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Cosmology and Gravitational Bags
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“VIII-th Mathematical Physics Meeting”, B. Dragovic and Z.

Rakic (eds.), Belgrade Inst. Phys. Press, 2015

(arxiv:1501.05518 [hep-th]);

E. Guendelman, E.N., S. Pacheva and M. Vasihoun, Bulg. J.

Phys. 41 (2014) 123-129 (arxiv:1404.4733 [hep-th]).

• E. Guendelman, R. Herrera, P. Labrana, E.N. and S.

Pacheva, General Relativity and Gravitation 47 (2015) art.10

(arxiv:1408.5344v4 [gr-qc]).

• E. Guendelman, E.N. and S. Pacheva, arxiv:1504.01031

[gr-qc].
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Introduction - Overview of Talk

Alternative spacetime volume-forms (generally-covariant

integration measure densitites) independent on the Riemannian

metric on the pertinent spacetime manifold have profound

impact in (field theory) models with general coordinate

reparametrization invariance – general relativity and its

extensions, strings and (higher-dimensional) membranes.

Although formally appearing as “pure-gauge” dynamical degrees

of freedom the non-Riemannian volume-form fields trigger a

number of remarkable physically important phenomena.
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Introduction - Overview of Talk

Among the principal new phenomena are:

• (i) New mechanism of dynamical generation of cosmological

constant;

• (ii) New mechanism of dynamical spontaneous breakdown of

supersymmetry in supergravity;

• (iii) New type of "quintessential inflation" scenario in

cosmology;

• (iv) Coupling of non-Riemannian volume-form gravity-matter

theories to a special non-standard kind of nonlinear gauge

system containing the square-root of standard Maxwell

Lagrangian yields charge confinement/deconfinement

phases associated with gravitational electrovacuum "bags".
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Modified-Measure Theories

In a series of previous papers [E.Guendelman et.al.] a new class

of generally-covariant (non-supersymmetric) field theory models

including gravity – called “two-measure theories” (TMT) was

proposed.

• TMT appear to be promising candidates for resolution of

various problems in modern cosmology: the dark energy and

dark matter problems, the fifth force problem, etc.

• Principal idea – employ an alternative volume form (volume

element or generally-covariant integration measure) on the

spacetime manifold in the pertinent Lagrangian action.
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Modified-Measure Theories

In standard generally-covariant theories (with action

S =
∫

dDx
√−gL) the Riemannian spacetime volume-form, i.e.,

the integration measure density is given by
√−g, where

g ≡ det ‖gµν‖ is the determinant of the corresponding

Riemannian metric gµν .
√−g transforms as scalar density under general coordinate

reparametrizations.

There is NO a priori any obstacle to employ insted of
√−g

another alternative non-Riemannian volume element given by

the following non-Riemannian integration measure density:

Φ(B) ≡ 1

(D − 1)!
εµ1...µD ∂µ1

Bµ2...µD
. (1)
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Modified-Measure Theories

Here Bµ1...µD−1
is an auxiliary rank (D − 1) antisymmetric tensor

gauge field, which will turn out to be pure-gauge degree of

freedom. Φ(B) similarly transforms as scalar density under

general coordinate reparametrizations.

In particular, Bµ1...µD−1
can also be parametrized in terms of D

auxiliary scalar fields:

Bµ1...µD−1
= 1

D
εIJ1...JD−1

φI∂µ1
φJ1 . . . ∂µD−1

φJD−1 ,

so that:

Φ(B) = 1
D!ε

µ1...µD εI1...ID
∂µ1

φI1 . . . ∂µD
φID .

IMPORTANT: The non-Riemannian measure density Φ(B)

becomes on-shell proportional to the standard Riemannian one
√−g, i.e., the physical meaning of Φ(B) as a measure is

preserved!
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Gravity-Matter Theories with Two Non-Riemannian Volume-F orms

Let us now consider modified-measure gravity-matter theories

constructed in terms of two different non-Riemannian

volume-forms (employing Palatini formalism, and using units

where GNewton = 1/16π):

S =

∫
d4xΦ1(A)

[
R + L(1)

]
+

∫
d4xΦ2(B)

[
L(2) + ǫR2 +

Φ(H)√−g

]
.

