

Superintegrable surface metrics

Vsevolod V. Shevchishin

**XI. International Workshop
LIE THEORY AND ITS APPLICATIONS IN PHYSICS
15 - 21 June 2015, Varna, Bulgaria**

Thanks for organizers!!!

Problem

Surface metrics as Hamiltonians

- ($\dim M = 2$), $g_M = g_{ij}(x)dx^i dx^j$ (Riemannian metric) \Rightarrow
- $H_g := \frac{1}{2}g^{ij}(x)p_i p_j$ on T^*M with $\omega_{\text{can}} = dp_i \wedge dx^i$
- **Hamiltonian flow \iff Geodesic flow.**
- **Physical/Mechanical meaning:** Kinetic energy.
- **Maupertuis' principle:** $H = H_g + V(x)$ (Potential) \Rightarrow
 $\tilde{H}_g := \frac{H_g}{E - V(x)}$ \Rightarrow Reduction to case without $V(x)$.

Superintegrable surface metrics:

- **1st integral:** (X^{2n}, ω) (symp. mfld), $H \in C^\infty(X)$ Hamiltonian, $F \in C^\infty(X)$ with $\{H, F\} = 0$ (Poisson bracket).
- $H \in C^\infty(X^{2n}, \omega)$ is **integrable** $\Leftrightarrow \exists n$ integrals F_1, \dots, F_n + non-degeneracy (usually $F_n \equiv H$)
- $H \in C^\infty(X^{2n}, \omega)$ is **superintegrable** $\Leftrightarrow \exists n+1$ integrals F_1, \dots, F_{n+1} (usually $F_{n+1} \equiv H$)
- **A polynomial integral:** $(X, \omega, H) = (T^*M, \omega_{\text{can}}, H_g)$ and F is polynomial in momenta (\Leftrightarrow velocities): $F = \sum_I F_I(x) p^I$ (where $I = (i_1, \dots, i_d)$ and $p^I = p_{i_1} \cdot \dots \cdot p_{i_d}$), $d := \deg(F)$.
- $\mathcal{F}^d(H) = \mathcal{F}^d(g)$: polynomial integrals of degree d for $H = \frac{1}{2}g^{ij}(x)p_i p_j$
- **A linear integral** $L = L(x)^i p_i \Leftrightarrow$ **Killing vector field**
 $v = v^i \partial_{x_i}$
- $H_g = \frac{1}{2}g^{ij}(x)p_i p_j$ is a **quadratic integral**
- **A polynomially superintegrable surface metric:** $X = T^*M$, $\dim M = 2$, $H = \frac{1}{2}g^{ij}(x)p_i p_j$, \exists two polynomial integrals F_1, F_2 for H : $\{H, F_1\} \equiv \{H, F_2\} \equiv 0$.

Previously known cases

- **Two linear integrals** L_1, L_2 : $\Rightarrow g$ has **constant curvature**, $\mathcal{F}^1(g) = \text{Lie}(\text{Iso}(M, g))$, $\mathcal{F}^d(g) = \{\text{polynomials in } \mathcal{F}^1(g)\}$
- **Linear + Quadratic integrals** $L + F$: [Darboux+Koenigs]
 $\Rightarrow \exists$ one more quad.int. F_2 , $\mathcal{F}^2(g) = \mathbb{R}\langle L^2, H, F, F_2 \rangle$
(if g is *not* of const curvature)
such g and H_g are **Darboux superintegral** metics
- **3 quadratic integrals** F_1, F_2, F_3 : [Darboux+Koenigs]
 $\Rightarrow g$ is of constant curvature or Darboux-superintegrable
- **2 quadratic integrals** F_1, F_2 : [Koenigs]: a complete(?) description
- Today's talk: \exists **linear+cubic** or **linear+quartic** L, F
Partial results [Rañada,Gravel,Marquette,Winternitz] for the case $H = H_g + V(x)$ where $g = dx^2 + dy^2$ is flat. They show that after Maupertuis' transform $F = L \cdot Q$ with *quadratic* integral Q . \Rightarrow Reduction to Darboux-case.

