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Conclusion We prove that, each probability
meassure on R, with all moments, is canoni-
cally associated with:
– (i) a ∗–Lie algebra;
– (ii) a complexity index labeled by pairs of
natural integers.

The measures with complexity index (0,K) con-
sist of two disjoint classes:
– that of all measures with finite support
– the semi–circle–arcsine class (this name will
be motivated later).

The class (1,0) includes the Gaussian and Pois-
son measures and the associated ∗–Lie algebra
is the Heisenberg algebra.

The class (2,0) includes the non standard (i.e.
neither Gaussian nor Poisson) Meixner distri-
butions and the associated ∗–Lie algebra is



sl(2,R).

Starting from n = 3, the ∗–Lie algebra associ-

ated to the class (n,0) is infinite dimensional.



Notations

The polynomial algebra

P := {polynomial functions R → C} (a ∗–algebra)

– e1 = 1 the canonical basis of R.

X coordinate function on (R, µ)

X : xe1 ∈ R → X(x) := x ∈ R

Then:

P ≡ ∗–algebra of complex valued

polynomial functions of X.



Probability measures on R and states on P

Prob(R) := {probability measures on R}

µ ∈ Prob(R) probability distribution of X

X :=
{

a R–valued classical random variable

with all moments

probability measure µ on R ⇒ unique state µ on P

µ(P ) :=
∫
R
P (x)µ(dx) (1)

The inverse correspondence

state µ on P ⇒ probability measure µ on R

is many–to–one.



States and pre–scalar products on P

state µ on P ⇒ pre–scalar product on P 〈 · , · 〉

µ(P ∗Q) := 〈P,Q〉 :=
∫
R
P (x)Q(x)µ(dx) (2)

‖ · ‖ pre–norm associated to 〈 · , · 〉.

Theorem A pre–scalar product 〈 · , · 〉, on P
has the form (2) for some µ ∈ Prob(R),

if and only if

X = X∗

(the multiplication operators by

the coordinate function is 〈 · , · 〉–symmetric).



In the following:

– elements P (X) ∈ P ≡ multiplication

operators on P;

for P (X) considered as a vector, we write

P (X) · 1 =: P (X) ·Φ

monomial gradation on P:

P =
·∑

n∈N
CXn · 1

·∑
:= vector space direct sum.



Notation.

– K pre–Hilbert space

– ξ ∈ K unit vector

ξ∗(η) := 〈ξ, η〉 ; ∀ξ, η ∈ K

Dirac notation

ξ∗ = 〈ξ| bra ; ξ = |ξ〉 ket



The orthogonal polynomial gradation

Define inductively:

– the monic ortogonal polynomials Φn ,

– the normalized ortogonal polynomials

‖Φ̃n‖ = 1 ; ∀n ∈ N

as follows.

Φ̃0 := 1

P0] := Φ̃0Φ̃∗0



Having defined the sequence (Φ̃m, Pm])

(m ∈ {1, . . . , n}), define

Φn+1 := Xn+1 − Pn](X
n+1) (3)

Φ̃n+1 :=


Φn+1
‖Φn+1‖

, if ‖Φn+1‖ 6= 0

Φn+1 , if ‖Φn+1‖ = 0
(4)

Pn+1] :=
∑

j∈{1,...,n+1}
Φ̃jΦ̃

∗
j

Φ̃n+1 (resp. Φn+1) is a polynomial (resp. monic

polynomial) of degree n + 1 with real coef-

ficients and orthogonal to all polynomials of

degree ≤ n.

‖Φn+1‖ = 0 ⇒ Φ̃n+1 ⊥ P

⇒ ‖Φk‖ = 0 , ∀k ≥ n+ 1

Therefore the operator Φ̃n+1Φ̃∗n+1 is the zero

operator and the operator defined by (5) is a

projection in any case.



By construction, ∀n ∈ N, the of the set

linear span
{

Φ̃j : j ∈ {1, . . . , n}
}
≡ Pn] · Φ̃0 :=

:= {P ∈ P : degree(P ) ≤ n} ⊆ P · Φ̃0 :

Pn] : P · Φ̃0 : → Pn] · Φ̃0 : orthog. proj.

