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Introduction - Overview of Talk

The original formulation of the “Einstein-Rosen bridge” asa

historically first example of a static spherically-symmetric wormhole

in Einstein-Rosen’s original paper from 1935 is not equivalent to the

concept of the dynamical andnontraversable“Einstein-Rosen

bridge” (Schwarzschild wormhole) presented in modern textbooks on

general relativity.

As explicitly shown in some of our previous works the correct

mathematical treatment of the original “Einstein-Rosen bridge” as a

traversable wormhole requires the presence of a special kind of

“exotic matter”. This “exotic matter” is a specific lightlike brane

located on the wormhole “throat” gluing the two universes - two

identical copies of the external spacetime region of a Schwarzschild

black hole, with a special relation between the (negative) brane

tension and the Schwarzschild mass parameter.
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Introduction - Overview of Talk

The above crucial property – the presence of a lightlike thin-shell

exotic matter on the wormhole “throat” has beenmissedin the

original Einstein-Rosen paper (1935).

The principal ingredient of the our result was the proposed by us

qualitatively new manifestly reparametrization-invariant

world-volume Lagrangian action for lightlike (null) branes where the

lightlike brane dynamics is described in terms of Schwarzschild-like

world-volume embedding coordinates.

Here we continue our analysis of the mathematically consistent

formulation of the originaltraversable “Einstein-Rosen bridge” by

deriving the maximal analytic extension of its spacetime geometry

along the lines of the well-known Kruskal-Penrose formalism.
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Einstein and the Einstein-Rosen Bridge – Before and After
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Schwarzschild Metric - Standard Coordinates

Schwarzschild metric – simplest static spherically symmetric black hole

metric in standard coordinates(t, r, θ, ϕ):

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, (1)

whereA(r) = 1− r0
r

, r0 ≡ 2m (m – black hole mass) :

(i) r > r0 – exterior spacetime region;r < r0 – black hole region;

(ii) r0 – horizon, whereA(r0) = 0 (r = r0 – coordinate singularity;

r = 0 – physical spacetime singularity).

Maximal analytic extension of Schwarzschild spacetime geometry:

Kruskal-Szekeres coordinates – essential intermediate use of “tortoise”

coordinater∗ (for light rayst± r∗ = const):

dr∗

dr
=

1

A(r)
−→ r∗ = r + r0 ln |r − r0| . (2)
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Schwarzschild Metric - Kruskal-Szekeres Coordinates

Kruskal-Szekeres (“light-cone”) coordinates(v,w) – doubling the

regions of the standard Schwarzschild geometry:

v = ± 1√
2kh

ekh
(
t+r∗

)
, w = ∓ 1√

2kh
e−kh

(
t−r∗

)
, (3)

wherekh = 1
2∂rA(r)

∣∣
r=r0

= 1
2r0

– “surface gravity” (kh2π = kBThawking).

Eqs.(3) are equivalent to:−vw = 1
2kh

e2khr
∗

, − v
w
= 1

2kh
e2kht ,

wherefromr andr∗ are determined as functions ofvw.

The metric (1) becomes (̃A(vw) ≡ A(r(vw)
k2
h
vw

):

ds2 = Ã(vw)dvdw + r2(vw)
(
dθ2 + sin2 θdϕ2

)
, (4)

and now there is no coordinate singularity on the horizon (v = 0 orw = 0)

Ã(0) = −4 upon using Eq.(2).
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Kruskal-Szekeres Diagram
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Schwarzschild Wormhole

Figure 1: Schwarzschild Wormhole – “Einstein-Rosen Bridge” a’la

Wheeler. It is NON-traversable!
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Einstein-Rosen “Bridge” – Original Formulation (1935), Problems

In 1935 Einstein and Rosen introduced in (1) a new radial-like coordinateu

via r = r0 + u2 and letu ∈ (−∞,+∞):

ds2 = − u2

u2 + r0
dt2+4(u2+r0)du

2+(u2+r0)
2
(
dθ2 + sin2 θ dϕ2

)
. (5)

Thus, (5) describes two identical copies of the exterior Schwarzschild

spacetime region (r ≥ r0) for u > 0 andu < 0, which are formally glued

together at the horizonu = 0.

