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We propose a scheme to utilize photons for ideal quantum transmission between atoms located at
spatially separated nodes of a quantum network. The transmission protocol employs special laser
pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped into
a time-symmetric photon wave packet that will enter a cavity at the receiving node and be absorbed by
an atom there with unit probability. Implementation of our scheme would enable reliable transfer or
sharing of entanglement among spatially distant atoms. [S0031-9007(97)02983-9]
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We consider a quantum network consisting of spatially
separated nodes connected by quantum communication
channels. Each node is a quantum system that stores quan-
tum information in quantum bits and processes this in-
formation locally using quantum gates [1]. Exchange of
information between the nodes of the network is accom-
plished via quantum channels. A physical implementa-
tion of such a network could consist, e.g., of clusters of
trapped atoms or ions representing the nodes, with opti-
cal fibers or similar photon “conduits” providing the quan-
tum channels. Atoms and ions are particularly well suited
for storing qubits in long-lived internal states, and recently
proposed schemes for performing quantum gates between
trapped atoms or ions provide an attractive method for lo-
cal processing within an atom�ion node [2–4]. On the
other hand, photons clearly represent the best qubit carrier
for fast and reliable communication over long distances
[5,6], since fast and internal-state-preserving transportation
of atoms or ions seems to be technically intractable.
To date, no process has actually been identified for

using photons (or any other means) to achieve efficient
quantum transmission between spatially distant atoms [7].
In this Letter we outline a scheme to implement this basic
building block of communication in a distributed quantum
network. Our scheme allows quantum transmission with
(in principle) unit efficiency between distant atoms 1 and
2 (see Fig. 1). The possibility of combining local quan-
tum processing with quantum transmission between the
nodes of the network opens the possibility for a variety
of novel applications ranging from entangled-state cryp-
tography [8], teleportation [9], and purification [10], and
is interesting from the perspective of distributed quantum
computation [11].
The basic idea of our scheme is to utilize strong coupling

between a high-Q optical cavity and the atoms [5] forming
a given node of the quantum network. By applying laser
beams, one first transfers the internal state of an atom
at the first node to the optical state of the cavity mode.
The generated photons leak out of the cavity, propagate

as a wave packet along the transmission line, and enter
an optical cavity at the second node. Finally, the optical
state of the second cavity is transferred to the internal state
of an atom. Multiple-qubit transmissions can be achieved
by sequentially addressing pairs of atoms (one at each
node), as entanglements between arbitrarily located atoms
are preserved by the state-mapping process.
The distinguishing feature of our protocol is that by

controlling the atom-cavity interaction, one can absolutely
avoid the reflection of the wave packets from the second
cavity, effectively switching off the dominant loss channel
that would be responsible for decoherence in the commu-
nication process. For a physical picture of how this can
be accomplished, let us consider that a photon leaks out of
an optical cavity and propagates away as a wave packet.
Imagine that we were able to “time reverse” this wave
packet and send it back into the cavity; then this would
restore the original (unknown) superposition state of the
atom, provided we would also reverse the timing of the
laser pulses. If, on the other hand, we are able to drive
the atom in a transmitting cavity in such a way that the
outgoing pulse were already symmetric in time, the wave
packet entering a receiving cavity would “mimic” this time
reversed process, thus “restoring” the state of the first atom
in the second one.
The simplest possible configuration of quantum trans-

mission between two nodes consists of two atoms 1 and
2 which are strongly coupled to their respective cavity
modes (see Fig. 1). The Hamiltonian describing the inter-
action of each atom with the corresponding cavity mode

FIG. 1. Schematic representation of unidirectional quantum
transmission between two atoms in optical cavities connected
by a quantized transmission line (see text for explanation).
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We show that photon nonlinearities in an electromagnetically induced transparency can be at least
1 order of magnitude larger than predicted in all previous approaches. As an application we demonstrate
that in this regime they give rise to very strong photon-photon interactions which are strong enough to
make an experimental realization of a photonic Mott insulator state feasible in arrays of coupled
ultrahigh-Q microcavities.
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Introduction.—Various quantum mechanical effects
have been observed with photons. Examples include quad-
rature squeezing and entangled photon states [1]. All these
effects require strong nonlinear interactions between pho-
tons for their observation. Unfortunately, photons tend to
interact only weakly, and it is thus of considerable interest
to develop schemes achieving larger and larger photon
nonlinearities, as these would make further quantum ef-
fects accessible in experiments.

