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Cosmology and Gravitational Bags
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Introduction - Overview of Talk

Alternative spacetime volume-forms (generally-covariant
Integration measure densitites) independent on the Riemannian
metric on the pertinent spacetime manifold have profound
Impact in (field theory) models with general coordinate
reparametrization invariance — general relativity and its
extensions, strings and (higher-dimensional) membranes.
Although formally appearing as “pure-gauge” dynamical degrees
of freedom the non-Riemannian volume-form fields trigger a
number of remarkable physically important phenomena.



Introduction - Overview of Talk

Among the principal new phenomena are:

® (i) New mechanism of dynamical generation of cosmological
constant;

® (i) New mechanism of dynamical spontaneous breakdown of
supersymmetry in supergravity;

® (iil) New type of "quintessential inflation" scenario In
cosmology;

® (iv) Coupling of non-Riemannian volume-form gravity-matter
theories to a special non-standard kind of nonlinear gauge
system containing the square-root of standard Maxwell
Lagrangian yields charge confinement/deconfinement
phases associated with gravitational electrovacuum "bags".



Modified-Measure Theories

In a series of previous papers [E.Guendelman et.al.] a new class
of generally-covariant (non-supersymmetric) field theory models
Including gravity — called “two-measure theories” (TMT) was
proposed.

® TMT appear to be promising candidates for resolution of
various problems in modern cosmology: the dark energy and
dark matter problems, the fifth force problem, etc.

® Principal idea — employ an alternative volume form (volume
element or generally-covariant integration measure) on the
spacetime manifold in the pertinent Lagrangian action.



Modified-Measure Theories

In standard generally-covariant theories (with action

S = [ dPx\/=gL) the Riemannian spacetime volume-form, i.e.,
the integration measure density is given by \/—g, where

g = det ||g, || IS the determinant of the corresponding
Riemannian metric g, .

v/—g transforms as scalar density under general coordinate
reparametrizations.

There is NO a priori any obstacle to employ insted of \/—g
another alternative non-Riemannian volume element given by
the following non-Riemannian integration measure density:

1
®(B) = (D — 1)!51“"'“1) Oy Buy...up - (1)




Modified-Measure Theories

Here B,,, .,.,_, is an auxiliary rank (D — 1) antisymmetric tensor
gauge field, which will turn out to be pure-gauge degree of
freedom. ®(B) similarly transforms as scalar density under
general coordinate reparametrizations.

In particular, B, .. ,, , can also be parametrized in terms of D
auxiliary scalar fields:

Byy.pp 1 = %EIJI---JD—l gblam ¢Jl o Ol ¢JD_1’

so that:

(I)(B) = ﬁe“l“'“D 6]1_,_[D(9M1¢Il e 6MDQ5ID.

IMPORTANT: The non-Riemannian measure density ®(B)
becomes on-shell proportional to the standard Riemannian one
v/—g, 1.e., the physical meaning of ®(B) as a measure is
preserved!



Gravity-Matter Theories with Two Non-Riemannian Volume-F

Let us now consider modified-measure gravity-matter theories
constructed in terms of two different non-Riemannian
volume-forms (employing Palatini formalism, and using units

where Gyewton = 1/167):

§ = / diz 1 (A) [R+L<1>} + / d4z Bo(B) [L@) +ER2+%} .

(2)

® O,(A) and ®,(B) are two independent non-Riemannian
volume-forms:

1 1

D1 (A) = geﬂ'/“/\auAm\ . DPo(B) = geﬂ'/’*/\auBm\ ,
1 VKA

(I)(H) = 55” QMH,,,{A .

orm:



Gravity-Matter Theories with Two Non-Riemannian Volume-F  orm:

e 1(12) denote two different Lagrangians of a single scalar
matter field of the form:

1
LW = —2g"0updup = V(p) , V(p)=frexp{—ap},

b — 14
L) = —e g upd,p+ Ulp) , Ulp) = faexp{—2ap} .

where «, fi, fo are dimensionful positive parameters,
whereas b IS a dimensionless one.