Unfortunately, there are serious problems with (5):

ER-metric has coordinate singularity atu = 0: det ‖gµν‖u=0 = 0.

Einstein eqs. acquire an ill-defined non-vanishing “matter”

stress-energy tensor term on the r.h.s., which was overlooked in the

original 1935 paper!
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Einstein-Rosen “Bridge” – Correct Formulation (2009)

Indeed, from Levi-Civita idenityR0
0 = − 1√−g00

∇2
(3) (

√−g00) we deduce

that (5) solves vacuum Einstein eq.R0
0 = 0 for all u 6= 0. However, since

√−g00 ∼ |u| asu → 0 and since∂2

∂u2 |u| = 2δ(u), Levi-Civita identity tells

us that:

R0
0 ∼ 1

|u|δ(u) ∼ δ(u2) , (6)

and similarly for the scalar curvatureR ∼ 1
|u|δ(u) ∼ δ(u2).

In 2009 we proposed [GKNP09] a correct reformulation of the

original ER-bridge as a mathematically consistent traversable “lightlike

thin-shell” wormhole via different radial-like coordinateη ∈ (−∞,+∞),

by substitutingr = r0 + |η| in (1):

ds2 = − |η|
|η|+ r0

dt2+
|η|+ r0

|η| dη2+(|η|+r0)
2
(
dθ2 + sin2 θ dϕ2

)
. (7)
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Einstein-Rosen Bridge as Lightlike Thin-Shell Wormhole

Eq.(7) is the correct spacetime metric for the original ER bridge:

Eq.(7) describes two “universes” – two identical copies of the exterior

Schwarzschild spacetime region forη > 0 andη < 0.

Both “universes” are correctly glued together at their common horizon

η = 0. Namely, the metric (7) solves Einstein eqs.

Rµν − 1
2gµνR = 8πT

(brane)
µν , whereT (brane)

µν = Sµνδ(η) is the

energy-momentum tensor of a special kind oflightlike brane located

on the common horizonη = 0 – the wormhole “throat”.

The lightlike analogues of W.Israel’s junction conditionson the

wormhole “throat” are satisfied [GKNP09,10].

Resulting lightlike thin-shell wormhole istraversable! (see below).

Caution: The above lightlike brane is a specific example of an“exotic”

matter violating the null-energy condition (typical property in wormholes).
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Lightlike Branes

Lightlike Branes (LL-branes, for short) are of particular interest in general

relativity primarily due to their role in the effective treatment of many

important cosmological and astrophysical effects:

(i) impulsive lightlike signals arising in cataclysmic astrophysical

events – description of thin shells of ejected ultrarelativistic matter;

(ii) the “membrane” paradigm theory of black hole physics;

(iii) thin-wall description of domain walls coupled to gravity.

More recently LL-branes became significant also in the context of modern

non-perturbative string theory.
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Lightlike Branes

In a series of papers [GKNP] we have proposed a systematic Lagrangian

action description of LL-branes from first principles and found a series of

physically interesting phenomena triggered by LL-brane dynamics:

large class of spherically symmetric and rotating thin-shell

wormholes;

“mass inflation” effect around black hole and cosmological (de Sitter)

horizons;

creating regular black holes (no spacetime singularities –de Sitter

interior geometry);

triggering spontaneous compactification and decompactification of

spacetime;

charge-hiding and charge-confining via “tube-like” wormholes

(gravitational analog of QCD quark confinement), etc.
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Lightlike Branes – World-Volume Action

The energy-momentum tensor of LL-branesT
(brane)
µν is self-consistently

derived asT (brane)
µν = − 2√−g

δSLL
δgµν

from the following manifestly

reparametrization invariant world-volume Polyakov-typeLL-brane action

[GKNP] (for D = (p+ 1) + 1):