A scheme for the generation of a large photon nonline-
arity has been proposed by Imamoğlu et al. [2] for atoms
with a level structure considered in electromagnetically
induced transparency (EIT) [3], which interact with the
resonant light mode of a cavity, and in [4] it was clarified
when this is strictly a photon-photon interaction. Non-
linearities obtained in this way can be strong enough to
employ them as single photon turnstile devices [5]. The
photon nonlinearity considered in [2] can be studied in a
more general regime as a nonlinear interaction for dark
state polaritons [6]. This nonlinearity and other approaches
[7] have been employed to show that effective many body
physics should be observable in arrays of coupled cavities
[6].

In this Letter, we show that the photon nonlinearity
proposed in [2] exists in a much more general parameter
regime than previously considered [4]. In that way, we can
relax a restricting assumption used in [2,4,6] and are thus
able to increase achievable photon-photon interactions by
at least 1 order of magnitude. As the nonlinear interactions
presented here are significantly stronger than in previous
schemes, they open up possibilities for the observation of
phenomena which were previously not accessible in ex-
periments. If generated in an array of coupled ultra high-Q
microcavities [8], they can become large enough to make
the experimental observation of a Mott insulator state for
photons rather than polaritons feasible.

The parameter regime we consider in this paper is
crucially different from the dark state polariton regime
employed in [6] and the regime addressed in [7]. Indeed,
the nonlinearity we derive here is an interaction between

photons and not polaritons (joint atomic-photonic excita-
tions) as considered in [2,4,6,7].

In the photonic Mott state we consider, exactly one
photon exists in each cavity, provided the whole structure
contains on average one photon per cavity [9]. Moreover,
the photons are localized in the cavity they are in and are
not able to hop between different cavities. In such a situ-
ation photons behave as strongly correlated particles that
are each ‘‘frozen’’ to their lattice site, a system that would
correspond to a crystal formed by light. The nonlinearity
derived here, when applied to coupled cavities, could thus
provide the first realistic possibility to observe light in this
exotic quantum state.

As this photonic Mott insulator is characterized by the
number of photons in a single cavity being hayl ali ! 1 for
cavity l, and its fluctuations being zero, h"ayl al#2i$
hayl ali2 ! 0, it is fundamentally different from polaritonic
Mott insulators as predicted in [6,7], where the number of
polaritons at one site is exactly unity but the photon
number fluctuates (hayl ali ! 1

2 and h"ayl al#2i$ hayl ali2 !
1
2 for no detuning).

This Letter provides two main results: We generalize the
photon-photon interaction [2] showing that much stronger
interactions can be obtained, and, as an example for the
usefulness of this improvement, we demonstrate that with
this new tool, the experimental observation of a Mott
insulator made of photons or light is within reach with
present day high-Q microcavities.

Photon-photon interaction.—We begin by considering
one cavity that interacts with 4-level atoms which are
driven by an external laser in the same manner as in EIT;
see Fig. 1: The transitions between levels 2 and 3 are
coupled to the laser and the transitions between levels 2–
4 and 1–3 couple via dipole moments to the cavity mode.
The existence of a strong nonlinearity in this atom cavity
system was shown in [2,4] and a similar nonlinearity has
recently been observed experimentally [5].

In a rotating frame with respect to H0 % !"aya& 1
2# &PN

j%1"!!j
22 &!!j

33 & 2!!j
44#, where we set @ % 1
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FIG. 1: Our model consists of an array of cavities, where
photon hopping occurs due to the overlap (shaded green) of
the light modes (green lines) of adjacent cavities. Atoms in
each cavity (brown), which are driven by external lasers (blue)
give rise to an on site repulsion.

tonian,

Heff = κ
∑

!R

(
p†

!R

)2 (
p!R

)2
+ J

∑

〈!R,!R′〉

(
p†

!R
p!R′ + h.c.

