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Conclusion We prove that, each probability
meassure on R, with all moments, is canoni-
cally associated with:

— (i) a =—Lie algebra;

— (ii) a complexity index labeled by pairs of
natural integers.

The measures with complexity index (0, K) con-
sist of two disjoint classes:

— that of all measures with finite support

— the semi—circle—arcsine class (this name wiill
be motivated later).

The class (1, 0) includes the Gaussian and Pois-
son measures and the associated x—Lie algebra
iIs the Heisenberg algebra.

The class (2,0) includes the non standard (i.e.
neither Gaussian nor Poisson) Meixner distri-
butions and the associated x—Lie algebra is



sl(2,R).

Starting from n = 3, the *—Lie algebra associ-
ated to the class (n,0) is infinite dimensional.



Notations

The polynomial algebra

P := {polynomial functionsR — C} (a x—algebra)

— e1 = 1 the canonical basis of R.

X coordinate function on (R, u)

X:xze1€R — X(z) =z2z€R

Then:
P = x—algebra of complex valued
polynomial functions of X.



Probability measures on R and states on P

Prob(R) := {probability measures on R}

w € Prob(R) probability distribution of X

¥ o— {a R—valued classical random variable
' with all moments

probability measure u on R = unique state x on P

u(P) i= [ P(x)p(da) (1)

R
The inverse correspondence

state u on P = probability measure u on R

IS many—to—one.



States and pre—scalar products on P

state p on P = pre—scalar product on P (-, -)

w(P'Q) = (P.Q) == [ P@)Q(@)u(dz) (2)

| - || pre—norm associated to { -, - ).

Theorem A pre—scalar product ( -, - ), on P
has the form (2) for some u € Prob(R),
if and only if

X=X"

(the multiplication operators by
the coordinate function is ( -, - )=symmetric).



In the following:

— elements P(X) € P = multiplication
operators on P;

for P(X) considered as a vector, we write

P(X) 1=: P(X) -

monomial gradation on P:

P=13 CX".1
neN

Z = vector space direct sum.



Notation.

— IC pre—Hilbert space
— & € K unit vector

§5(n) ==&, m)

Dirac notation

§* = (| bra

VE,n e K

&= |&) ket



The orthogonal polynomial gradation

Define inductively:
— the monic ortogonal polynomials ¢, ,
— the normalized ortogonal polynomials

1®n=1 Vn € N

as follows.



Having defined the sequence (Pm, P,))
(me{1,...,n}), define

®,pq = X" p (X (3)
Pp1 = { @l > 1 Pntall 70 g
cbn—|-1 ) it chn—l—lH =0
Popy= Y &
je{l,....n+1}

P, 11 (resp. ®,,41) isa polynomial (resp. monic
polynomial) of degree n + 1 with real coef-

ficients and orthogonal to all polynomials of

degree < n.

|[®pt1]l =0 = Ppyq L P

Therefore the operator c'l">n_|_1<'l">j;_|_1 is the zero
operator and the operator defined by (5) is a
projection in any case.



By construction, Vn € N, the of the set
linear span {CTDj je{1,... ,n}} =P, Po =
= {PcP : degree(P)<n} CP -Pg:
Py : P Pp: — Pn) - $q : orthog. proj.
Py =P,y — P
Prn = range of(P,) :=

:— space of orthog. polynomials of degree n

P= Pn (6)

neN

.= orthogonal polynomial gradation



The CAP operators

Theorem (the tri—diagonal Jacobi relation)
XPn= P41 XPn+ PhXPn+ P_1XPp
Define
a,,;" = P,41XPn ¢ Pn — Ppya
ad =P, XP, : Pn — Pn

ay, ‘= Y P,y .XP, ; ee{+1,0,-1}
neN

Then the tri—diagonal Jacobi relation becomes
XPnza,;'{—l—ag—l—a;
Summing over n € N
X =at -+ aV + a

the quantum decomposition of X.



T he 1—-dimensional case

P=&EC o, (7)

neN
a® =3 an®,®} (8)

neN
at =3 Bt1® 195 (9)

neN

a” = (at)* =Y Bt 1Pn®l 4 (10)

neN
— (ap) := secondary Jacobi sequence of pu;

an € R.

— (Br) := principal symmetric Jacobi sequence
of u; Bn € R.

— (wp) := (B2) := principal monic Jacobi se-
quence of u.

wn>0 ; VYneN' ; w,=0= wp=0,Vp>n
(11)

It took 18 years of hard work to understand

what are the multi—dimensional analogues of

the sequences (ap) and (wn).