Pn := Pn+1] − Pn]

Pn := range of(Pn) :=

:= space of orthog. polynomials of degree n

P =
⊕
n∈N
Pn (6)

:= orthogonal polynomial gradation



The CAP operators

Theorem (the tri–diagonal Jacobi relation)

XPn = Pn+1XPn + PnXPn + Pn−1XPn

Define

a+
n := Pn+1XPn : Pn → Pn+1

a0
n := PnXPn : Pn → Pn

a−n := Pn−1XPn : Pn → Pn−1

aεn :=
∑
n∈N

Pn+εXPn ; ε ∈ {+1,0,−1}

Then the tri–diagonal Jacobi relation becomes

XPn = a+
n + a0

n + a−n

Summing over n ∈ N

X = a+ + a0 + a−

the quantum decomposition of X.



The 1–dimensional case

P =
⊕
n∈N

C · Φ̃n (7)

a0 =
∑
n∈N

αnΦ̃nΦ̃∗n (8)

a+ =
∑
n∈N

βn+1Φ̃n+1Φ̃∗n (9)

a− = (a+)∗ =
∑
n∈N

βn+1Φ̃nΦ̃∗n+1 (10)

– (αn) := secondary Jacobi sequence of µ;
αn ∈ R.
– (βn) := principal symmetric Jacobi sequence
of µ; βn ∈ R.
– (ωn) := (β2

n) := principal monic Jacobi se-
quence of µ.

ωn ≥ 0 ; ∀n ∈ N∗ ; ωn = 0 ⇒ ωp = 0 , ∀p ≥ n
(11)

It took 18 years of hard work to understand
what are the multi–dimensional analogues of
the sequences (αn) and (ωn).



The canonical commutation relations of a

classical probability measure on R

Define

Λ :=
∑
n∈N

nΦ̃nΦ̃∗n = Λ∗ number operator (12)

Theorem

[a−, a+] = (β2
Λ+1− β

2
Λ) =:

∑
(ωn+1− ωn)Φ̃nΦ̃∗n

(13)

= ωΛ+1 − ωΛ



The smallest ∗–Lie algebra canonically as-

sociated to µ

Definition 1 The ∗–Lie algebra generated by

the adjointable operators on the pre–Hilbert

space P

a+ , a−

i.e. the smallest ∗–Lie algebra containing these

operators, will be denoted L0
X.

Remark. L0
X is the smallest ∗–Lie algebra

canonically associated to the measure µ.

The natural ∗–Lie algebra canonically associ-

ated to µ is the one generated by

a+ , a0 , a−

In the present paper we restrict our attention

to L0
X. From the measure theoretical point of

view, this is equivalent to restrict one’s atten-

tion to symmetric µ (all odd moment vanish).



Our goal is to describe L0
X.

Lemma 1 Let T be the left–shift operator,

defined on Borel functions

F : R→ C by:

TFΛ := FΛ−1 ; ∀k ∈ N (14)

with the convention

Fh = 0 ; ∀h < 0 (15)

Define the difference operators

∂(1)FΛ := ∂FΛ := FΛ− TFΛ = FΛ−FΛ−1 (16)

∂(k)FΛ := FΛ−T kFΛ = FΛ−FΛ−k ; ∀k ∈ N , k ≥ 2

(17)

Then, for any k ∈ N and for any function F :

n ∈ N→ Fn ∈ C

[ak, FΛ] = ak∂(k)F̄Λ (18)

[a+k, FΛ] = −∂(k)FΛa
+k

F̄ – the complex conjugate of F .



The dimension of L0
X

If dim(L2(R, µ)) < +∞ then also L0
X will be

finite–dimensional.

Therefore the problem to distinguish between

finite and infinite dimensional L0
X is non–trivial

only if dim(L2(R, µ)) = +∞ and this is the case

if and only if

ωn > 0 ; ∀n ∈ N∗ (19)

or equivalently

‖Φn‖ 6= 0 ; ∀n ∈ N (20)

L0
X must contain the ∗–Lie algebra generated

by

a− , a+ , [a−, a+] = ∂ωΛ

Therefore, a sufficient condition for L0
X to be

infinite dimensional is that this algebra is infi-

nite dimensional.

If X is a symmetric random variable, i.e.

a0 = 0, this condition is also necessary.



Theorem 1 For a random variable X, a nec-

essary condition for L0
X to be finite dimensional

is that there exists n,K ∈ N such that

(∂nω)m = 0 ; ∀m ≥ K + 1 (21)

i.e., starting from K + 1, the sequence (ωn)

satisfies the difference equation (21).

Indices of information complexity of µ

In the following we do not assume that ωn > 0

for each n ∈ N.