)
.

(1)

p†
!R

creates a polariton in the cavity at site "R and the
parameters κ and J describe on site repulsion and inter
cavity hopping respectively.

The most promising candidates for an experimental
realisation are toroidal or spherical micro-cavities, which
are coupled via tapered optical fibres [16]. These cavi-
ties can be produced and positioned with high precision
and in large numbers. They have a very large Q-factor
(> 108) for light that is trapped as whispering gallery
modes and efficient coupling to optical fibres [17] as well
as coupling to Cs-atoms in close proximity to the cavity
via the evanescent field [18, 19] have been demonstrated
experimentally very recently.

In the longer term, photonic crystals represent an ap-
pealing alternative as they offer the possibility for the
fabrication of large arrays of cavities in lattices or net-
works [20, 21, 22, 23]. Obviously, our concept is not
limited to certain geometries, as it is the case for the op-
tical lattice. Any arrangement of the cavity array may
be considered.

We first derive the Hamiltonian (1) for the considered
structure and then present a theoretical analysis of the
feasible parameter range, which is backed up by a full nu-
merical demonstration of the superfluid to Mott insulator
transition including experimental imperfections.

QUANTISED ELECTROMAGNETIC FIELD IN A
PERIODIC ARRAY OF CAVITIES

We consider a periodic array of cavities, which we de-
scribe here by a periodic dielectric constant,

ε("r) = ε("r + "R) ; "R = "n R , (2)

for all tupels of integers "n = (nx, ny, nz). We assume
the dielectric constant ε to be real, i.e. we neglect ab-

sorption processes, and limit our considerations to lin-
ear, isotropic dielectric media. The electromagnetic field
may be represented by a vector potential "A and a scalar
potential Φ which obey the gauge conditions, Φ = 0 and
∇ · (ε("r) "A) = 0 [24]. "A can be expanded in Wannier
functions, "w!R, each localised at one single cavity at lo-

cation "R. We describe this single cavity by the dielectric
function ε!R("r) such that the Wannier functions satisfy
the eigenvalue equation,

ε!R("r)ω2
C

c2
"w!R − ∇ ×

(
∇ × "w!R

)
= 0 , (3)

where the eigenvalue ω2
C is the square the resonance fre-

quency of the cavity which is independent of "R due to
the periodicity. We assume that the Wannier functions
decay strongly enough outside the cavity such that only
Wannier modes of nearest neighbour cavities have non-
vanishing overlap.

In terms of the creation and annihilation operators of
the Wannier modes, a†

!R
and a!R, the Hamiltonian of the

field can be written,

H = ωC

∑

!R

(
a†

!R
a!R +

1

2

)
+ 2ωCα

∑

〈!R,!R′〉

(
a†

!R
a!R′ + h.c.

)
.

(4)
Here

∑
〈!R,!R′〉 is the sum of all pairs of cavities which

are nearest neighbours of each other. Since α $ 1, we
neglected rotating terms which contain products of two
creation or two annihilation operators of Wannier modes
in deriving (4). α is given by [20, 25],

α =

∫
d3r

(
ε!R("r) − ε("r)

)
"w"

!R
"w!R′ ; |"R− "R′| = R , (5)

and can be obtained numerically for specific models [26].
The model (4) provides an excellent approximation to

many relevant implementations such as coupled photonic
crystal micro-cavities or fibre coupled toroidal micro-
cavities. Furthermore, it allows for the observation of
state transfer [27] and entanglement dynamics and prop-
agation for Gaussian states [28, 29] as the Hamiltonian
is harmonic. In the next section we present a possible
realisation of the repulsive term in the Hamiltonian (1).

THE EFFECTIVE ON SITE REPULSION

To generate a repulsion between polaritons that are lo-
cated in the same cavity, we fill the cavity with 4 level
atoms of a particular level structure that are driven with
an external laser in the same manner as in Electromag-
netically Induced Transparency, see figure 2: The transi-
tions between levels 2 and 3 are coupled to the laser field
and the transitions between levels 2-4 and 1-3 couple via
dipole moments to the cavity resonance mode. It has
been shown by Imamoglu and co-workers, that this atom



But why not use medium length fibres?