® Global Weyl-scale invariance of the action (2):
Guv = Nguv » Ty = Ty, o = o+ 2,
A,uym == )\A,LU/K, 3 B,uum == )\2B,uwi 3 H,uw{ == H,uw{ -
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Gravity-Matter Theories with Two Non-Riemannian Volume-F  orm:

Eqgs. of motion w.r.t. affine connection I'?’, yield a solution for the
latter as a Levi-Clivita connection:

1

Flzj)\ — Flzj)\(g) — 5?]“% (augkm + a)\ng{ — 8&?]1/)\) ) (7)

w.r.t. to the Weyl-rescaled metric g,,,:

_ P (A) P, (B)
g,u (Xl €X2 )g,u X1 \/_—g X2 \/_—g ( )

Transition from original metric g,,, to g, “Einstein-frame” ,
where the gravity egs. of motion are written in the standard form
of Einstein’s equations: R, (g) — 59 R(g) = 515 with an
appropriate effective energy-momentum tensor given in terms

of an Einstein-frame scalar Lagrangian L.g (see (11) below).
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Gravity-Matter Theories with Two Non-Riemannian Volume-F

Variation of the action (2) w.r.t. auxiliary tensor gauge fields
A By and Hy,, yields the equations:
O(H)

8M[R+L(1)} —0, 8M[L(2)+6R2+ﬁ} —0, au(%(B)) —0,

whose solutions read:

P4 (B) (1)
=yo =const , R+ LY = —M; = const ,
V=9
®(H)
L) +eR?+ —L = — Moy = const .
V=9

Here My and M, are arbitrary dimensionful and y arbitrary
dimensionless integration constants.

orm:
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Gravity-Matter Theories with Two Non-Riemannian Volume-F  orm:

The first integration constant y» in (10) preserves global
Weyl-scale invariance whereas the appearance of the second
and third integration constants M;, M5 signifies dynamical
spontaneous breakdown of global Weyl-scale invariance due to
the scale non-invariant solutions (second and third ones) in (10).

It is very instructive to elucidate the physical meaning of the
three arbitrary integration constants M, Ms, xo from the point of
view of the canonical Hamiltonian formalism: M, Ms, xo are
identified as conserved Dirac-constrained canonical momenta
conjugated to (certain components of) the auxiliary maximal
rank antisymmetric tensor gauge fields A, x, B, H,»
entering the original non-Riemannian volume-form action (2).
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Gravity-Matter Theories with Two Non-Riemannian Volume-F  orm:

Performing transition to the Einstein frame yields the following
effective scalar Lagrangian of non-canonical “k-essence” (kinetic
guintessence) type (X = —% g 0,0, — scalar kinetic term):

Lt = A(p)X + B(p)X? — Uest () , (11)

where (recall V = fie=®% and U = fye 29¥):

1 vV — M
AQ) =1+ |2be @ —e(V - M
(p) =1+ [2 ‘ eV 1>}U+M2+6(V—M1)2 ’
e|U + My + (V = My)be 0| — Lp2e—2%
B =
(90) X2 U+M2+€(V—M1)2 ’

(V — Mq)?
dys [U + My + e(V — Ml)Q} |

Uett () =
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Gravity-Matter Theories with Two Non-Riemannian Volume-F  orm:
Most remarkable feature of the effective scalar potential Ueg ()
(14) — two infinitely large flat regions

® (-) flat region - for large negative values of ¢:

fi/fe

U ~ Uy = : 15
Wr=Uo = 6t + o270 -
® (+) flat region — for large positive values of ¢:
M? /M
Ueff(gp) o~ U(_|_) = 1/ = (16)

4X2(1 -+ €M12/M2) ’
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Gravity-Matter Theories with Two Non-Riemannian Volume-F  orm:

Qualitative shape of the effective scalar potential U.g (14) as
function of ¢ for M; < 0.
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Gravity-Matter Theories with Two Non-Riemannian Volume-F  orm:

Qualitative shape of the effective scalar potential U.g (14) as
function of ¢ for M; > 0.
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“*Quintessential” Inflation Scenario

From the expression for U () (14) and the figures 1 and 2 we
deduce that we have an explicit realization of quintessential
Inflation scenario (continuously connecting an inflationary
phase to a slowly accelerating “present-day” universe through
the evolution of a single scalar field).

The flat regions (15) and (16) correspond to the evolution of the
early and the late universe, respectively, provided we choose
the ratio of the coupling constants in the original scalar potentials
versus the ratio of the scale-symmetry breaking integration
constants to obey:

fi/fo S M7 /My
1—|—€f12/f2 1—|—€]\412/]\427

which makes the vacuum energy density of the early universe
U~y much bigger than that of the late universe ~ U,.