(2)

• Φ1(A) and Φ2(B) are two independent non-Riemannian

volume-forms:

Φ1(A) =
1

3!
εµνκλ∂µAνκλ , Φ2(B) =

1

3!
εµνκλ∂µBνκλ , (3)

Φ(H) =
1

3!
εµνκλ∂µHνκλ . (4)

9



Gravity-Matter Theories with Two Non-Riemannian Volume-F orms

• L(1,2) denote two different Lagrangians of a single scalar

matter field of the form:

L(1) = −1

2
gµν∂µϕ∂νϕ − V (ϕ) , V (ϕ) = f1 exp{−αϕ} , (5)

L(2) = − b

2
e−αϕgµν∂µϕ∂νϕ + U(ϕ) , U(ϕ) = f2 exp{−2αϕ} , (6)

where α, f1, f2 are dimensionful positive parameters,

whereas b is a dimensionless one.

• Global Weyl-scale invariance of the action (2):

gµν → λgµν , Γµ
νλ → Γµ

νλ , ϕ → ϕ + 1
α

ln λ ,

Aµνκ → λAµνκ , Bµνκ → λ2Bµνκ , Hµνκ → Hµνκ .
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Gravity-Matter Theories with Two Non-Riemannian Volume-F orms

Eqs. of motion w.r.t. affine connection Γµ
νλ yield a solution for the

latter as a Levi-Civita connection:

Γµ
νλ = Γµ

νλ(ḡ) =
1

2
ḡµκ (∂ν ḡλκ + ∂λḡνκ − ∂κḡνλ) , (7)

w.r.t. to the Weyl-rescaled metric ḡµν :

ḡµν = (χ1 + 2ǫχ2R)gµν , χ1 ≡ Φ1(A)√−g
, χ2 ≡ Φ2(B)√−g

. (8)

Transition from original metric gµν to ḡµν : “Einstein-frame” ,

where the gravity eqs. of motion are written in the standard form

of Einstein’s equations: Rµν(ḡ) − 1
2 ḡµνR(ḡ) = 1

2T eff
µν with an

appropriate effective energy-momentum tensor given in terms

of an Einstein-frame scalar Lagrangian Leff (see (11) below).
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Gravity-Matter Theories with Two Non-Riemannian Volume-F orms

Variation of the action (2) w.r.t. auxiliary tensor gauge fields

Aµνλ, Bµνλ and Hµνλ yields the equations:

∂µ

[
R+L(1)

]
= 0 , ∂µ

[
L(2)+ǫR2+

Φ(H)√−g

]
= 0 , ∂µ

(Φ2(B)√−g

)
= 0 ,

(9)

whose solutions read:

Φ2(B)√−g
≡ χ2 = const , R + L(1) = −M1 = const ,

L(2) + ǫR2 +
Φ(H)√−g

= −M2 = const . (10)

Here M1 and M2 are arbitrary dimensionful and χ2 arbitrary

dimensionless integration constants.

12



Gravity-Matter Theories with Two Non-Riemannian Volume-F orms

The first integration constant χ2 in (10) preserves global

Weyl-scale invariance whereas the appearance of the second

and third integration constants M1, M2 signifies dynamical

spontaneous breakdown of global Weyl-scale invariance due to

the scale non-invariant solutions (second and third ones) in (10).

It is very instructive to elucidate the physical meaning of the

three arbitrary integration constants M1, M2, χ2 from the point of

view of the canonical Hamiltonian formalism: M1, M2, χ2 are

identified as conserved Dirac-constrained canonical momenta

conjugated to (certain components of) the auxiliary maximal

rank antisymmetric tensor gauge fields Aµνλ, Bµνλ,Hµνλ

entering the original non-Riemannian volume-form action (2).
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Gravity-Matter Theories with Two Non-Riemannian Volume-F orms

Performing transition to the Einstein frame yields the following

effective scalar Lagrangian of non-canonical “k-essence” (kinetic

quintessence) type (X ≡ −1
2 ḡµν∂µϕ∂νϕ – scalar kinetic term):

Leff = A(ϕ)X + B(ϕ)X2 − Ueff(ϕ) , (11)

where (recall V = f1e
−αϕ and U = f2e

−2αϕ):