SLL = −1

2

∫
dp+1σ Tb

p−1
2

0

√
−γ

[
γabḡab − b0(p− 1)

]
, (8)

ḡab ≡ gab −
1

T 2

(
∂au+ qAa

) (
∂bu+ qAb

)
, Aa ≡ ∂aX

µAµ . (9)

Here and below the following notations are used:

γab is theintrinsic Riemannian metric on the world-volume with

γ = det ‖γab‖; b0 is a positive constant measuring the world-volume

“cosmological constant”;(σ) ≡ (σa) with a = 0, 1, . . . , p ; ∂a ≡ ∂
∂σa .
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Lightlike Branes – World-Volume Action

Xµ(σ) are thep-brane embedding coordinates in the bulk

D-dimensional spacetime with Riemannian metricgµν(x)

(µ, ν = 0, 1, . . . ,D − 1). Aµ is a spacetime electromagnetic field.

gab ≡ ∂aX
µgµν(X)∂bX

ν is theinduced metric on the world-volume

which becomessingular on-shell – manifestation of the lightlike

nature of the brane.

u is auxiliary world-volume scalar field defining the lightlike direction

of the induced metric and it is a non-propagating degree of freedom.

T is dynamical (variable) brane tension (also a non-propagating

degree of freedom).

Coupling parameterq is the surface charge density of the LL-brane.
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Lightlike Branes – Fundamental Properties

“Horizon straddling” : Consistency of LL-brane dynamics given by

the action (8) requires the Riemannian metricgµν of embedding

spacetime to possess a “horizon”, which is automatically occupied by

the LL-brane world-volume! In case of (7) this isη = 0.

Lightlike junction conditions .

When LL-brane is moving in the ER-bridge embedding spacetime (7),

the latter imply the following relation between the LL-brane

parameters and the ER-bridge “mass” (r0 = 2m):

−T =
1

8πm
, b0 =

1

4
, (10)

i.e., LL-brane dynamical tensionT becomesnegativeon-shell –

manifestation of “exotic matter”.
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Traversability – Particle Dynamics in Einstein-Rosen Wormhole

Motion of test-particle (“observer”) of massm0 in a gravitational

background is given by the reparametrization-invariant world-line action:

Sparticle =
1

2

∫
dλ

[
1

e
gµν

.
x
µ .
x
ν −em2

0

]
, (11)

where
.
x
µ≡ dxµ

dλ
, e is the world-line “einbein” and in the present case

(xµ) = (t, η, θ, ϕ). For a static spherically symmetric background such as

(7) there are conserved Noether “charges” – energyE and angular

momentumJ . In what follows we will consider purely “radial” motion

(J = 0) so, upon taking into account the “mass-shell” constraint

(eq.motion w.r.t.e) and introducing the world-line proper-time parameterτ

( dτ
dλ

= em0), the timelike geodesic eqs. read:

(dη
dτ

)2
=

E2

m2
0

−A(η) ,
dt

dτ
=

E
m0A(η)

, A(η) ≡ |η|
|η|+ r0

. (12)
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Traversability of Original Einstein-Rosen Wormhole

For a test-particle starting forτ = 0 at initial position in “our” (right)

universeη0 = η(0) , t0 = t(0) andinfalling towards the “throat”:

E
2khm0

∫ 2khη0

2khη(τ)
dy

√
(1 + |y|)

[
(1 +

(
1− m2

0

E2

)
|y|

]−1
= τ , (13)

1

2kh

∫ 2khη0

2khη(τ)
dy

1

|y|

√
(1 + |y|)

[
(1 +

(
1− m2

0

E2

)
|y|

]
= t(τ)− t0 . (14)

The particle will cross the wormhole “throat” (η = 0) for a finite

proper-timeτ0 > 0 (τ0 = integral in (13) with zero lower limit).

It will continue into the second (left) universe and reach any point

η1 < 0 within anotherfinite proper-timeτ1 > τ0.
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Traversability of Original Einstein-Rosen Wormhole

On the other hand from (14) it follows thatt(τ0 − 0) = +∞, i.e., from

the point of view of static observer in “our” (right) universe it will

take infinite “laboratory” time for the particle to reach the“throat” –

the latter appears to the static observer as a future black hole horizon.

