

Automorphisms of multiloop Lie algebras

Anastasia Stavrova

St. Petersburg State University

LT-11,
15-21 June 2015

Multiloop Lie algebras

- k an algebraically closed field of characteristic 0
- $\xi_m \in k$, $m \geq 1$, primitive m -th roots of unity
- L a finite-dimensionsional split simple (Chevalley) Lie algebra over k of type $A_l - G_2$
- $R = k[x_1^{\pm 1}, \dots, x_n^{\pm 1}], n \geq 1$
- $\tilde{R} = k[x_1^{\pm \frac{1}{m}}, \dots, x_n^{\pm \frac{1}{m}}], m \geq 1$

The ring extension \tilde{R}/R is Galois, $\text{Gal}(\tilde{R}/R) \cong (\mathbb{Z}/m\mathbb{Z})^n$.

Fix n pairwise commuting automorphisms of L of order m :

$$\sigma = (\sigma_1, \dots, \sigma_n) \in \left(\text{Aut}_k(L)\right)^n.$$

This determines a \mathbb{Z}^n -grading on L :

$$L_{i_1 \dots i_n} = \{x \in L \mid \sigma_j(x) = \xi_m^{i_j} x, 1 \leq j \leq n\}.$$

Definition (Allison, Berman, Moody, Pianzola, 2009)

The **multiloop Lie algebra** $\mathcal{L}(L, \sigma)$ is the \mathbb{Z}^n -graded k -Lie subalgebra

$$\mathcal{L}(L, \sigma) = \bigoplus_{(i_1, \dots, i_n) \in \mathbb{Z}^n} L_{i_1 \dots i_n} \otimes x_1^{\frac{i_1}{m}} \dots x_n^{\frac{i_n}{m}}$$

of the k -Lie algebra $L \otimes_k k[x_1^{\pm \frac{1}{m}}, \dots, x_n^{\pm \frac{1}{m}}]$.

- As a k -Lie algebra, $\mathcal{L}(L, \sigma)$ is infinite-dimensional.
- As an R -Lie algebra, $\mathcal{L}(L, \sigma)$ is an \tilde{R}/R -twisted form of the R -Lie algebra $L \otimes_k R$, i.e.

$$\mathcal{L}(L, \sigma) \otimes_R \tilde{R} \cong (L \otimes_k R) \otimes_R \tilde{R}.$$

Lie tori

- Δ a finite irreducible root system $A_l - G_2$ or BC_l ; $0 \in \Delta$
- set $\Delta^\times = \Delta \setminus \{0\}$, $Q = \mathbb{Z}\Delta$, and $\Delta_{ind}^\times = \{\alpha \in \Delta^\times \mid \frac{1}{2}\alpha \notin \Delta\}$

Definition (Yoshii, 2004)

A **Lie torus of type Δ and nullity $n \geq 1$** is a $Q \times \mathbb{Z}^n$ -graded Lie algebra $\mathcal{L} = \bigoplus_{(\alpha, \lambda) \in Q \times \mathbb{Z}^n} \mathcal{L}_\alpha^\lambda$ over k satisfying

- ① $\Delta_{ind}^\times \times 0 \subseteq \text{supp}(\mathcal{L}) \subseteq \Delta \times \mathbb{Z}^n$.
- ② \mathbb{Z}^n is generated by the \mathbb{Z}^n -components of $\text{supp}(\mathcal{L})$.
- ③ For all $(\alpha, \lambda) \in \Delta^\times \times \mathbb{Z}^n$, one has

$$\mathcal{L}_\alpha^\lambda = k \cdot e_\alpha^\lambda, \quad \mathcal{L}_{-\alpha}^{-\lambda} = k \cdot f_\alpha^\lambda, \quad \text{and} \quad [[e_\alpha^\lambda, f_\alpha^\lambda], x] = \langle \beta, \alpha^\vee \rangle x$$

for all $(\beta, \mu) \in \Delta \times \mathbb{Z}^n$, $x \in \mathcal{L}_\beta^\mu$.

- ④ \mathcal{L} is generated as a k -Lie algebra by $\mathcal{L}_\alpha^\lambda$, $(\alpha, \lambda) \in \Delta^\times \times \mathbb{Z}^n$.

