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Deformations of Lie algebras

Deformations of algebras were first studied by
Gerstenhaber[Gerstenhaber:64], the Lie algebra case in particular was done
by Nijenhuis and Richardson[nijenhuis:67].

Definition

A deformation of a Lie algebra g with Lie bracket {f, g} is a family of Lie
brackets depending on a parameter t, defined by

{fag}t = {fag} + Z t”Cn(f,g)’
n=1

where the C, are bilinear, skewsymetric g-valued maps, C, : A%g — g.
Furthermore we require that the deformed bracket {f, g}; satifies the
Jacobi identity for every t. this gives another set of conditions that must
be satisfied by the C,.
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The algebraic structure of Hamiltonian mechanics

The setting for Hamiltonian mechanics is a symplectic manifold (
physics terminology the manifold M is called the phase space.

@ For a free particle moving in n-dimensions the phase space is
T*R" = R?".

@ For a simple pendulum, it's phase space is T*S?.

The (Poisson) algebra of obseravables

The the set of smooth functions on M, C*°(M) together with the Poisson
bracket,

{f.g} = w(df,dg)

is known as the classical algebra of observables. C*°(M) is also a
commutative and associative algebra under the operation of pointwise
multiplication of functions.

v
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The algebraic structure of quantum mechanics, Hilbert

space formulations

In (Hilbert space formulations of) quantum mechanics the phase space
manifold is replaced by a Hilbert space ‘H

The quantum algebra of obserables

The set of operators on the Hilbert space H, End(#) with the Poisson
bracket given by the commutator of operators,

[A,B] := AB — BA

is known as the quantum algebra of observables. End(#) is also a
non-commutative algebra and associative alegbra under the composition of
operators.

v
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Algebraic structures of classical and quantum mechanics, a

comparison

Hamiltonian mechanics | Quantum mechanics
Phase space | (M, w) H
Observables | C*°(M) End(H)
Assoc alg . o
Poisson alg | {-,-} [, ]

deformation quantization

In deformation quantization we begin with a Poisson algebra of the type
(C>(M),{-,-}) and we try to deform into a Possion algebra of the type (H, [, ]).

Remark (Berezin-Toeplitz operator quantization)

This is in contrast to operator quantization procedure, where one assigns
non-commutative operators to functions. One example of this is the
Berezin-Toeplitz operator quantization, where one assigns a Toeplitz operator Ty
to each function f.

v
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Preliminaries

Let (M,w) be a compact connected n-dimensional Kahler manifold
(n>1). Denote by {.,.} the Poisson bracket on M coming from w.
Assume that the Kahler form w is integral. Let L be a hermitian
holomorphic line bundle on M such that the curvature of the hermitian

connection is equal to —2miw.
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Star products

Definition (star product)

Let A= C>°(M)[[t]] be the algebra of formal power series in the variable t
over the algebra C*>°(M). A product x on A is called a (formal) star
product if it is an associative C[[t]]-linear product such that

O A/tA= C®(M), ie. f*g mod t = fg,
1 .
Q ;(fxg—gxf)modt=—i{f g},
where f,g € C*(M). We can also write

frg=> Glfg)t, (1)
=0

with Gi(f,g) € C>°(M). The C; should be C-bilinear in f and g.
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Star products

The condition 1. can be reformulated as

CO(fag) = fg, (2)

The billinearity of the C; guarentees that the star product will be bilinear.
The condition 1. says that the star product is in fact a deformation of the
associative algebra (C°°(M), e), where f e g is the usual pointwise
multiplication of functions [Gerstenhaber:64].
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Star products

Every star product defines a skew symmetric bracket of functions by the
formula,

[F.8lo = +(Frg—gx1) )

Condition 2. can be reformulated as

Cl(f7g)_cl(g7f):_i{f7g} (4)

Condition 2. is equivalent to the correspondance principal (of Quantum
Mechanics) for the quantum bracket defined by 3. That is, 2. says that
[f,g]q is a deformation of the Poisson algebra (C*°(M),{, })
[Gerstenhaber:64].
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Berezin-Toeplitz star product

In the article [Sclich:00], Schlichenmaier gives a proof of the following
theorem.