Main result.

Theorem 1

Cubic case (Matveev-Sh., Duval-Valent-Sh.)

Let (M, g) be a Riemann surface s.th. $H = \frac{1}{2}g^{ij}p_i p_j$ admits (independent) linear and cubic integrals $L + F$. Then \exists coordinates (x, y) s.th. $L = \partial_y$ and $g = \frac{1}{h_x^2}(dx^2 + dy^2)$ where $h = h(x)$ satisfies one of the eqns (where $h_x := \frac{dh(x)}{dx}$)

- (i) $h_x(A_0 h_x^2 + \mu^2 A_0 h(x)^2 - A_1 h(x) + A_2) = (A_3 \frac{\sin(\mu x)}{\mu} + A_4 \cos(\mu x))$
- (ii) $h_x(A_0 h_x^2 - \mu^2 A_0 h(x)^2 - A_1 h(x) + A_2) = (A_3 \frac{\sinh(\mu x)}{\mu} + A_4 \cosh(\mu x))$
- (iii) $h_x(A_0 h_x^2 - A_1 h(x) + A_2) = (A_3 x + A_4)$

with some real constants A_0, \dots, A_4 and $\mu > 0$ in cases (i,ii).

In all three cases $\mathcal{F}^3(g) = \langle L^3, L \cdot H, F_1, F_2 \rangle$ (4-dimensional).

The explicit formulas for F_1, F_2 are of the form:

- (i) $F_1(x, y) = \cosh(\mu y) \cdot f_{i,1}, \quad F_2(x, y) = \sinh(\mu y) \cdot f_{i,2}$, (trig. \sin, \cos in eqn)
- (ii) $F_1(x, y) = \cos(\mu y) \cdot f_{ii,1}, \quad F_2(x, y) = \sin(\mu y) \cdot f_{ii,2}$, (hyperb. \sinh, \cosh in eqn)

with some **polynomials** $f_{i,ii;1,2}$ in $h(x), h_x, h_{xx}, h_{xxx}$ (and in p_x, p_y).

Case (iii) is similar.

Quartic case. (P. Novichkov-Sh., in progress)

This is **recent**. All(?) applies for the case when F has degree 4 in momenta, after appropriate changes. For example,
 $\mathcal{F}^4(g) = \langle L^4, L^2 \cdot H, H^2, F_1, F_2 \rangle$ (5-dimensional).
All formulas are similar.

Remarks. • The curvature of $g = \frac{(dx^2+dy^2)}{h_x^2}$ is $R = h_{xxx}h_x - h_{xx}^2$.

- The equations (i–iii) are defined for *complex* x, A_0, \dots, A_4, μ , solution $h(x)$ depends complex-analytically on them and on initial value $h(x_0)$, and real-analytically if all are real. A solution $h(x)$ of a *complex* eqn is *real* only in the cases (i–iii).
- We exchange cases (i)↔(ii) making substitution $\mu \leftrightarrow i\mu$ ($i := \sqrt{-1}$) and obtain case (iii), including integrals F_1, F_2 , letting $\mu \rightarrow 0$ in cases (i) and (ii).
- Case $A_0 = 0 \Leftrightarrow$ Darboux-superintegrable (or const-curvature)
- Constant curvature case $\Leftrightarrow h(x)$ is
 - (a) a polynomial in x of $\deg \leq 2$, or
 - (b) $h(x) = c \sin(\mu x + \varphi_0)$, or
 - (c) $h(x) = c_+ \exp(\mu x) + c_- \exp(-\mu x)$
- g is *not* const-curvature \Rightarrow the eqn on $h(x)$ is unique (also in complex case) \Rightarrow the metrics $g = \frac{(dx^2+dy^2)}{h_x^2}$ are *new*.

Second main result.

Theorem 2 (Global solution on the sphere S^2 .)