Coherent cavity networks:
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We propose to create effective cavity-cavity interactions
by coupling optical cavities via linear optics elements
and optical fibres.
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II

Standard models of the e.m. field
between two mirrors



A two-sided laser-driven optical cavity

For simplicity, we consider an experimental setup
with no absorption in the cavity mirrors:

d



Photons and the Fourier series

Any real-valued function f with arguments x ∈ (0, d) can be expanded in
a series of exponentials with complex coefficients cm with cm = c∗−m,

f(x) =

∞∑

m=−∞
cm exp

(
im

2πx

d

)
.

When quantising the em field in a finite volume, the above cm and c∗m are
usually replaced by operators cm and c†m to yield

Hcav =

∞∑

m=1

~ωm c†mcm .



A quantum optics perspective

Suppose a cavity supports only standing wave photon modes.
Then a laser field only excites these modes!
Such a model would predict that

Tcav(ω0) = Rcav(ω0) .

This contradicts classical electrodynamics!



Predictions of Maxwell’s equations

Fabry-Perot cavity:



Different quantum models for light scattering
through two-sided optical cavities

• Scattering theory:
This approach answers only certain questions and does not provide a
Hamiltonian.

• Input-output formalism:
This model imposes boundary conditions, thereby restricting the
Hilbert space on which the standard Hamiltonian acts.

• Universe-mode models:
Single photons of frequency ω are energy eigenstates of the cavity
Hamiltonian with energy ~ω.



III

A physically-motivated quantisation

of the e.m. field in free space 1

1 Bennett, Barlow, and Beige, arXiv:1506.03305 (2015).



What are photons?

As early as 1900, Planck introduced the idea of
so-called basic energy elements into which the
radiation field of a black body could be divided.
Only much later, these energy elements became
known as photons.

Nowadays, quantum opticians often answer the question “What
is a photon?” by stating that a photon is what causes a click
at a detector. Others say that photons are the basic energy
quanta of the e.m. field.



A harmonic oscillator field Hamiltonian

In the following, we describe the free field by a continuum of annihilation
operators aL(ω) and aR(ω) with

[aA(ω), a†A′(ω
′)] = δA,A′ δ(ω − ω′) ,

where A,A′ = L,R and ω is positive.

Assuming that a photon of frequency ω has the energy ~ω, the electro-
magnetic field Hamiltonian Hfield can now be written as

Hfield =
∑

A=L,R

∫ ∞

0

dω ~ω a†A(ω)aA(ω) .



Electric and magnetic field observables

We assume that the electric and magnetic field observables E(x) and B(x)
can be written as

E(x) =
∑

A=L,R

∫ ∞

0

dω fA(x, ω) aA(ω) + H.c. ,

B(x) =
∑

A=L,R

∫ ∞

0

dω gA(x, ω) aA(ω) + H.c.

The fA(x, ω) and gA(x, ω) should be defined such that 〈E(x)〉 and 〈B(x)〉
evolve according to Maxwell’s equations and such that aL and aR describe
left and right traveling photon modes, respectively.



Consistency with classical electrodynamics

Requirements: ∂xfL,R(x, ω) = ∓iω gL,R(x, ω) ,

1

µ
∂xgL,R(x, ω) = ∓iεω fL,R(x, ω) ,

Hfield =

∫

IR3
d3r

1

2

(
εE(r)2 +

1

µ
B(r)2

)

The above equations yield the usual field operators:

E(r) =
i

(2π)3/2

∑

λ=1,2

∫
d3k

√
~ωk
2ε

e−ik·r akλ ekλ + H.c. ,

B(r) = − i

(2π)3/2

√
εµ
∑

λ=1,2

∫
d3k

√
~ωk
2ε

e−ik·r akλ
(
k̂× ekλ

)
+ H.c.



IV

An alternative model of the e.m. field

between two mirrors 1

1 Barlow, Bennett, and Beige, J. Mod. Opt. 62, S11 (2015).



The relevant Hilbert space

We use the same notion of photons as when modelling
the e.m. field in free space.

d

• We consider a continuum of field
modes, since photons do not
change their frequency when trav-
eling through the resonator.

