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1. Multiloop Lie algebras 2. Lie Tori 3. Automorphisms 4. How to compute W(F, G)?

Multiloop Lie algebras

@ k an algebraically closed field of characteristic 0

@ &m € k, m > 1, primitive m-th roots of unity

e L a finite-dimensionsional split simple (Chevalley) Lie algebra
over k of type A; — G

o R=kp, ... xF], n>1

- 1 1
° R:k[xli"’,...,x,f"’], m>1

The ring extension R/R is Galois, Gal(R/R) = (Z/mZ)".
Fix n pairwise commuting automorphisms of L of order m:

o=(01,...,0n) € (Autk(L))n.
This determines a Z"-grading on L:

Liiy={x € L] oj(x) = &hx, 1<j<n}.
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Definition (Allison, Berman, Moody, Pianzola, 2009)
The multiloop Lie algebra £(L, o) is the Z"-graded k-Lie

subalgebra
i in
L(L,o)= @ Li iy @ X ... X7
(i1-rnin) EZ"
+1 +1
of the k-Lie algebra L @k k[x; ™,...,xn "].

@ As a k-Lie algebra, L(L,0) is infinite-dimensional.
@ As an R-Lie algebra, £(L,0) is an R/R-twisted form of the
R-Lie algebra L ® R, i.e.

L(L,o)®r R= (Lo R)®r R.
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Lie tori

@ A a finite irreducible root system A; — G, or B(;; 0 € A
o set AX=A\{0}, Q=ZA, and A}, ={ae A" | lag A}

Definition (Yoshii, 2004)
A Lie torus of type A and nullity n > 1 is a Q x Z"-graded Lie
algebra £ = EB(Q’/\)GQXW L) over k satisfying

o Amd x 0 Csupp(L) C A x Z".
@ Z" is generated by the Z"-components of supp(L).
@ For all (a,\) € A x Z", one has

Ly=k-ey, LIo=k-£}, and [[e, )], x]=(B,a")x

(e}

for all (8, p) € A X Z", x € L.
@ L is generated as a k-Lie algebra by £, (o, \) € AX x Z".
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e [ABFP, 2009] If a centerless Lie torus L is finitely generated
over its centroid (fgc), then the centroid is k-isomorphic to

kD, . xE =R,

and L is R-isomorphic to a multiloop Lie algebra £(L, o).

@ Not all multiloop Lie algebras are Lie tori: by definition, Lie
tori are isotropic.
@ [Neher, 2004]

o All Lie tori are either fgc, or quantum of type A,.

o Lie tori are centerless cores of EALA'S;
forn=1 EALA = affine Kac—Moody Lie algebra;
centerless core = derived subgroup/center.

Theorem (Chernousov, Gille, Pianzola, 2011)

Let L be a fgc centerless Lie torus over k of nullity n > 1. Then
the type A is an invariant of L.
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Automorphisms

Let £ be a fgc centerless Lie torus over k with the centroid
R k[xF, ... xF.

rtn

There is a short exact sequence
1— AutR(ﬁ) — Autk(ﬁ) — Autk(R).

In this sequence
@ Autk(R) = (k™)™ x GLn(Z)
e 1— G — Autg(L) — Outr(L) — 1,
where
° OutR(:C) =1if L has type By, G, E7, Eg, F4, Gy, and
is an R/R-twisted form of Z /I Z or (Z /2 Z)? in other cases.

e G = Autg(£)° is an adjoint simple group (scheme) over R,
an R/R-twisted form of Autg(L ®4 R)°.
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Definition (Tits, ~1964)
Let H be a simple algebraic group, K an arbitrary field. The
Whitehead group of H is

W(K, H) = H(K)/H(K)",

where H(K)*™ = (g € H(K) | g is unipotent).

Theorem (St., 2014)

Let L be a fgc centerless Lie torus of type A with centroid
R = k[xith, ..., xF]. Set G = Autg(L)° and

Ealll)) = <exp(adx), x € L), (a,)\) € A* x /\> <G.

If rank(A) > 2, then

G/ Eexp(L) = W<k((x1)) o ((x0)), G).
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How to compute W(F, G), where F = k((x1)) ... ((x,))?

Let G*¢ be the simply connected cover of G, and C = Cent(G*°).
We have an exact sequence

1— C(F)— W(F,G*) - W(F,G) —
HY(F, C(F)) — HY(F, G*(F)).

Proposition
© If L has type Fa, Gy, or L has type Eg and rank(A) > 4, then
W(F,G) =1.

@ Ifn=1, then W(F, G) = HY(F, C(F)) computed explicitly in
all cases. If L is of type B, C;, Ez, or inner type D11, A,
Es, then HY(F,C(F)) = Z /d Z for a suitable d > 2.

© Ifn=2, then W(F,G) = HY(F,C(F)) = (Z /d Z)? for a
suitable d if L has type B, C;; inner type Es; E; with
rank(A) > 3.
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1— C(F)— W(F,G*) — W(F,G) —
— HY(F, C(F)) — H'(F, G*(F))

Kneser—Tits problem: compute W(K, G*¢) for any field K any any
simply connected simple algebraic K-group G*¢.

Theorem (Wang, 1950)
If L is of type A; and | + 1 is square-free, then W(F, G*°) = 1.

Theorem (Chernousov, Platonov, 1998)
One has W(F, G*¢) = 1 whenever
@ Lisof type B, C/ (I > 2), Da, Es, Fs, Ga,
@ L isoftype A/ (I >2), D; (I >5), E7, Es, and
rank(A) > 4],
© L isof type D; (I >5), and A is of type Bp,.
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1— C(F) = W(F,G*) - W(F,G) —
— HY(F, C(F)) — HY(F, G*(F))

The group H'(F, C(F)) is computed in all cases.

o If L has type Eg, F4, Gy, then C(F) =1 and
HY(F,C(F)) = 1.
e If Lis of type By, C;, E7, or inner type D11, Aj, Ee, then
HY(F,C(F)) = (Z /dZ)" for a suitable d > 2.
@ Slightly more complicated for Dy, and outer A;, Dyj11, Ep.
The group HY(F, G*(F)) is
@ trivial if n < 2;

@ tricky in general; some case-by-case progress via
“cohomological invariants” (Serre, Rost, Merkurjev,
Chernousov, Garibaldi, Gille etc., 1990—present)
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Comment

An extended affine Lie algebra, is a pair (E, H) consisting of a Lie
algebra E over F and subalgebra H satisfying the following axioms
(EA1) - (EAS6).
(EAL) E has an invariant nondegenerate symmetric bilinear
form (-|-).
(EA2) H is nontrivial finite-dimensional toral and
self-centralizing subalgebra of E.
H induces a decomposition of E via the adjoint representation:
E = @aGH* Ea, (4 1)
E, ={ecE:[h el =a(h)eforall he H}. '
We can now define

R ={ae H*:E,#0} (setofrootsof (E,H)),
R® ={a€R:(a|a)=0} (nullroots), (4.2)
R* ={a € R:(a]a)+#0} (anisotropic roots).
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We define the core of (E, H) as the subalgebra E. of E generated
by all anisotropic root spaces:

Ec = <UaeRa“ Ea >subalg

(EA3) For every a € R* and x,, € E,, the operator adx, is
locally nilpotent on E.

(EA4) R js connected in the sense that for any
decomposition R*™ = Ry U Ry with (Ry | R2) = 0 we
have Ry = 0 or Ry = ).

(EA5) The centralizer of the core E. of E is contained in
E.: {e€E:[e,E]=0} C E..

(EA6) The subgroup £ = Z R® C H* is isomorphic to
L=7" forsomen>0.
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