Eq.(14) also impliest(τ0 + 0) = −∞, which means that from the

point of view of static observer in the second (left) universe, upon

crossing the “throat”, the particle starts its motion in thesecond (left)

universe from infinite past, so that it will take an infinite amount of

“laboratory” time to reach the pointη1 < 0 – i.e. the “throat” now

appears as a past black hole horizon.

Kruskal-Penrose Formalism for Lightlike Thin-Shell Wormholes – p. 21/39



Einstein-Rosen “Tortoise” Coordinate

In analogy with the usual “tortoise” coordinater∗ let us introduce

ER-bridge “tortoise” coordinateη∗ (recallr0 = 1
2kh

):

dη∗

dη
=

|η|+ r0

|η| −→ η∗ = η + sign(η)r0 ln |η| . (15)

For infalling/outgoing massless particles (light rays) Eqs.(13)-(14) imply:

t± η∗ = const . (16)

For infalling massive particles towards the “throat” (η = 0) starting at

η+0 > 0 in “our” (right) universe or starting in the second (left) universe at

someη−0 < 0 we have correspondingly:

[
t±η∗

]
(η) =

±1

2kh

∫ 2khη
±

0

2khη
dy

(
1+

1

|y|
)[√

(1 + |y|)
[
(1 +

(
1− m2

0

E2

)
|y|

]−1
− 1

]
.

(17)
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Kruskal-Like Coordinates for Original ER Bridge

We define the maximal analytic extension of original Einstein-Rosen

wormhole geometry via introducing Kruskal-like cooridnates(v,w):

v = ± 1√
2kh

e±kh(t+η∗) , w = ∓ 1√
2kh

e∓kh(t−η∗) , (18)

and accordingly:

−vw =
1

2kh
e±2khη

∗

, − v

w
= e±2kht . (19)

Upper signs in (18)-(19) correspond to regionI (v > 0, w < 0)

describing “our” (right) universeη > 0.

Lower signs in (18)-(19) correspond to regionII (v < 0, w > 0)

describing the second (left) universeη < 0.
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Kruskal-Like Coordinates for Original ER Bridge

Metric of ER-bridge in Kruskal-like coordinates:

ds2 = Ã(vw)dvdw + r̃2(vw)
(
dθ2 + sin2 θdϕ2

)
, (20)

r̃(vw) = r0 + |η(vw)| (r0 ≡
1

2kh
) ,

Ã(vw) =
A
(
η(vw)

)

k2hvw
= − 4e−2kh|η(vw)|

1 + 2kh|η(vw)|
, (21)

whereη(vw) is determined from (19) and (15) as:

−vw =
|η|
2kh

e2kh|η| −→ |η(vw)| = 1

2kh
W(−4k2hvw) , (22)

W(z) being the Lambert (product-logarithm) function (z = W(z)eW (z)).
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Kruskal-Like Coordinates for Original ER Bridge

Using the explicit expression (15) forη∗ in (19) we find:

“Throats” (horizons) – atv = 0 orw = 0;

In regionI the “throat”(v > 0, w = 0) is a future horizon

(η = 0 , t → +∞), whereas the “throat”(v = 0, w < 0) is a past

horizon(η = 0 , t → −∞).

In regionII the “throat”(v = 0, w > 0) is a future horizon

(η = 0 , t → +∞), whereas the “throat”(v < 0, w = 0) is a past

horizon(η = 0 , t → −∞).

It is customary to replace Kruskal-like coordinates(v,w) (18) with

compactified Penrose-like coordinates(v̄, w̄):

v̄ = arctan(
√

2khv) , w̄ = arctan(
√

2khw) , (23)

mapping various “throats” (horizons) and infinities to finite lines/points:
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Kruskal-Penrose Diagram for Original ER Bridge

In regionI: future horizon –(0 < v̄ < π
2 , w̄ = 0);

past horizon –(v̄ = 0,−π
2 < w̄ < 0).