Definition 2 The index of information com-

plexity (or simply information complexity) of

a probability measure µ ∈ Prob(R), with princi-

pal Jacobi sequence (ωn), is the pair C(µ) ∈ N2

defined as follows:

C(µ) := (22)
(k,K) , if k = min{n ∈ N∗ :

(∂n+1ω)m = 0 , ∀m ≥ K + 1}
+∞ , if no pair (n,K)

with the above property exists

and K is the smallest natural integer satisfying

(23).

Remark. Notice that the relation

µ ∼ ν ⇐⇒ C(µ) = C(ν) ; µ, ν ∈ Prob(R)

(23)

is an equivalence relation and that it involves

only the principal Jacobi sequence ω ≡ (ωn).



The class C(µ) = (0,K) (K ∈ N)

According to Definition (2) the probability mea-

sures belonging to the information complexity

class (0,K) are those for which there exists

K ∈ N such that

(∂ω)m = 0 ; ∀m ≥ K + 1 (24)

and K is smallest number with respect to the

property (24).



Theorem 2 Let (µ, (ωn)) be a probability mea-

sure with principal Jacobi sequence (ωn) and

information complexity C(µ) = (0,K),

(K ∈ N). Then, with the convention that

x ≤ 0 ⇒ {1, . . . , x} := ∅ (25)

and for K as in (24), one of the following al-

ternatives takes place:

(i) |supp(µ)| = K + 1 and (ωn) has the form

ωn =

{
arbitrary > 0 , if n ∈ {1, . . . ,K − 1}
0 , if n ≥ K

(26)

Moreover all measures µ ∈ Prob(R) are in this

class.

(ii) |supp(µ)| =∞ and (ωn) has the form

ωn =

{
arbitrary > 0 , if n ∈ {1, . . . ,K}
ω > 0 , if n ≥ K + 1

(27)



Examples of measures in the class C(µ) =

(0,K) (K ∈ N).

C(µ) = (0,0), ω = 0: the δ–measures

If C(µ) = (0,0) and ω = 0, then ∂ωn = 0 for

all n ≥ 1. In particular

∂ω1 = ω1 − ω0 = ω1 = 0.

This condition characterizes the δ–measures,

i.e. those µ such that

µ = δc for some c ∈ R

This is easily seen directly because

0 = ω1 = µ(X2)− µ(X)2 (28)

it follows that X has constant range.

Inversely, suppose that X has constant range

equal to {c} (c ∈ R), i.e.

µ = δc

Then (28) holds.



C(µ) = (0,0), ω > 0: the semi–circle laws

In this case ωn = ω1 =: a > 0 for all n ≥ 1. It is

known that this class coincides with the class

of Semi–circle distributions, the Gaussian of

free probability.



C(µ) = (0,1), ω > 0: the arcsine laws

In this case

ωn =
{
a > 0 if n = 1

0 < b 6= a if n ≥ 2

and it is known that this class coincides with

the class of Arcsine laws, the Gaussian of

monotone probability..



C(µ) = (0,K), ω > 0, K ≥ 3: the extended

semi–circle–arcsine laws

Remark. The structure of the measures in

this class is a natural extension of the semi–

circle and arcsine laws.

Almost nothing is known about the specific

structure of this class.



C(µ) = (1,K)

The probability measures belonging to the in-

formation complexity class (1,K) are those for

which there exists K ∈ N such that

∂2ωn = 0 ; ∀n ≥ K + 1 (29)

and both the exponent 2 and the number K

are the smallest ones with respect to property

(29).



Theorem 3 The class of probability measures

on R with information complexity C(µ) = (1,K),

(K ∈ N) is characterized by the fact that their

principal Jacobi sequence (ωn) has the follow-

ing structure:

there exists b ∈ R∗+ and c ∈ R such that, with

the convention (25), (ωn) has the form

ωn =

{
arbitrary > 0 , if n ∈ {1, . . . ,K}
bn+ c > 0 , if n ≥ K + 1

(30)

In particular, if c is positive, then it can be

arbitrary while, if negative, it must satisfy

|c| ≤ b(K + 1) (31)



Cω(µ) = (1,0): Gaussian and Poisson

Complexity class C(µ) = (1,0):

ωn = bn+ c ; ∀n ≥ 1

with b ∈ R∗+, c ∈ R+.