- [ABFP, 2009] If a centerless Lie torus \mathcal{L} is finitely generated over its centroid (**fgc**), then the centroid is k -isomorphic to

$$k[x_1^{\pm 1}, \dots, x_n^{\pm 1}] = R,$$

and \mathcal{L} is R -isomorphic to a multiloop Lie algebra $\mathcal{L}(L, \sigma)$.

- Not all multiloop Lie algebras are Lie tori: by definition, Lie tori are **isotropic**.
- [Neher, 2004]
 - All Lie tori are either fgc, or quantum of type A_n .
 - Lie tori are centerless cores of EALA's;
 - for $n = 1$ EALA = affine Kac–Moody Lie algebra;
 - centerless core = derived subgroup/center.

Theorem (Chernousov, Gille, Pianzola, 2011)

Let \mathcal{L} be a fgc centerless Lie torus over k of nullity $n \geq 1$. Then the type Δ is an invariant of \mathcal{L} .

Automorphisms

Let \mathcal{L} be a fgc centerless Lie torus over k with the centroid $R \cong k[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$.

There is a short exact sequence

$$1 \rightarrow \text{Aut}_R(\mathcal{L}) \rightarrow \text{Aut}_k(\mathcal{L}) \rightarrow \text{Aut}_k(R).$$

In this sequence

- $\text{Aut}_k(R) \cong (k^\times)^n \rtimes \text{GL}_n(\mathbb{Z})$
- $1 \rightarrow G \rightarrow \text{Aut}_R(\mathcal{L}) \rightarrow \text{Out}_R(\mathcal{L}) \rightarrow 1$,
where
- $\text{Out}_R(\mathcal{L}) = 1$ if \mathcal{L} has type B_I , C_I , E_7 , E_8 , F_4 , G_2 , and
is an \tilde{R}/R -twisted form of $\mathbb{Z}/I\mathbb{Z}$ or $(\mathbb{Z}/2\mathbb{Z})^2$ in other cases.
- $G = \text{Aut}_R(\mathcal{L})^\circ$ is an adjoint simple group (scheme) over R ,
an \tilde{R}/R -twisted form of $\text{Aut}_R(\mathcal{L} \otimes_k R)^\circ$.

Definition (Tits, ~1964)

Let H be a simple algebraic group, K an arbitrary field. The **Whitehead group of H** is

$$W(K, H) = H(K)/H(K)^+,$$

where $H(K)^+ = \langle g \in H(K) \mid g \text{ is unipotent} \rangle$.

Theorem (St., 2014)

Let \mathcal{L} be a fgc centerless Lie torus of type Δ with centroid $R \cong k[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$. Set $G = \text{Aut}_R(\mathcal{L})^\circ$ and

$$E_{\exp}(\mathcal{L}) = \left\langle \exp(\text{ad}_x), \ x \in \mathcal{L}_\alpha^\lambda, \ (\alpha, \lambda) \in \Delta^\times \times \Lambda \right\rangle \leq G.$$

If $\text{rank}(\Delta) \geq 2$, then

$$G/E_{\exp}(\mathcal{L}) \cong W\left(k((x_1)) \dots ((x_n)), G\right).$$

How to compute $W(F, G)$, where $F = k((x_1)) \dots ((x_n))$?

Let G^{sc} be the simply connected cover of G , and $C = \text{Cent}(G^{sc})$. We have an exact sequence

$$1 \rightarrow C(F) \rightarrow W(F, G^{sc}) \rightarrow \mathbf{W}(\mathbf{F}, \mathbf{G}) \rightarrow H^1(F, C(\bar{F})) \rightarrow H^1(F, G^{sc}(\bar{F})).$$

Proposition

- ① If L has type F_4 , G_2 , or L has type E_8 and $\text{rank}(\Delta) \geq 4$, then $W(F, G) = 1$.
- ② If $n = 1$, then $W(F, G) \cong H^1(F, C(\bar{F}))$ computed explicitly in all cases. If L is of type B_I , C_I , E_7 , or inner type D_{2I+1} , A_I , E_6 , then $H^1(F, C(\bar{F})) \cong \mathbb{Z}/d\mathbb{Z}$ for a suitable $d \geq 2$.
- ③ If $n = 2$, then $W(F, G) \cong H^1(F, C(\bar{F})) \cong (\mathbb{Z}/d\mathbb{Z})^2$ for a suitable d if L has type B_I , C_I ; inner type E_6 ; E_7 with $\text{rank}(\Delta) \geq 3$.

$$1 \rightarrow C(F) \rightarrow W(F, G^{sc}) \rightarrow W(\mathbf{F}, \mathbf{G}) \rightarrow H^1(F, C(\bar{F})) \rightarrow H^1(F, G^{sc}(\bar{F}))$$

Kneser–Tits problem: compute $W(K, G^{sc})$ for any field K any any simply connected simple algebraic K -group G^{sc} .