(17)
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“*Quintessential” Inflation Scenario

The inequality (17) is equivalent to the requirements:

f—1>>— : !|—<<1 (18)

f2

If we choose the scales |M;| ~ Mz, and My ~ M4, where
Mgw, Mp; are the electroweak and Plank scales, respectively,
we are then naturally led to a very small vacuum energy density:

Us) ~ My [Mpy ~ 1072 My (19)

which is the right order of magnitude for the present epoche’s
vacuum energy density.
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“*Quintessential” Inflation Scenario

On the other hand, if we take the order of magnitude of the
coupling constants in the effective potential

f1 ~ fo ~ (1072Mp;)*, then the order of magnitude of the
vacuum energy density of the early universe becomes:

Uy~ fi/fo ~10"°Mp, , (20)

which conforms to the Planck Collaboration data (also BICEP?2)
implying the energy scale of inflation of order 10=2Mp;.
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“Emergent universe”

There exists explicit cosmological solution of the Einstein-frame
system (11)-(14) describing an epoch of a non-singular creation
of the universe — “emergent universe”, preceding the inflationary
phase. The starting point are the Friedman egs.:

1

d
—=——(p+3 B =

describing the universe’ evolution. Here:

1 2 3 . 4
p = 514(90) ¥ —|—ZB(90) ¥ ‘|‘Ueff(90) )

1 2 1 4
p= §A(90) P +ZB(90) 0 —Ueg ()

are the energy density and pressure of the scalar field o = (%).
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“Emergent universe”

“Emergent universe” is defined as a solution of the Friedman
eqgs.(21) subject to the condition on the Hubble parameter H:

H=0 — a(t)=ag=const, p+3p=0 , % = ép(: const) ,
’ (24)

with p and p as in (22)-(23). Here K = 1 (“Einstein universe”).
The “emergent universe” condition (24) implies that the
p-velocity v=y; is time-independent and satisfies the
bi-quadratic algebraic equation:

3 .4 .2

53(_) o —I—QA(_) Yy —QU(_) =0, (25)

where A_y, By, U are the limiting values on the (—) flat
region of A(y), B(p), Uert(¢) (12)-(14).
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“Emergent universe”

The solution of Eq.(25) reads:

@(2): _SBL() [A(_) + \/A%_) + SB(_)U(_)J :

and, thus, the “emergent universe” is characterized with finite
Initial Friedman factor and density:
6K 1

.2 3 . 4
0 0 0T 340 Yo T80 ¥o U

2 _
ag = 1

with @, as in (26).

(26)

(27)
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“Emergent universe”

Analysis of stability of the “emergent universe” solution (27)
yields a harmonic oscillator type equation for the perturbation of
the Friedman factor da:

\/A%_) + SB(_) U(_)

A(_) — 2\/14%_) + 38U

)
Thus stability condition w? > 0 yields the following constraint on
the coupling parameters:

§a4w?da=0 , w?

Wl Do

PO

1
max{—2, ~8(1+3¢/2/f2) [1—\/1 T 3€f12/f2)” < b% <-1.

(29)
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“Emergent universe”

Since the ratio % proportional to the height of the (—) flat region
of the effective scalar potential, i.e., the vacuum energy density
In the early universe, must be large (cf. (17)), we find that the
lower end of the interval in (29) is very close to the upper end,
l.e., b% ~ —1.

From Eqgs.(26)-(27) we obtain an inequality satisfied by the initial
energy density pg In the emergent universe: U_y < po < 2U(_),
which together with the estimate of the order of magnitude for
U._) (20) implies order of magnitude for a3 ~ 10" *K M, where
K is the Gaussian curvature of the spacial section.
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Conclusions

® Non-Riemannian volume-form formalism in gravity/matter
theories (i.e., employing alternative non-Riemannian
reparametrization covariant integration measure densities on
the spacetime manifold) naturally generates a dynamical
cosmological constant as an arbitrary dimensionful
Integration constant.

® Within non-Riemannian-modified-measure minimal N = 1
supergravity the dynamically generated cosmological
constant triggers spontaneous supersymmetry breaking and
mass generation for the gravitino (supersymmetric
Brout-Englert-Higgs effect).
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Conclusions

e Within modified-measure anti-de Sitter supergravity we can
fine-tune the dynamically generated cosmological integration
constant in order to achieve simultaneously a very small
physical observable cosmological constant and a very large
physical observable gravitino mass — a paradigm of modern
cosmological scenarios for slowly expanding universe of
today.

Employing two different non-Riemannian volume-forms leads
to the construction of a new class of gravity-matter models,
which produce an effective scalar potential with two infinitely
large flat regions. This allows for a unified description of both
early universe inflation as well as of present dark energy
epoch.
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Conclusions

® [or a definite parameter range the above model with the two
different non-Riemannian volume-forms possesses a
non-singular “emergent universe” solution which describes
an initial phase of evolution that precedes the inflationary
phase. For a reasonable choice of the parameters this model
conforms to the Planck Collaboration data.

® Adding interaction with a special nonlinear (“square-root”
Maxwell) gauge field (known to describe charge confinement
In flat spacetime) produces various phases with different
strength of confinement and/or with deconfinement, as well
as gravitational electrovacuum “bags” partially mimicking the
properties of MIT bags and solitonic constituent quark
models.
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