Theorem (Berezin-Toeplitz star product)

There exists a unique (formal) star product on C*°(M)

frg=Y (Gl(f,g),
j=0

in such a way that for f,ge C*°(M) and for every N € N we have with
suitable constants Ky(f, g) for all m

ITETE = 37 (SYTE) Il = Kulf,8)(=)"
0<j<N

(5)

(6)

v
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Theorem [Bordemann, Meinrenken, Schlichenmaier]

Theorem ([BMS] Th. 4.1, 4.2, [S2] Th. 3.3)

For f,g € C>*(M), as k — oo,
(i
k[T, TR - 78 = 0 ol

(ii) there is a constant C = C(f) > 0 such that

k
< I T8 < [Floo-

C
foo__
[floo =
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Hamiltonian mechanics

Quantum mechanics

Phase space | (M, w) H
Observables | C*(M) End(H)
Assoc alg . o
Poisson alg | {-,-} [, ]

C(M) —> End(H)
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m-plectic structures

Definition (m-plectic structure)

An (m + 1)-form Q on a smooth manifold M is called an m-plectic form
if it is closed (d€2 = 0) and non-degenerate

(v e TuM,viQ, =0= v =0). If Qis a multiplectic form on M, (M,Q)
is called a multisymplectic or m-plectic, manifold.

The canonical example of an m-plectic manifold is A™ T*M, where M is
any smooth manifold, this generalizes the canonical symplectic (1-plectic)
structure on T*M.
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Nambu-Poisson structures

Definition (Nambu-Poisson bracket)

Let M be a smooth manifold. A multilinear map
{0} (C(M)® — C=(M)

is called a Nambu-Poisson bracket or (generalized) Nambu bracket of order
J if it satisfies the following properties:

@ (skew-symmetry) {fi,...,f;} = e(o){f;1), .-, fo(j)} for any fi,..., f; € C(M)
and for any o € §;,

o (Leibniz rule) {fi,...,fi—1,818} ={f,....fi—1,81}8 + g1{f, ..., fi—1, 8} for
any f;la .. f*17g17g2 € COO(M)

@ (Fundamental Identity)

J
{flw")f}—ln{gh'"agj}}:Z{gla" {flv"'7 17g'} 7gj}7
i=1

forall f1,...,fi_1,81,....8 € C=(M).
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Volume form NP-structure

Example (Volume form Nambu-Poisson structure)

Let (M,w) be a Kahler manifold. Every volume form is closed and
non-degenerate so the volume form Q = °f1—? is a (2n — 1)-plectic form. The

bracket {.,...,.} : A®" C®°(M) — C°°(M) defined by

dfi A . Ndfan = {Fi, ..., fon} Q2

is a Nambu-Poisson bracket [G, Cor. 1 p. 106] .
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Deforming the Nambu-Poisson structure

Definition (Generalized star product)

Consider the (2n-1)-plectic manifold (M, Q) obtained from the symplectic
manifold (M, w), where Q = Lw". Define a star product (the terminology
is justified by the next lemma) of 2n functions in C°°(M) by the formula
w(fi, foy o Bone1, o) = > DA, b, Fan1, on) (7)
j=0
where
Dj(f17 f27 RN} f2n—17 f2n) = Cj(fh fZ) PN Cj(f2n—17 f2n) (8))
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Proposition

Proposition

The 2n-ary product defined on the previous slide gives
simultaneously a deformation of the pointwise product of
functions and a deformation of the Nambu-Poisson
structure.

o DO(ﬁ7 f27 c f2n—17 on) — f].fQ st f2n—1f2n

@ > s €(0)Di(foqy, o), - - - Fren—1)s foon) =
nl(_l)n{ﬁ7 f27 000y f2n—17 f2n}
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Resolution in terms of Poisson brackets

For fi, ..., fan € C°(M), where 2n = dimg(M)

n

{fi, ..., n} 2n i > ) [[{feei-n: o} ©)
Jj=1

€S

In particular, for n = 2

{f, B, 6,6} = {, B}, B} — (A, BB, i} + {A, A A
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For j < n define,

J

{fi,....Hi} = 2“ Z H{ »(2i—-1)> fo(2i) } (10)

oESy; i=1

v

{ﬂa?é}}:{ﬁvﬁa}{fé);fzn}
2n—1

+ Z {flaf;}{f% © 7fi—1)f;'+1,'"af2n}

+{fi.yf2n}{f27~--af2n—1} (11)
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