• We distinguish photons traveling left
and photons traveling right so that
we can assign different decay chan-
nels to different directions.



The cavity Hamiltonian

Cavity Hamiltonian:

Hcav =

∫ ∞

0

dω ~ω
(
a†L(ω)aL(ω) + a†R(ω)aR(ω)

)

+
1

2

∫ ∞

0

dω ~J(ω)
(
a†L(ω)aR(ω) + H.c.

)

aA(ω): photon annihilation operators

ω: corresponding frequency

J(ω): photon coupling rate



Spontaneous photon emission

• single quantum system (cavity)
• free radiation field
• photon-absorbing environment



Effect of a photon-absorbing environment

• Without the cavity: |ψ〉F −→ |0〉F

Photons are rapidly absorbed by detectors or the walls of the lab.
The vacuum state is a pointer state of system and environment. 1

• With an atomic system: ρSF −→ TrF (ρSF)⊗ |0〉FF〈0|

The result of the interaction with the environment
is the same as the effect of photon-absorbing
measurements on a coarse grained time scale ∆t. 2

1 Zurek, Rev. Mod. Phys. 75, 715 (2003).
2 Hegerfeldt, Phys. Rev. A 47, 449 (1993) and others.



Derivation of master equations 1

• Initial state: ρS(t)⊗ |0〉FF〈0|

• Time evolution between resetting:

ρS(t+ ∆t) = TrF

[
UI(t+ ∆t, t) ρS(t)⊗ |0〉FF〈0|U†I (t+ ∆t, t)

]

• The same evolution is given by the master equation:

ρ̇S = − i

~
[H, ρS] + decay terms

1 Stokes, Kurcz, Spiller, and Beige, Phys. Rev. A 85, 053805 (2012).



An effective two-mode description

Traveling-wave description:

H = ~ω0

(
a†LaL + a†RaR

)
+

1

2
~J
(
aRa

†
L + aLa

†
R

)

+~Ω
(
aR eiω0t + H.c.

)

ρ̇S = − i

~
[H, ρS] +

∑

A=L,R

κ

(
aAρSa

†
A −

1

2
ρSa
†
AaA −

1

2
a†AaAρS

)

• The laser only excites photons travelling to the right.

• Photons in the aL,R mode are converted into aR,L photons at a rate J .

• We assign different decay channels to photons with different directions.



Cavity transmission and reflection rates

The calculation of the stationary state photon emission rates
is relatively straightforward:

Iss
R

Iss
Tot

=
1

1 + J2

κ2

∼ Tcav(ω0) =
1

1 + F sin2(k0nd)
,

Iss
L

Iss
Tot

=
J2

κ2

1 + J2

κ2

∼ Rcav(ω0) =
F sin2(k0nd)

1 + F sin2(k0nd)
,

where F : Fresnel coefficient



Consistency with Maxwell’s equations

The predictions of this model are consistent
with the predictions of Maxwell’s equations,
if we choose:

κ = − 2c

nd
ln r

J(ω0) =
4c

nd
· r ln r

1− r2
sin (k0nd)

with r =
n− 1

n+ 1



Special cases

• Very long cavity: J = 0 and κ = 0 for d→∞
• Resonant cavity: J = 0 and κ 6= 0

• Near resonant laser driving: J = −2∆ = −2(ωcav − ω0)

In this case, the mean total photon number nL + nR

evolves as predicted by the standard model of a laser-
driven optical cavity.

No contradiction of actual experiments! 1

1 Barlow, Bennett, and Beige, J. Mod. Opt. 62, S11 (2015).



V

Conclusions



Conclusions

We discussed the quantisation of the
electromagnetic field in free space and
in a two-sided optical cavity. 1,2
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The proposed cavity Hamiltonian can
be used to design cavity-fibre networks
with complete connectivity. 3

1 Bennett, Barlow, and Beige, arXiv:1506.03305 (2015).
2 Barlow, Bennett, and Beige, J. Mod. Opt. 62, S11 (2015).
3 Kyoseva, Beige, and Kwek, New J. Phys. 14, 023023 (2012).


