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Thanks for organizers!!!

Problem

Surface metrics as Hamiltonians

(dimM = 2), gM = gij(x)dx idx j (Riemannian metric) ⇒
Hg := 1

2g ij(x)pipj on T ∗M with ωcan = dpi ∧dx i

Hamiltonian flow ⇐⇒ Geodesic flow.

Physical/Mechanical meaning: Kinetic energy.

Maupertuis’ principle: H = Hg + V (x) (Potential) ⇒
H̃g :=

Hg

E−V (x) ⇒ Reduction to case without V (x).
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Superintegrable surface metrics:

1st integral: (X 2n,ω) (symp. mfld), H ∈ C∞(X ) Hamiltonian,
F ∈ C∞(X ) with {H,F}= 0 (Poisson bracket).

H ∈ C∞(X 2n,ω) is integrable ⇔ ∃ n integrals F1, . . . ,Fn

+ non-degeneracy (usually Fn ≡ H)

H ∈ C∞(X 2n,ω) is superintegrable ⇔ ∃ n + 1 integrals
F1, . . . ,Fn+1 (usually Fn+1 ≡ H)

A polynomial integral: (X ,ω,H) = (T ∗M,ωcan,Hg ) and F is
polynomial in momenta (⇔ velocities): F =

∑
I FI (x)pI

(where I = (i1, . . . , id) and pI = pi1 · . . . ·pid ), d := deg (F ).

Fd(H) = Fd(g): polynomial integrals of degree d for
H = 1

2g ij(x)pipj

A linear integral L = L(x)ipi ⇔ Killing vector field
v = v i∂x i

Hg = 1
2g ij(x)pipj is a quadratic integral

A polynomially superintegrable surface metric: X = T ∗M,
dimM = 2, H = 1

2g ij(x)pipj , ∃ two polynomial integrals
F1,F2 for H: {H,F1} ≡ {H,F2} ≡ 0.
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Previously known cases

Two linear integrals L1,L2: ⇒ g has constant curvature,
F1(g) = Lie(Iso(M,g)), Fd(g) = {polynomials in F1(g)}
Linear + Quadratic integrals L + F : [Darboux+Koenigs]
⇒ ∃ one more quad.int. F2, F2(g) = R〈L2,H,F ,F2〉
(if g is not of const curvature)
such g and Hg are Darboux superintegral metics

3 quadratic integrals F1,F2,F3: [Darboux+Koenigs]
⇒ g is of constant curvature or Darboux-superintegrable

2 quadratic integrals F1,F2: [Koenigs]: a complete(?)
description

Today’s talk: ∃ linear+cubic or linear+quartic L,F
Partial results [Rañada,Gravel,Marquette,Winternitz] for the
case H = Hg + V (x) where g = dx2 + dy2 is flat. They show
that after Maupertuis’ transform F = L·Q with quadratic
integral Q. ⇒ Reduction to Darboux-case.
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Main result.

Theorem 1

Cubic case (Matveev-Sh., Duval-Valent-Sh.)

Let (M,g) be a Riemann surface s.th. H = 1
2g ijpipj admits

(independent) linear and cubic integrals L + F . Then ∃ coordinates
(x ,y) s.th. L = ∂y and g = 1

h2
x
(dx2 + dy2) where h = h(x) satisfies

one of the eqns (where hx := dh(x)
dx )

(i) hx

(
A0h2

x +µ2A0h(x)2−A1h(x) + A2

)
=
(
A3

sin (µx)
µ + A4cos(µx)

)
(ii) hx

(
A0h2

x −µ2A0h(x)2−A1h(x) + A2

)
=
(
A3

sinh(µx)
µ + A4cosh(µx)

)
(iii) hx

(
A0h2

x −A1h(x) + A2

)
=
(
A3x + A4

)
with some real constants A0, . . . ,A4 and µ > 0 in cases (i,ii).
In all three cases F3(g) = 〈L3,L·H,F1,F2〉 (4-dimensional).