A(ϕ) ≡ 1 +
[1

2
be−αϕ − ǫ(V − M1)

] V − M1

U + M2 + ǫ(V − M1)2
, (12)

B(ϕ) ≡ χ2

ǫ
[
U + M2 + (V − M1)be

−αϕ
]
− 1

4b2e−2αϕ

U + M2 + ǫ(V − M1)2
, (13)

Ueff(ϕ) ≡ (V − M1)
2

4χ2

[
U + M2 + ǫ(V − M1)2

] . (14)
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Gravity-Matter Theories with Two Non-Riemannian Volume-F orms

Most remarkable feature of the effective scalar potential Ueff(ϕ)

(14) – two infinitely large flat regions :

• (-) flat region – for large negative values of ϕ:

Ueff(ϕ) ≃ U(−) ≡
f2
1 /f2

4χ2(1 + ǫf2
1/f2)

, (15)

• (+) flat region – for large positive values of ϕ:

Ueff(ϕ) ≃ U(+) ≡
M2

1 /M2

4χ2(1 + ǫM2
1 /M2)

, (16)
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Gravity-Matter Theories with Two Non-Riemannian Volume-F orms

Qualitative shape of the effective scalar potential Ueff (14) as

function of ϕ for M1 < 0.
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Gravity-Matter Theories with Two Non-Riemannian Volume-F orms

Qualitative shape of the effective scalar potential Ueff (14) as

function of ϕ for M1 > 0.
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“Quintessential” Inflation Scenario

From the expression for Ueff(ϕ) (14) and the figures 1 and 2 we

deduce that we have an explicit realization of quintessential
inflation scenario (continuously connecting an inflationary

phase to a slowly accelerating “present-day” universe through

the evolution of a single scalar field).

The flat regions (15) and (16) correspond to the evolution of the

early and the late universe, respectively, provided we choose

the ratio of the coupling constants in the original scalar potentials

versus the ratio of the scale-symmetry breaking integration

constants to obey:

f2
1 /f2

1 + ǫf2
1 /f2

≫ M2
1 /M2

1 + ǫM2
1 /M2

, (17)

which makes the vacuum energy density of the early universe
U(−) much bigger than that of the late universe U(+).
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“Quintessential” Inflation Scenario

The inequality (17) is equivalent to the requirements:

f2
1

f2
≫ M2

1

M2
, |ǫ|M

2
1

M2
≪ 1 . (18)

If we choose the scales |M1| ∼ M4
EW and M2 ∼ M4

Pl, where

MEW , MPl are the electroweak and Plank scales, respectively,

we are then naturally led to a very small vacuum energy density:

U(+) ∼ M8
EW /M4

Pl ∼ 10−120M4
Pl , (19)

which is the right order of magnitude for the present epoche’s

vacuum energy density.
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“Quintessential” Inflation Scenario

On the other hand, if we take the order of magnitude of the

coupling constants in the effective potential

f1 ∼ f2 ∼ (10−2MPl)
4, then the order of magnitude of the

vacuum energy density of the early universe becomes:

U(−) ∼ f2
1 /f2 ∼ 10−8M4

Pl , (20)

which conforms to the Planck Collaboration data (also BICEP2)

implying the energy scale of inflation of order 10−2MPl.
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“Emergent universe”

There exists explicit cosmological solution of the Einstein-frame

system (11)-(14) describing an epoch of a non-singular creation

of the universe – “emergent universe”, preceding the inflationary

phase. The starting point are the Friedman eqs.:

..
a

a
= − 1

12
(ρ + 3p) , H2 +

K

a2
=

1

6
ρ , H ≡

.
a

a
, (21)

describing the universe’ evolution. Here:

ρ =
1

2
A(ϕ)

.
ϕ

2
+

3

4
B(ϕ)

.
ϕ

4
+Ueff(ϕ) , (22)

p =
1

2
A(ϕ)

.
ϕ

2
+

1

4
B(ϕ)

.
ϕ

4 −Ueff(ϕ) (23)

are the energy density and pressure of the scalar field ϕ = ϕ(t).
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“Emergent universe”

“Emergent universe” is defined as a solution of the Friedman

eqs.(21) subject to the condition on the Hubble parameter H:

H = 0 → a(t) = a0 = const , ρ+3p = 0 ,
K

a2
0

=
1

6
ρ (= const) ,

(24)

with ρ and p as in (22)-(23). Here K = 1 (“Einstein universe”).