Assume that parameters of the eqn

$$h_x(A_0(h_x^2 - h(x)^2) - A_1 h(x) + A_2) = (A_3 \sinh(x) + A_4 \cosh(x)) \quad (\text{ii})$$

satisfy $A_0 > 0$, $A_4 > |A_3|$ (and $\mu = 1$). Let $h(x)$ be a unique local solution of the eqn (ii) such that $h_x(x_0) > 0$. Then the solution

$h(x)$ extends to the whole line $x \in \mathbb{R}$ and the metric $g = \frac{(dx^2 + dy^2)}{h_x^2}$

extends to a real-analytic metric on the Riemann sphere

$S^2 = \mathbb{C} \cup \{\infty\}$ with the complex coordinate $z = e^{x+iy}$.

Moreover, the cubic integrals F_1, F_2 above also extend real-analytically on the whole S^2 .

Remarks. $\theta := \arctan(e^{-x})$ and $\varphi := y$ are spherical coordinates on S^2 .

Condition $A_4 > |A_3|$ means that r.h.s. of (ii) is > 0 . In this case the algebraic eqn $\lambda(\lambda^2 - a) = A > 0$ has unique positive root $\eta = \eta(a, A)$.

Poisson structure.

Theorem 3

Let $G_6 := F_+^2 \pm F_-^2$ ($\frac{\cos^2 + \sin^2 = 1}{\cosh^2 - \sinh^2 = 1}$) and $G_5 := \{F_+, F_-\}$.

Then $\{H, G_6\} = \{H, G_5\} = \{L, G_6\} = \{L, G_5\} = 0$ and

$$G_6 = c_{H3} \cdot H^3 + c_{H2L2} \cdot H^2 L^2 + c_{HL4} \cdot H \cdot L^4 + c_{L6} \cdot L^6$$

$$G_5 = c_{H2L} \cdot H^2 L + c_{HL3} \cdot H \cdot L^3 + c_{L5} \cdot L^5 \text{ with some constants } c\dots$$

This gives a complete description of

the Poisson algebra of polynomial integrals of H .

Implicit integrability.

Trying to find constants $c\dots$ in polynomial we found a new ODE on $h(x)$. So solutions of a **differential** eqn $\mathcal{E}(x, h, h_x) = 0$ are solutions of an **algebraic** eqns

$\mathcal{E}(x, h, h_x) = 0$ $\mathcal{E}_1(x, h, h_x) = 0$. In coordinate $t = e^{\mu x}$ equations $\mathcal{E}(t, h, h_t) = 0$ $\mathcal{E}_1(t, h, h_t) = 0$ are **polynomial**

Previous results on global completely integrable metrics.

- Many classical examples (Lagrange, Euler) of integrable metrics on S^2 with linear or quadratic first integral.
- Kovalevskaya top (1889): Metric on S^2 with $\deg F = 4$.
- Goryachev(-Chaplygin) top: (1916) $\deg F = 3$
- Classification of linear or quadratic integrable metrics on S^2 and T^2 (Kolokoltsov, Kiyohara, Bobenko-Nehoroshev, Matveev,...) (1984-...)
- Selivanova,(1999), Dullin-Matveev,(2004), Tsyganov,(2005), generalised by Valent,(2010): metric on S^2 admitting cubic F ,
- Kiyohara,(2001), metric on S^2 with F of any degree $d \geq 3$
- Kiyohara,(1991), If g on S^2 admits quadratic F_1, F_2 ($\dim \mathcal{F}^2(g) \geq 3$) $\Rightarrow R_g \equiv \text{const.}$
- M-Sh,(2011): The first one which is polynomially superintegrable.

Steps of the proof of Theorem 1 (local case).