The explicit formulas for F1,F2 are of the form:
(i) F1(x ,y) = cosh(µy) · fi,1, F2(x ,y) = sinh(µy) · fi,2, (trig. sin ,cos in eqn)

(ii) F1(x ,y) = cos(µy) · fii,1, F2(x ,y) = sin(µy) · fii,2, (hyperb. sinh,cosh in eqn)

with some polynomials fi ,ii ;1,2 in h(x),hx ,hxx ,hxxx (and in px ,py ).
Case (iii) is similar.
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Quartic case. (P. Novichkov-Sh., in progress)

This is recent. All(?) applies for the case when F has degree 4 in
momenta, after appropriate changes. For example,
F4(g) = 〈L4,L2·H,H2,F1,F2〉 (5-dimensional).
All formulas are similar.
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Remarks. The curvature of g = (dx2+dy2)
h2

x
is R = hxxxhx −h2

xx .

The equations (i–iii) are defined for complex x ,A0, . . . ,A4,µ,
solution h(x) depends complex-analytically on them and on
initial value h(x0), and real-analytically if all are real. A
solution h(x) of a complex eqn is real only in the cases (i–iii).

We exchange cases (i)↔(ii) making substitution µ↔ iµ
(i :=

√
−1) and obtain case (iii), including integrals F1,F2,

letting µ−→ 0 in cases (i) and (ii).

Case A0 = 0 ⇔ Darboux-superintegrable (or const-curvature)

Constant curvature case ⇔ h(x) is

(a) a polynimial in x of deg 6 2, or
(b) h(x) = csin(µx +ϕ0), or
(c) h(x) = c+exp(µx) + c−exp(−µx)

g is not const-curvature ⇒ the eqn on h(x) is unique

(also in complex case) ⇒ the metrics g = (dx2+dy2)
h2

x
are new.
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Second main result.

Theorem 2 (Global solution on the sphere S2.)

Assume that parameters of the eqn
hx

(
A0(h2

x −h(x)2)−A1h(x) + A2

)
=
(
A3sinh(x) + A4cosh(x)

)
(ii)

satisfy A0 > 0, A4 > |A3| (and µ= 1). Let h(x) be a unique local
solution of the eqn (ii) such that hx(x0)> 0. Then the solution

h(x) extends to the whole line x ∈ R and the metric g = (dx2+dy2)
h2

x

extends to a real-analytic metric on the Rimann sphere
S2 = C∪{∞} with the complex coordinate z = ex+iy .
Moreover, the cubic integrals F1,F2 above also extend
real-analytically on the whole S2.

Remarks. θ := arctan(e−x) and ϕ := y are spherical coordinates
on S2.
Condition A4 > |A3| means that r.h.s. of (ii) is > 0. In this case the
algebraic eqn λ(λ2−a) = A> 0 has unique positive root
η = η(a,A).
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Poisson structure.

Theorem 3

Let G6 := F 2
+±F 2

− ( cos 2+sin 2=1
cosh2−sinh2=1

) and G5 := {F+,F−}.
Then {H,G6}= {H,G5}= {L,G6}= {L,G5}= 0 and
G6 = cH3·H3 + cH2L2·H2L2 + cHL4·H·L4 + cL6·L6

G5 = cH2L·H2L + cHL3·H·L3 + cL5·L5 with some constants c....
This gives a complete description of
the Poisson algebra of polynomial ingtegrals of H.

Implicit integrability.

Trying to find constants c... in polynomial we found a new ODE on
h(x). So solutions of a differential eqn E(x ,h,hx) = 0 are
solutions of an algebraic eqns
E(x ,h,hx) = 0 E1(x ,h,hx) = 0. In coordinate t = eµx equations
E(t,h,ht) = 0 E1(t,h,ht) = 0 are polynomial
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Previous results on global completely integrable metrics.

Many classical examples (Lagrange, Euler) of integrable
metrics on S2 with linear or quadratic first integral.