In regionII: future horizon –(v̄ = 0, 0 < w̄ < π
2 );

past horizon –(−π
2 < v̄ < 0, w̄ = 0).

i0 – spacelike infinity (t = fixed, η → ±∞):

i0 = (π2 ,−π
2 ) in regionI;

i0 = (−π
2 ,

π
2 ) in regionII.

i± – future/past timelike infinity (t → ±∞, η = fixed):

i+ = (π2 , 0), i− = (0,−π
2 ) in regionI;

i+ = (0, π2 ), i− = (−π
2 , 0) in regionII.
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Kruskal-Penrose Diagram for Original ER Bridge

J+ – future lightlike infinity (t → +∞, η → ±∞, t∓ η∗ = fixed):

J+ = (v̄ = π
2 ,−π

2 < w̄ < 0) in regionI;

J+ = (−π
2 < v̄ < 0, w̄ = π

2 ) in regionII.

J− – past lightlike infinity (t → −∞, η → ±∞), t± η∗ = fixed):

J− = (0 < v̄ < π
2 , w̄ = −π

2 ) in regionI:

J− = (v̄ = −π
2 , 0 < w̄ < π

2 ) in regionII.

Inserting Eqs.(15)–(17) into the definitions of Kruskal-like (18) and

Penrose-like (23) coordinates we obtain the following visual representation

of the original ER-bridge Kruskal-Penrose diagram:
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Visual Representation of ER-Bridge Kruskal-Penrose Diagram

Future horizon inI (red) identified with past horizon inII (green):

(v̄, 0) ∼ (v̄ − π
2 , 0) – infalling light rays fromI into II (A ∼ B);

Future horizon inII (red) identified with past horizon inI (green):

(0, w̄) ∼ (0, w̄ − π
2 ) – infalling light rays fromII into I (C ∼ D).
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Visual Representation of ER-Bridge Kruskal-Penrose Diagram

For infalling light rays starting in regionI and crossing into regionII

we have the lightlike geodesict+ η∗ = c1 ≡ const. Thus, according

to (18) we must identify the crossing pointA on the future horizon of

regionI with Kruskal-like coordinates(v = 1√
2kh

ekhc1 , 0) with the

pointB on the past horizon of regionII where the light rays enters

into regionII whose Kruskal-like coordinates are

(v = − 1√
2kh

e−khc1 , 0).

Similarly, for infalling light rays starting in regionII and crossing

into regionI we havet− η∗ = c2 ≡ const. Therefore, the crossing

pointC on the future horizon of regionII with Kruskal-like

coordinates(0, w = 1√
2kh

ekhc2) must be identified with the exit point

D (0, w = − 1√
2kh

e−khc2) on the past horizon of regionI.
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Lightlike Thin-Shell Wormholes with Two “Throats”

In [IJMPA26(2011)5211] we have found an interesting example of a

two-throat lightlike thin-shell wormhole –charge-confining “tube-like”

wormhole. The full wormhole spacetime consists of three “universes”

glued pairwise via two oppositely charged LL-branes located on their

common horizons:

Left-most noncompact electrically neutral “universe” – exterior region

beyond the Schwarzschild horizon of a Schwarzschild-de Sitter

blackhole;

Middle “tube-like” “universe” of Levi-Civita-Bertotti-Robinson type

with finite radial-like spacial extend and compactified transverse

spacial dimensions;
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Traversable Lightlike Thin-Shell Wormholes with Two “Thro ats”

Right-most noncompact electrically neutral “universe” – exterior

region beyond the Schwarzschild horizon of a Schwarzschild-de Sitter

blackhole, mirror copy of the left-most “universe”.

Most remarkable property: the whole electric flux generatedby the

two oppositely charged LL-branes sitting on the two “throats” is

completely confined within the finite-spacial-size middle “tube-like”

universe – analog of QCD quark confinement!

Visual representation – next slide.

