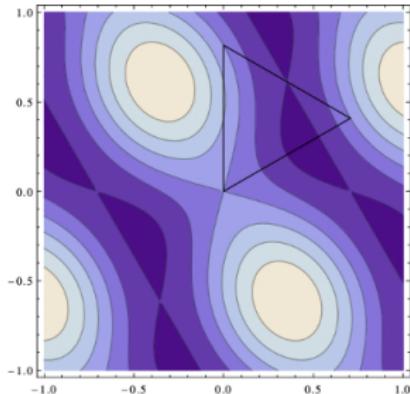
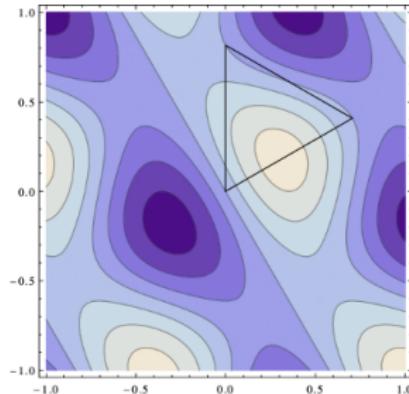
$$\phi_{\lambda}^3(x) = 2e^{2\pi i \langle \lambda, x \rangle} - e^{2\pi i \langle r_2 r_1 \lambda, x \rangle} - e^{2\pi i \langle r_1 r_2 \lambda, x \rangle}$$

- Relations:

$$\begin{aligned}\phi_{\lambda}^3(x) + \phi_{r_1 r_2 \lambda}^3(x) + \phi_{r_2 r_1 \lambda}^3(x) &= 0 \\ \phi_{r_1 \lambda}^3(x) + \phi_{r_2 \lambda}^3(x) + \phi_{r_1 r_2 r_1 \lambda}^3(x) &= 0\end{aligned}$$

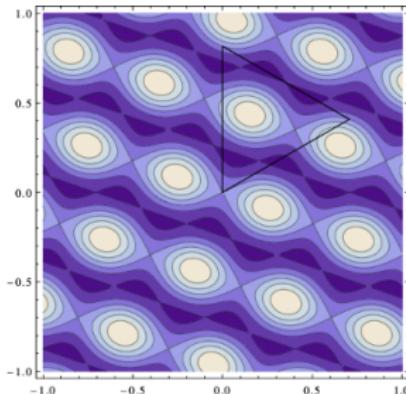
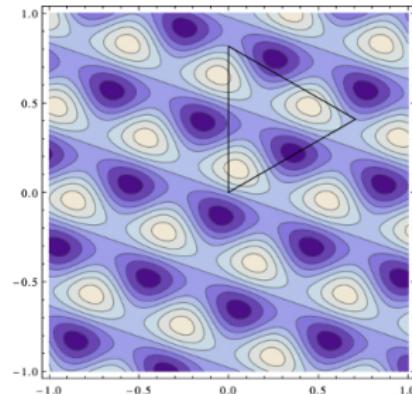
Example

The contour plot of the real part (left) and the imaginary part (right) of the function $\phi_{(1,0)}^3(x)$. The triangle denotes the fundamental domain F of the affine Weyl group $W(A_2)$.



Example

The contour plot of the real part (left) and the imaginary part (right) of the function $\phi_{(1,2)}^3(x)$. The triangle denotes the fundamental domain F of the affine Weyl group $W(A_2)$.



References

L. H., Agnieszka Tereszkiewicz, *On generalized Weyl group orbit functions*, in preparation

L. H., Agnieszka Tereszkiewicz, *On immanant functions related to Weyl groups of A_n* , J. Math. Phys., 2014, **55**, Issue 11

Anatoliy Klimyk, Jiří Patera, *Orbit functions*, SIGMA, 2006, **2**, 006.

Anatoliy Klimyk, Jiří Patera, *Antisymmetric orbit functions*, SIGMA, 2007, **3**, 023.

Robert V. Moody, Jiří Patera, *Orthogonality within the Families of C -, S -, and E -Functions of Any Compact Semisimple Lie Group*, SIGMA, 2006, **2**, 076.

Acknowledgement

This work was supported by the European social fund within the framework of realizing the project „Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague“, CZ.1.07/2.3.00/30.0034.

esf
european
social fund in the
czech republic

EUROPEAN UNION

MINISTRY OF EDUCATION,
YOUTH AND SPORTS

INVESTMENTS IN EDUCATION DEVELOPMENT