The “emergent universe” condition (24) implies that the

ϕ-velocity
.
ϕ≡

.
ϕ0 is time-independent and satisfies the

bi-quadratic algebraic equation:

3

2
B(−)

.
ϕ

4
0 +2A(−)

.
ϕ

2
0 −2U(−) = 0 , (25)

where A(−), B(−), U(−) are the limiting values on the (−) flat

region of A(ϕ), B(ϕ), Ueff(ϕ) (12)-(14).
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“Emergent universe”

The solution of Eq.(25) reads:

.
ϕ

2
0= − 2

3B(−)

[
A(−) ∓

√
A2

(−) + 3B(−)U(−)

]
. (26)

and, thus, the “emergent universe” is characterized with finite
initial Friedman factor and density:

a2
0 =

6K

ρ0
, ρ0 =

1

2
A(−)

.
ϕ

2
0 +

3

4
B(−)

.
ϕ

4
0 +U(−) , (27)

with
.
ϕ

2
0 as in (26).
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“Emergent universe”

Analysis of stability of the “emergent universe” solution (27)

yields a harmonic oscillator type equation for the perturbation of

the Friedman factor δa:

δ
..
a +ω2δa = 0 , ω2 ≡ 2

3
ρ0

√
A2

(−) + 3B(−)U(−)

A(−) − 2
√

A2
(−) + 3B(−)U(−)

.

(28)

Thus stability condition ω2 > 0 yields the following constraint on

the coupling parameters:

max
{
−2 , −8

(
1+3ǫf2

1 /f2

)[
1−

√
1 − 1

4
(
1 + 3ǫf2

1 /f2

)
]}

< b
f1

f2
< −1 .

(29)
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“Emergent universe”

Since the ratio f2
1

f2
proportional to the height of the (−) flat region

of the effective scalar potential, i.e., the vacuum energy density

in the early universe, must be large (cf. (17)), we find that the

lower end of the interval in (29) is very close to the upper end,

i.e., b f1

f2
≃ −1.

From Eqs.(26)-(27) we obtain an inequality satisfied by the initial

energy density ρ0 in the emergent universe: U(−) < ρ0 < 2U(−),

which together with the estimate of the order of magnitude for

U(−) (20) implies order of magnitude for a2
0 ∼ 10−8KM−2

Pl , where

K is the Gaussian curvature of the spacial section.
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Conclusions

• Non-Riemannian volume-form formalism in gravity/matter

theories (i.e., employing alternative non-Riemannian

reparametrization covariant integration measure densities on

the spacetime manifold) naturally generates a dynamical
cosmological constant as an arbitrary dimensionful

integration constant.

• Within non-Riemannian-modified-measure minimal N = 1

supergravity the dynamically generated cosmological

constant triggers spontaneous supersymmetry breaking and

mass generation for the gravitino (supersymmetric

Brout-Englert-Higgs effect).
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Conclusions

• Within modified-measure anti-de Sitter supergravity we can

fine-tune the dynamically generated cosmological integration

constant in order to achieve simultaneously a very small

physical observable cosmological constant and a very large

physical observable gravitino mass – a paradigm of modern

cosmological scenarios for slowly expanding universe of

today.

• Employing two different non-Riemannian volume-forms leads

to the construction of a new class of gravity-matter models,

which produce an effective scalar potential with two infinitely

large flat regions. This allows for a unified description of both

early universe inflation as well as of present dark energy

epoch.
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Conclusions

• For a definite parameter range the above model with the two

different non-Riemannian volume-forms possesses a

non-singular “emergent universe” solution which describes

an initial phase of evolution that precedes the inflationary

phase. For a reasonable choice of the parameters this model

conforms to the Planck Collaboration data.

• Adding interaction with a special nonlinear (“square-root”

Maxwell) gauge field (known to describe charge confinement

in flat spacetime) produces various phases with different

strength of confinement and/or with deconfinement, as well

as gravitational electrovacuum “bags” partially mimicking the

properties of MIT bags and solitonic constituent quark

models.
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