Kovalevskaya top (1889): Metric on S2 with degF = 4.

Goryachev(-Chaplygin) top: (1916) degF = 3

Classification of linear or quadratic integrable metrics on S2

and T 2 (Kolokoltsov, Kiyohara, Bobenko-Nehoroshev,
Matveev,. . . ) (1984-. . . )

Selivanova,(1999), Dullin-Matveev,(2004), Tsyganov,(2005),
generalised by Valent,(2010): metric on S2 admitting cubic F ,

Kiyohara,(2001), metric on S2 with F of any degree d > 3

Kiyohara,(1991), If g on S2 admits quadratic F1,F2

(dimF2(g) > 3) ⇒ Rg ≡ const.

M-Sh,(2011): The first one which is polynomially
superintegrable.
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Steps of the proof of Theorem 1 (local case).
1. Choose coordinates s.th. g = λ(x)(dx2 + dy2) and L = py .
dimFd(g)<∞ (Kruglikov). L ∈ F1(g), F ∈ Fd(g) ⇒ {L,F} ∈ Fd(g)
and by assumption F3(g) contains L3,L·H,F
⇒ F3(g) contains Evector w.r.t. L with Evalue µ 6= 0 ∈ C,
or ∃ F ∈ F3(g) s.th. {L,F}= A3L3 + A1L·H
⇔ F = eµy F̃ (x) or F = F̃ (x) + y(A3L3 + A1L·H) with
F̃ (x) =

∑3
i=0 ai (x)p3−i

x pi
y

Substitution in {H,F}= 0 gives λ(x) = 1
h2

x
, g = dx2+dy2

h2
x

and

a0(x) = A0h3
x , a1(x) = (−µA0h(x) + A1

µ )h2
x , and so on, where

A0,A1,A2 are integration constant (the same as in eqns (i–iii) ).
h(x) must satisfy certain ODE E3(h) of order 3.

2. It appears that E3(h) = (∂2
x +µ2)E1(h) for some ODE E1(h) of

order 1. ⇒ Eqn on h(x) is E1(h) = A3
sin(µx)

µ + A4cos(µx) or . . .
This gives Thm1 in cases (i,ii).

3. F = L·Q ⇔ a0 ≡ 0 ⇔ A0 = 0 (Darboux-superint. case)
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4. Uniqueness Theorem. If R = hxxxhx −h2
xx 6= const and h(x)

satisfies one of (i–iii) ⇒ parameters A0, . . . ,A4 are unique up to
const and µ up to sign.

5. Corollary: if hx is real-valued ⇒ A0, . . . ,A0 are real (up to
common complex factor) and µ2 ∈ R. ⇒ Only cases (i–iii) yield
genuine Riemannian metric.

6. Corollary: dimF3(g) > 4 in cases (i,ii).

7. dimF3(g) = 4. In cases (i,ii): Show that (∂y −µ)2F = 0
satifying {F ,H}= 0 exists only if (∂y −µ)F = 0
In case (iii): Solve ∂2

y F = A3L3 + A1L·H satifying {F ,H}= 0 and
show that ∂3

y F = A3L3 + A1L·H is unsolvable.
Technique is the same as for Uniqueness Thm.

8. Global solution. ⇐ Fine analysis of h(x) for x −→±∞.
⇔ Behaviour of g and F at Northern and Southern pole.
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Open Questions

1. Quantisation. Find PDOs Ĥ, F̂ with symbols H,F such that
[Ĥ, F̂ ] = 0. Is it possible for Ĥ = ∆g (Laplace-Beltrami) ?

2. Construct concrete (and steel) model, physical or mechanical
dynamical systems realising metrics in Thm1 or Thm2.

3. Pseudo-Riemannian case?

4. Find isometric embedding of global metrics (Thm2) in (R3,gst)
and find condition when such embeddings exist

5. Higher degrees? Case Q(quadratic) + F (cubic) ?

Thank you for your attention! ! !
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