Take c = 0, then

ωn = bn > 0 ; ∀n ≥ 1

This class includes both the Gaussian distribu-

tion with mean 0 and variance b and the Pois-

son distribution with intensity b (see [AcKu-

oSta07]).



The ∗–Lie algebra of the class
Cω(µ) = (1,0) is the Heisenberg algebra

Theorem 4 Let (µ, (ωn)) be any probability
measure with information complexity
C(µ) = (1,0), then the 3–dimensional linear
space L0

X generated by the operators{
a−, a+, ∂ωΛ

}
is a ∗-Lie algebra isomorphic to the Heisenberg
Lie algebra.

Proof.
If C(µ) = (1,0), then (ωn) is the solution of a
second order difference equation.
Therefore it has the form

bn+ c ; ∀n ≥ 1

Therefore the commutation relations become

[a−, a+] = ωΛ − ωΛ−1 = b · 1

[a−, b · 1] = [a+, b · 1] = 0

which are the defining relations of the
Heisenberg ∗-Lie algebra.



The classes Cω(µ) = (2,K)

The probability measures belonging to the

information complexity class (2,K) are those

for which there exists K,n ∈ N such that

∂3ωn = 0 ; ∀n ≥ K + 1 (32)

and both the exponent 3 and the number K

are minimal with respect to the property (32).



Theorem 5 The class of probability measures

on R with information complexity C(µ) = (2,K),

(K ∈ N) is characterized by the fact that their

principal Jacobi sequence (ωn) has the follow-

ing structure:

there exists b, c, d ∈ R such that b > 0 and, with

the convention (25) (ωn) has the form

ωn =

{
arbitrary > 0 , if n ∈ {1, . . . ,K}
bn2 + cn+ d > 0 , if n ≥ K + 1

(33)

In particular, if c, d are positive, then they can

be arbitrary while, if one of them is negative,

then their choice is constrained by the fact that

the right hand side of (33) must be positive.



The class C(µ) = (2,1)

In this case (ωn)n has the form

bn2 + cn+ d ; ∀n ≥ 1

with b ∈ R∗+, c, d ∈ R.

In particular, if d = 0 then ωn = bn2 + cn > 0

for all n ≥ 1 and it is known that this class

coincides with the class of non–standard (i.e.

neither Gaussian nor Poisson) Meixner distri-

butions.



The ∗–Lie algebra of the class

Cω(µ) = (2,0) is sl(2,R)

Theorem 6 Let (µ, (ωn)) be a probability mea-

sure with information complexity C(µ) = (2,0),

then the 3–dimensional linear space L0
X gener-

ated by the operators{
a−, a+, ∂ωΛ

}
(34)

a ∗-Lie algebra isomorphic to the sl(2,R) Lie

algebra.



Proof

If C(µ) = (2,0) then (ωn) has the form

ωn = bn2 + cn+ d

for all n ≥ 1, with b > 0. This implies that

∂ωΛ = 2bΛ + c ; ∂2ωΛ = 2b

Hence, from Lemma (1) we have the

commutation relations

[a−, a+] = ∂ωΛ = 2bΛ + c

[a−, ∂ωΛ] = [a−,2bΛ + c] = 2b[a−,Λ]

= 2ba−∂Λ = 2ba−

Consequently

[a+, ∂ωΛ] = −2ba+

The statement then follows from the definition

of the sl(2,R) ∗-Lie algebra.



The class C(µ) = (3,0)

Theorem 7 Let (µ, (ωn)) be a probability mea-

sure with information complexity C(µ) = (3,0),

then the linear space L0
X generated by the op-

erators {
a−, a+, ∂ωΛ

}
is a ∞–dimensional ∗-Lie algebra.

Proof If C(µ) = (3,0), then (ωn) has the form

bn3 + cn2 + dn+ en

This implies,

∂ωΛ = 3bΛ2 + (2c− 3b) Λ + (2d− c) (35)

and

∂2ωΛ = 6bΛ + 2c− 5b ; ∂3ωΛ = 6b

By lemma (1) we have

[a+,Λ] = −∂Λa+ = −a+ ∈ LX (36)



By relation (35) and (36) one has

[a+, ∂ωΛ] = [a+,3bΛ2 + (2c− 3b)Λ + (2d− c)]

= −3b(a+Λ + Λa+) + (3b− 2c)a+ ∈ LX
Since 3b 6= 0 and a+ ∈ LX this implies

a+Λ + Λa+ ∈ LX
Moreover, by relation (36) one has

[a+, a+Λ + Λa+] = a+[a+,Λ] + [a+,Λ]a+

= −2(a+)2 ∈ LX
Then one proves that for any n ≥ 1, (a+)n ∈
LX the family of operators

{(a+)n : n ∈ N}

is linearly independent and this implies that L0
X

is infinite dimensional.