Shape oft = const andθ = π
2 slice of charge-confining wormhole

geometry – electric flux is confined within the middle cylindric “tube”

connecting the two infinite “funnels”:
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Charge-Confining Tube-like Wormhole
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Traversable Lightlike Thin-Shell Wormholes with Two “Thro ats”

Generically the metric of a spherically symmetric traversable lightlike

thin-shell wormhole with two “throats” reads:

ds2 = −A(η)dt2 +
dη2

A(η)
+ r2(η)

(
dθ2 + sin2 θdϕ2

)
,

A(η1) = 0 , A(η2) = 0 , a
(1)
(±)

= ± ∂

∂η
A

∣∣
η1±0

> 0 , a
(2)
(±)

= ± ∂

∂η
A

∣∣
η2±0

> 0 .

Accordingly, for the wormhole “tortoise” coordinateη∗ we have:

η∗ = sign(η − η1)a
(1)
(±) ln |η − η1|+O

(
(η − η1)

2
)
, (24)

η∗ = sign(η − η2)a
(2)
(±) ln |η − η2|+O

(
(η − η2)

2
)
. (25)

Now we can introduce the Kruskal-like and the compactified

Kruskal-Penrose coordinates for the maximal analytic extension of the

two-throat LL thin-shell wormhole generalizing formulas (18) and (23):
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Traversable Lightlike Thin-Shell Wormholes with Two “Thro ats”

Kruskal-Penrose coordinates(v̄, w̄):

In regionI (left-most universe –(+∞ > η > η1)):

v̄, w̄ = ± π

2
√
a
(1)
(−)

± 1√
a
(1)
(+)

arctan
(
e

1
2
a
(1)
(+)

(η∗±t)
)

(26)

In regionII (middle universe –(η1 > η > η2); herea(1)
(−)

= a
(2)
(+)

):

v̄, w̄ = ± 1√
a
(1)
(−)

arctan
(
e

1
2
a
(1)
(−)

(η∗±t)
)
. (27)

In regionIII (right-most universe –(η2 > η > −∞)):

v̄, w̄ = ∓ π

2
√
a
(2)
(−)

± 1√
a
(2)
(−)

arctan
(
e

1
2
a
(2)
(−)

(η∗±t)
)
. (28)
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Kruskal-Penrose Diagram for Two-Throat LL-Wormhole

Arrowed black lines: infalling light ray geodesics starting in RegionI and

crossing from RegionI, traversing RegionII and arriving in RegionIII

within finite world-line (“proper”) time interval.

Arrowed blue lines: infalling light ray geodesics starting in RegionIII

and arriving in RegionI within finite “proper” time interval.
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Conclusions

The present mathematically correct reformulation of original

Einstein-Rosen “bridge” construction shows that it is the simplest

example in the class of static spherically symmetrictraversable

lightlike thin-shell wormhole solutions in general relativity.

Consistency of Einstein-Rosen “bridge” as a traversable wormhole

solution is guaranteed by the remarkable special properties (“horizon

straddling”, consistent lightlike W.Israel junction conditions) of

lightlike branes serving as “exotic” thin-shell matter (and charge)

sources of gravity.
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Conclusions

We have explicitly derived the Kruskal-like extension and the associated

Kruskal-Penrose diagram representation of the original Einstein-Rosen

“bridge” with the following significant differences w.r.t.Kruskal-Penrose

extension of the standard Schwarzschild black hole and the corresponding

“textbook” (Wheeler’s) version of Einstein-Rosen “bridge”:

The Kruskal-Penrose diagram has only two regions corresponding to

“our” (right) and the second (left) universes unlike the four regions in

the standard Schwarzschild case (no black/white hole regions).

The correctly formulated original Einstein-Rosen “bridge” is

traversablestatic spherically symmetric wormhole unlike the

non-traversable non-static “textbook” version. Traversability is

equivalent to the pairwise specific identifications of future with past

horizons of the neighbouring Kruskal regions.
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Einstein-Rosen Bridge – The Ultimate Verdict
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