The canonical commutation relations of a
classical probability measure on R

Define

A=) nd,P; = A" number operator (12)
neN

T heorem

l[a™, CL+] — (5/2\4_1 - 5/2\) = Z(Wn—I—l — wn)Pp Py,
(13)

= WA+41 — WA



The smallest x—Lie algebra canonically as-
sociated to u

Definition 1 The x—Lie algebra generated by
the adjointable operators on the pre—Hilbert
space P

_|_ -

a : a

I.e. the smallest x—Lie algebra containing these
operators, will be denoted L.

Remark. L% is the smallest x—Lie algebra
canonically associated to the measure pu.

The natural x—Lie algebra canonically associ-
ated to u is the one generated by

+ 0 -

a : a : a

In the present paper we restrict our attention
to 59(. From the measure theoretical point of
view, this is equivalent to restrict one’s atten-
tion to symmetric p (all odd moment vanish).



Our goal is to describe £5.

Lemma 1 Let T be the left—shift operator,
defined on Borel functions
F:R — C by:

TFp = Fpn_q : Vk € N (14)
with the convention
Fp, =0 ; Vh < 0O (15)
Define the difference operators

OV N = OFy := Fx—TFx = Fx — Fp_1 (16)

OR)Fp := FA—TFFN = FA—Fn_p | Vk€EN, k>?2

(17)
Then, for any kK € N and for any function F':

[ak,F/\] = akﬁ(k)F/\ (18)

[a+k, F/\] — —a(k)F/\CL_I_k

F' — the complex conjugate of F.



The dimension of £§

If dim(L?(R,u)) < +oo then also £ will be
finite—dimensional.

Therefore the problem to distinguish between
finite and infinite dimensional £% is non—trivial
only if dim(L2(R, 1)) = 400 and this is the case
if and only if

wp > 0 ; Vn € N* (19)

or equivalently

|Pr|l 7= O : Vn € N (20)

/39( must contain the x—Lie algebra generated
by

a a—l_ ’ [a'_aa'—l_] — a(")/\

Therefore, a sufficient condition for /;9( to be
infinite dimensional is that this algebra is infi-
nite dimensional.

If X is a symmetric random variable, i.e.

al = 0, this condition is also necessary.



Theorem 1 For a random variable X, a nec-
essary condition for £ to be finite dimensional
is that there exists n, K € N such that

(0"w)m = 0 ; vm>K+1  (21)

i.e., starting from K + 1, the sequence (wn)
satisfies the difference equation (21).

Indices of information complexity of u

In the following we do not assume that w, > 0
for each n € N,



Definition 2 The index of information com-
plexity (or simply information complexity) of
a probability measure u € Prob(R), with princi-
pal Jacobi sequence (wy), is the pair C(u) € N2
defined as follows:

Cu) = (22)

((k,K) , if k= min{n € N*
(Tl =0, Vm > K + 1}
+o0 , if no pair (n, K)
L with the above property exists
and K is the smallest natural integer satisfying
(23).

N\

Remark. Notice that the relation

p~v <— C(u)=C(v) ; wu, v € Prob(R)
(23)

IS an equivalence relation and that it involves

only the principal Jacobi sequence w = (wn).



The class C(u) = (0, K) (K € N)

According to Definition (2) the probability mea-
sures belonging to the information complexity
class (0,K) are those for which there exists
K € N such that

(0w)m = 0 ; vm>K+1  (24)

and K is smallest number with respect to the
property (24).



Theorem 2 Let (i, (wn)) be a probability mea-
sure with principal Jacobi sequence (wp) and
information complexity C(u) = (0, K),

(K € N). Then, with the convention that

r<0 = {1,...,2}:=10 (25)

and for K as in (24), one of the following al-
ternatives takes place:
(i) |supp(p)| = K+ 1 and (wp) has the form

__ | arbitrary >0, ifne{l,..., K -1}
“m_{o,wnzK

(26)
Moreover all measures u € Prob(R) are in this
class.

(i) |supp(p)| = oo and (wp) has the form

B o

= arbitrary >0, ifne{1,..
"Tlo>0,ifn>K+1



Examples of measures in the class C(u) =
(0,K) (K €N).

C(n) = (0,0), w = 0: the é{—measures

If C(n) = (0,0) and w = 0, then Ow, = 0 for
all n > 1. In particular

Owi, = w1 —wpg =wq = 0.

This condition characterizes the é—measures,
i.e. those u such that

=29, forsomecelR
This is easily seen directly because
0 =uw; = pu(X?) — p(X)? (28)

it follows that X has constant range.
Inversely, suppose that X has constant range
equal to {c} (c e R), i.e.

= dc
Then (28) holds.