Probabilistic extensions of quantum

mechanics: the free evolution of

a classical random variable

Consider the symmetric case:

a0 = 0

Start from the probabilistic commutation

relations in monic form:

[a−, a+] = (ωΛ − ωΛ−1)

[a+, a+] = [a−, a−] = 0

The Schrödinger equation (with ~ = 1) is:

∂tψt = −iHψt (37)



Taking

H := ca+a− ; c > 0

the corresponding Heisenberg evolution

for a± is

at := ut(a
±) := (38)

= eitHa±e−itH = eitca
+a−a±e−itca

+a−

From

[a−, a+a−] = [a−, a+]a− = (ωΛ − ωΛ−1)a−

one deduces that

d

dt
at =

d

dt
eitca

+a−a−e−itca
+a− =

= iteitca
+a−[ca+a−, a−]e−itca

+a−

= −iteitca
+a−c(ωΛ − ωΛ−1)a−e−itca

+a−

= −itc(ωΛ − ωΛ−1)eitca
+a−a−e−itca

+a−



Since ca+a− leaves the orthogonal

gradation invariant, it commutes with Λ,

[a+a−,Λ] = 0

and, since a+a− and Λ have discrete

spectrum, with all its Borel functions.

Therefore, denoting

a−(t) := eitca
+a−a−e−itca

+a−

since a−(0) = a− one obtains

d

dt
a−(t) = −it(ωΛ − ωΛ−1)a−(t)

a−(0) = a−

whose unique solution is

a−(t) = eitca
+a−a−e−itca

+a− =

= e−itc(ωΛ−ωΛ−1)a−

Therefore

a+(t) = a+eitc(ωΛ−ωΛ−1)



This implies that

[a(t), a+(t)] =

= e−itc(ωΛ−ωΛ−1)a−a+eitc(ωΛ−ωΛ−1)

−a+eitc(ωΛ−ωΛ−1)e−itc(ωΛ−ωΛ−1)a−

= a−a+ − a+a− = [a, a+]

Thus the map

t ∈ R 7→ a±(t) =

{
a+eit(ωΛ−ωΛ−1)

e−it(ωΛ−ωΛ−1)a−

called the generalized free evolution, is a

∗–Lie–algebra isomorphism, hence it

extends to an (associative) ∗–algebra

isomorphism of the universal enveloping

algebra of (a+, a−,1).



This means that the ∗–algebra

Pol(a±) := algebraic span of{a±}

is left invariant by its unique ∗–automorphism

extending the generalized free evolution.



Equilibriumand local equilibrium states of

the Lie algebra

From the expression of the generalized

free evolution

ut(X) = eit(ωΛ−ωΛ−1)Xe−it(ωΛ−ωΛ−1) ; t ∈ R

by analytic continuation at t = −iβ one obtains

u−iβ(X) = (39)

= eβ(ωΛ−ωΛ−1)Xe−β(ωΛ−ωΛ−1)

The KMS equilibrium condition at inverse

temperature β, for a given density

matrix W , is:

Tr(Wut−iβ(X)Y ) = Tr(WY ut(X))

Putting t = 0 this becomes

Tr(Wu−iβ(X)Y ) = Tr(WYX)



Using the explicit form (39) of

u−iβ(X), this is equivalent to

Tr(WYX) = Tr(Wu−iβ(X)Y )

= Tr(Weβ(ωΛ−ωΛ−1)Xe−β(ωΛ−ωΛ−1)Y )

= Tr(XWY )⇔

⇔Weβ(ωΛ−ωΛ−1)Xe−β(ωΛ−ωΛ−1) = XW ⇔

⇔Weβ(ωΛ−ωΛ−1)X = XWeβ(ωΛ−ωΛ−1) ⇔

Weβ(ωΛ−ωΛ−1) =:
1

Zβ
· 1⇔

⇔W =
e−β(ωΛ−ωΛ−1)

Zβ



The covariance of a (β, ω)–KMS state in

a representation (H,Φ) where P(a+, a)

has a cyclic unit vector Φ.

a+manΦ total in H

ϕ(u−iβ(a+)a)
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