Theorem (Wang, 1950)

If L is of type A_l and $l + 1$ is square-free, then $W(F, G^{sc}) = 1$.

Theorem (Chernousov, Platonov, 1998)

One has $W(F, G^{sc}) = 1$ whenever

- ➊ *L is of type B_l , C_l ($l \geq 2$), D_4 , E_6 , F_4 , G_2 ,*
- ➋ *L is of type A_l ($l \geq 2$), D_l ($l \geq 5$), E_7 , E_8 , and $\text{rank}(\Delta) \geq \lfloor \frac{l}{2} \rfloor$,*
- ➌ *L is of type D_l ($l \geq 5$), and Δ is of type B_m .*

$$1 \rightarrow C(F) \rightarrow W(F, G^{sc}) \rightarrow \mathbf{W}(\mathbf{F}, \mathbf{G}) \rightarrow$$

$$\rightarrow H^1(F, C(\bar{F})) \rightarrow H^1(F, G^{sc}(\bar{F}))$$

The group $H^1(F, C(\bar{F}))$ is computed in all cases.

- If L has type E_8, F_4, G_2 , then $C(\bar{F}) = 1$ and $H^1(F, C(\bar{F})) = 1$.
- If L is of type B_I, C_I, E_7 , or inner type D_{2I+1}, A_I, E_6 , then $H^1(F, C(\bar{F})) \cong (\mathbb{Z}/d\mathbb{Z})^n$ for a suitable $d \geq 2$.
- Slightly more complicated for D_{2I} and outer A_I, D_{2I+1}, E_6 .

The group $H^1(F, G^{sc}(\bar{F}))$ is

- trivial if $n \leq 2$;
- tricky in general; some case-by-case progress via “cohomological invariants” (Serre, Rost, Merkurjev, Chernousov, Garibaldi, Gille etc., 1990–present)

Comment

An *extended affine Lie algebra*, is a pair (E, H) consisting of a Lie algebra E over F and subalgebra H satisfying the following axioms (EA1) – (EA6).

- (EA1) E has an invariant nondegenerate symmetric bilinear form $(\cdot | \cdot)$.
- (EA2) H is nontrivial finite-dimensional toral and self-centralizing subalgebra of E .

H induces a decomposition of E via the adjoint representation:

$$\begin{aligned} E &= \bigoplus_{\alpha \in H^*} E_\alpha, \\ E_\alpha &= \{e \in E : [h, e] = \alpha(h)e \text{ for all } h \in H\}. \end{aligned} \tag{4.1}$$

We can now define

$$\begin{aligned} R &= \{\alpha \in H^* : E_\alpha \neq 0\} \quad (\text{set of roots of } (E, H)), \\ R^0 &= \{\alpha \in R : (\alpha | \alpha) = 0\} \quad (\text{null roots}), \\ R^{\text{an}} &= \{\alpha \in R : (\alpha | \alpha) \neq 0\} \quad (\text{anisotropic roots}). \end{aligned} \tag{4.2}$$

We define the *core* of (E, H) as the subalgebra E_c of E generated by all anisotropic root spaces:

$$E_c = \langle \bigcup_{\alpha \in R^{\text{an}}} E_\alpha \rangle_{\text{subalg}}$$

- (EA3) *For every $\alpha \in R^{\text{an}}$ and $x_\alpha \in E_\alpha$, the operator $\text{ad}x_\alpha$ is locally nilpotent on E .*
- (EA4) *R^{an} is connected in the sense that for any decomposition $R^{\text{an}} = R_1 \cup R_2$ with $(R_1 \mid R_2) = 0$ we have $R_1 = \emptyset$ or $R_2 = \emptyset$.*
- (EA5) *The centralizer of the core E_c of E is contained in E_c : $\{e \in E : [e, E_c] = 0\} \subset E_c$.*
- (EA6) *The subgroup $\mathcal{L} = \mathbb{Z} R^0 \subset H^*$ is isomorphic to $\mathcal{L} \cong \mathbb{Z}^n$ for some $n \geq 0$.*