C(pn) =(0,0), w> 0: the semi—circle laws

In this case wp, = w1 =:a>0foralln>1. Itis
known that this class coincides with the class
of Semi—circle distributions, the Gaussian of
free probability.



C(p) =(0,1), w > 0: the arcsine laws

In this case
_(a>0ifn=1
n_{0<b#aﬁn22
and it is known that this class coincides with
the class of Arcsine laws, the Gaussian of
monotone probability..



C(p) =(0,K), w>0, K> 3: the extended
semi—circle—arcsine laws

Remark. The structure of the measures in
this class is a natural extension of the semi—
circle and arcsine laws.
Almost nothing is known about the specific
structure of this class.



C(p) = (1, K)

The probability measures belonging to the in-
formation complexity class (1, K) are those for
which there exists K € N such that

02wy = 0 ; Vn> K+ 1 (29)

and both the exponent 2 and the number K
are the smallest ones with respect to property
(29).



Theorem 3 The class of probability measures

on R with information complexity C(u) = (1, K),
(K € N) is characterized by the fact that their

principal Jacobi sequence (wy) has the follow-

ing structure:

there exists b € IR%’_‘l_ and ¢ € R such that, with

the convention (25), (wn) has the form

arbitrar 0O, if 1..... K
wn:{ I y> 7|n€{7 ? } (30)

m+c>0, i fn>K+41

In particular, if ¢ is positive, then it can be
arbitrary while, if negative, it must satisfy

o] <O(K +1) (31)



Cw(p) = (1,0): Gaussian and Poisson

Complexity class C(u) = (1,0):

wn = bn 4+ c : Vn > 1

with b € R*_, ce R4,
Take ¢ = 0, then

wnp =bn >0 : Vn > 1

This class includes both the Gaussian distribu-
tion with mean 0 and variance b and the Pois-
son distribution with intensity b (see [AcKu-
oSta07]).



The x—Lie algebra of the class
Cw(pn) = (1,0) is the Heisenberg algebra

Theorem 4 Let (u,(wn)) be any probability
measure with information complexity
C(pn) = (1,0), then the 3—dimensional linear
space £9( generated by the operators

{a_, a,+, (%)/\}

IS a *x-Lie algebra isomorphic to the Heisenberg
Lie algebra.

Proof.

If C(pn) = (1,0), then (wp) is the solution of a
second order difference equation.

Therefore it has the form

bn + c ; Vn > 1
Therefore the commutation relations become

[a ,aT] =wp —wp_1=0b-1
[a=,b-1]=[aT,b-1] =0

which are the defining relations of the
Heisenberg x-Lie algebra.



The classes Cy(pn) = (2, K)

The probability measures belonging to the
information complexity class (2, K) are those
for which there exists K,n € N such that

&3wp =0 ; Vn> K+ 1 (32)

and both the exponent 3 and the number K
are minimal with respect to the property (32).



Theorem 5 The class of probability measures
on R with information complexity C(u) = (2, K),
(K € N) is characterized by the fact that their
principal Jacobi sequence (wyn) has the follow-
ing structure:

there exists b,c,d € R such that b > 0 and, with
the convention (25) (wp) has the form

arbitrary >0, ifne{l,...,K}
bn+cn+d>0, ifn>K+4+1
In particular, if ¢,d are positive, then they can
be arbitrary while, if one of them is negative,
then their choice is constrained by the fact that
the right hand side of (33) must be positive.



The class C(p) = (2,1)

In this case (wn)n has the form

bn2—|—cn—|—d : Vn > 1

with b € R, ¢,d € R.

In particular, if d = 0 then wp, = bn? +cn > 0
for all n > 1 and it is known that this class
coincides with the class of non—standard (i.e.
neither Gaussian nor Poisson) Meixner distri-
butions.



The x—Lie algebra of the class
Cu(p) = (2,0) is sl(2,R)

Theorem 6 Let (i, (wn)) be a probability mea-
sure with information complexity C(u) = (2,0),
then the 3—dimensional linear space Eg)( gener-
ated by the operators

{a_,a+,8w/\} (34)

a x-Lie algebra isomorphic to the si(2,R) Lie
algebra.



Proof
If C(pu) = (2,0) then (wp) has the form

Wy, = bn? +cn + d
for all n > 1, with b > 0. This implies that
dwp = 2bA + ¢ ; %wp = 2b

Hence, from Lemma (1) we have the
commutation relations

[a™,aT] = Owp = 2bA + ¢
[a™, 0wp]l = [a™, 2D + c] = 2bla™, A\]
= 2ba ON\ = 2ba—
Consequently

[aT, Owp] = —2baT

The statement then follows from the definition
of the sl(2,R) *-Lie algebra.