1. Choose coordinates s.th. $g = \lambda(x)(dx^2 + dy^2)$ and $L = p_y$.

$\dim \mathcal{F}^d(g) < \infty$ (Kruglikov). $L \in \mathcal{F}^1(g)$, $F \in \mathcal{F}^d(g) \Rightarrow \{L, F\} \in \mathcal{F}^d(g)$ and by assumption $\mathcal{F}^3(g)$ contains $L^3, L \cdot H, F$

$\Rightarrow \mathcal{F}^3(g)$ contains Evector w.r.t. L with Evalue $\mu \neq 0 \in \mathbb{C}$,
or $\exists F \in \mathcal{F}^3(g)$ s.th. $\{L, F\} = A_3 L^3 + A_1 L \cdot H$

$\Leftrightarrow F = e^{\mu y} \tilde{F}(x)$ or $F = \tilde{F}(x) + y(A_3 L^3 + A_1 L \cdot H)$ with
 $\tilde{F}(x) = \sum_{i=0}^3 a_i(x) p_x^{3-i} p_y^i$

Substitution in $\{H, F\} = 0$ gives $\lambda(x) = \frac{1}{h_x^2}$, $g = \frac{dx^2 + dy^2}{h_x^2}$ and

$a_0(x) = A_0 h_x^3$, $a_1(x) = (-\mu A_0 h(x) + \frac{A_1}{\mu}) h_x^2$, and so on, where A_0, A_1, A_2 are integration constant (the same as in eqns (i-iii)).
 $h(x)$ must satisfy certain ODE $\mathcal{E}_3(h)$ of order 3.

2. It appears that $\mathcal{E}_3(h) = (\partial_x^2 + \mu^2) \mathcal{E}_1(h)$ for some ODE $\mathcal{E}_1(h)$ of order 1. \Rightarrow Eqn on $h(x)$ is $\mathcal{E}_1(h) = A_3 \frac{\sin(\mu x)}{\mu} + A_4 \cos(\mu x)$ or ...
This gives Thm1 in cases (i,ii).

3. $F = L \cdot Q \Leftrightarrow a_0 \equiv 0 \Leftrightarrow A_0 = 0$ (Darboux-superint. case)

4. Uniqueness Theorem. If $R = h_{xxx}h_x - h_{xx}^2 \neq \text{const}$ and $h(x)$ satisfies one of (i–iii) \Rightarrow parameters A_0, \dots, A_4 are unique up to **const** and μ up to sign.

5. Corollary: if h_x is real-valued $\Rightarrow A_0, \dots, A_0$ are real (up to common complex factor) and $\mu^2 \in \mathbb{R}$. \Rightarrow Only cases (i–iii) yield genuine Riemannian metric.

6. Corollary: $\dim \mathcal{F}^3(g) \geq 4$ in cases (i,ii).

7. $\dim \mathcal{F}^3(g) = 4$. In cases (i,ii): Show that $(\partial_y - \mu)^2 F = 0$ satifying $\{F, H\} = 0$ exists only if $(\partial_y - \mu)F = 0$

In case (iii): Solve $\partial_y^2 F = A_3 L^3 + A_1 L \cdot H$ satifying $\{F, H\} = 0$ and show that $\partial_y^3 F = A_3 L^3 + A_1 L \cdot H$ is unsolvable.

Technique is the same as for Uniqueness Thm.

8. Global solution. \Leftarrow Fine analysis of $h(x)$ for $x \rightarrow \pm\infty$.
 \Leftarrow Behaviour of g and F at Northern and Southern pole.

Open Questions

- 1. Quantisation.** Find PDOs \hat{H}, \hat{F} with symbols H, F such that $[\hat{H}, \hat{F}] = 0$. Is it possible for $\hat{H} = \Delta_g$ (Laplace-Beltrami) ?
2. Construct concrete (and steel) model, physical or mechanical dynamical systems realising metrics in Thm1 or Thm2.
3. Pseudo-Riemannian case?
4. Find isometric embedding of global metrics (Thm2) in (\mathbb{R}^3, g_{st}) and find condition when such embeddings exist
5. Higher degrees? Case $Q(\text{quadratic}) + F(\text{cubic})$?

Thank you for your attention!!!