The class C(u) = (3,0)

Theorem 7 Let (i, (wn)) be a probability mea-
sure with information complexity C(n) = (3,0),
then the linear space /;9( generated by the op-
erators

{a_, a+, (9w/\}

IS a co—dimensional x-Lie algebra.

Proof If C(u) = (3,0), then (wyp) has the form
bn> -+ en? + dn + en
T his implies,
Owp = 3bA° 4+ (2c —3b) A+ (2d —¢)  (35)
and
0°wN = 6bA +2c —5b ; 83wp = 6b
By lemma (1) we have

[at Al = —9naT = —aT e Ly (36)



By relation (35) and (36) one has
[aT,0wA]l = [aT,3bA% 4+ (2¢ — 3b)A + (2d — ¢)]
= —3b(aTA+AaT)+ Bb—2c)atT € Ly
Since 3b# 0 and aT € Ly this implies
aTA+NaT €Ly
Moreover, by relation (36) one has

l[aT, aTA+ANaT]=aT[aT,A]+ [aT,A]la™

= —2(a+)2 c Lx

Then one proves that for any n > 1, (at)" €
Lx the family of operators

{(a™)" : neN}

IS linearly independent and this implies that £9<
IS infinite dimensional.



Probabilistic extensions of quantum
mechanics: the free evolution of
a classical random variable

Consider the symmetric case:
ao =0

Start from the probabilistic commutation
relations in monic form:

[a”,aT] = (WA —wp_1)
[aT,at]=[a",a7]=0
The Schrodinger equation (with A=1) is:

Oppr = —iHy (37)



Taking

H: =ca'a ; c>0

the corresponding Heisenberg evolution
for a=T is

a; ‘= ug(a™) 1= (38)
_ itH * —itH _ jitcata™ + —itcaTa”
From
[a ,aTa ] =[a",aT]a” = (wp — wa_1)a

one deduces that

iat — ieitca+a_a—e—itca+a_ —

dt dt

:Zteztca a [Ca a”,a ]e tca " a
:_Zteztca a c(w/\—w/\_l)a e teca ™ a

:—ZtC(CU/\—W/\_l)GZtca a4, "e tca ™ a



Since cata™ leaves the orthogonal
gradation invariant, it commutes with A,
[aTa™,A] =0

and, since aTa~ and A have discrete
spectrum, with all its Borel functions.

T herefore, denoting
a” (t) e eitca+a_a—e—itca+a_

since a~(0) = a~ one obtains

d _ . _
20 (t) = —it(wp —wa—1)a” (1)
a (0) =a
whose unique solution is
a” (t) — eitca+a_a—e—itca+a_ —

— o tte(wa—wa—1) ,—

T herefore

at (t) = a1 ettc(wpn—wa_1)



This implies that
[a(t),a™ (t)] =

— o tte(wpa—wa—1) ,— o Feitc(wn—wa—1)
_aqteitclopn—wa—1) —itc(wp—wa—1) ,—

- _|_ _a+a_

— a a

]

= [a,a
Thus the map

teR — at(t) = {a+.€it(wA_wA_1)
e—it(wa—wa—1) o~
called the generalized free evolution, is a
x—Lie—algebra isomorphism, hence it
extends to an (associative) x—algebra
isomorphism of the universal enveloping

algebra of (at,a,1).



This means that the x—algebra

Pol(a™) := algebraic span of{a™}

IS left invariant by its unique s—automorphism
extending the generalized free evolution.



Equilibriumand local equilibrium states of
the Lie algebra

From the expression of the generalized
free evolution

wp(X) = pit(wa—wa—1) y p—it(WA—wA—1) ; tc R
by analytic continuation at ¢t = —:3 one obtains
u_ig(X) = (39)

— Blop—wa—1) xo—Blwa—wa—1)

The KMS equilibrium condition at inverse
temperature g, for a given density
matrix W, is:

Tr(Wut_Z-ﬁ(X)Y) = Tr(WYu(X))
Putting t = O this becomes

Tr(Wu_ig(X)Y) = Tr(WY X)



Using the explicit form (39) of
u_;3(X), this is equivalent to

Tr(WYX) = Tr(Wu_;5(X)Y)
= Tr(WePwa—wa—1) x = Blwa—wa-1)y)
= Tr(XWY) &
o WePwr—wa-1) x o= BlA—wA-1) — X/
o WebBlwn—wa—1) x = xwellwa—wa—1) o

WePBlwa—wa—1) —- 1 1 <
Z3
e—Blwa—wa_1)

Z3

S W =




The covariance of a (8,w)—KMS state in
a representation (H,®) where P(at,a)
has a cyclic unit vector &.

aT™a"®  total in H

p(u_ig(a™)a)
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