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generalization of multidimensional trigonometric

transforms, Chebyshev-like polynomials and related
o mathematics

Fourier methods to affine Weyl groups

o physics

o cubature formulas, orthogonal polynomials, numerical solutions of
differential equations, Fourier methods

o scientific computing and applications

o variable transform between two integrable systems, quantum
walks, fluid simulations, waves scattering, conformal field theory

o signal processing, data compression, image analysis and
reconstruction, jpeg, MPEG-4, data hiding
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the simple complex Lie algebra of rank n

the set of simple roots A = {a1,...,a,}, spang A = R, scalar
product (, )
with roots of the same length A,, (n > 1), D,, (n >4), Eg, E7, Eg

with two different lengths of the roots, B, (n > 3), C,, (n > 2),
Fy, Ga,

A=A, U4
the highest root £ = —ag = miag + -+ + myay,
m; ... the marks of G
the Cartan matrix C
Cyj = % ije{l,...,n}
and its determinant ¢ = det C' %
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o the root lattice Q of G

Q=Zo1+ -+ Zay,
o the Z-dual lattice to @, with (a;, w)) = d;

PY ={wY eR"|(wY, a) € Z, Va € A} = Zwy +
o the dual root lattice

o Zw,),
QY =Za) +---+7Za,, where « =

20&1'
o the Z—dual lattice to Q, with (o), w;) = d;;

(v, o)

P={weR"|(w, a") €Z,Va' € AV} =Zws + -+ + Zw,
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o the Weyl group W is generated by n reflections ro, « € A

ra.azriazr;/a:a—2<a’ai>ai, ac€R"
’ (i, ag)
o the affine reflections
2¢ 2(a, &)
roa = Ted + — rea = a — 13
ST f €6
2 2(a, n)
roa=rma+ ——, Tha = a — ———"
O (g, m) K (n, n)
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Wt = QY W '

o W is generated by n + 1 reflections

R = {To,Tl,...,Tn}
oWt Qv

o the retraction homomorphism v : W — I and the mapping

(w)

T(waﬂ)

w7
q".
o fundamental domain F of W2 contains exactly one point from
each W orbit

F= {ylwlv+-'-+ynw,¥ yo+y1m1+-~-+ynmn=1}.
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W =QxW '

o Waff ig generated by n + 1 reflections

RY ={ry,ry,....,r0}

o the dual retraction homomorphism 17)\ ;WA 5 W and the
mapping 7 : W2 - Q

(w)
(

waff)

Q) )

w,
q.

o the dual fundamental domain F vV of WA contains exactly one
point from each W orbit

sz{zlwl—l—-'-—i—znwn zo—l—zlm}/—i—'w—}—znmx:l}. ‘%

[m]
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o an abstract presentation of W

=1 ()™ =1, 0 =1
o my;; are elements of the Coxeter matrix.
o ’sign’ homomorphisms o : W — {1}
0'(7"2')2 = 1,

(o(ri)o(ry))™ =1,

o the four sign homomorphisms 1, ¢¢, 0, ¢

i,wj=1,...,n
L
1(re) =1
of(re) =—1
1, a €A
Us(ra):{—l a€eA
b S
1, a€A
1 ) s
o'(ry) =
R A
«O0>» «Fr» «E»>» «E)» = a
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o subset R? of generators R of W2

R”:{TER

o a subset of boundary of F"

got(r) = _1}

o fundamental domain F'¢

H°={aeF|3reR%)(ra=a)}.

F°=F\H°.
o the symbols y7 € R, i =0,...,n

yU c R>O, r; € R°
i ]RZO’

TiGR\RG.

Yo +yimy+ -+ ypmy
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o R of generators RY of Waff

R = {rERV

o a subset of boundary of F'V:

Uoz?)\(r)=—1}

H? ={a€ FY|(3re R™Y)(ra=a)}.
o fundamental domain F°Y

FU\/ — F\/ \HUV.
o the symbols 2f € R, 7 =0,...,n

s ]R>O, r; € RoV
7
R20,

’I"iERV\RUV.
FV—{ZOJ 2, W
1 1+ + nWn

zg+z§’m\1/+---+zgmx=l}
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o for o € {1, 0¢, 0°, 0'}, b € P are the complex functions
p7 :R* = C

o7 (a) = Z o(w) e2rilwba) g e R”

weWw
o 0 =o0°... S—functions (known from the Weyl character formula)

o g =1... C—functions
s S*® —functions

o o=0%...
o o =cl... S'—functions

Let b € P. Then for any w* € W and a € R™ it holds that
¢f (wa) = o 0 Y(w™) ¢ (a).
Moreover the functions (7 are zero on the boundary H?, i.e.

wf(a)=0, o €H.

e
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5°—functions ¢, ; (z,

Y
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o the four vectors p” € {o*, 0%, 07, g"l}:

10
e
R
a; EA
o= > w
a; €A,




o we can consider the functions ¢y, b € P on the domain F'? only
Let a € 3; PV with M € N. Then for any wT € Watl and b e R™ it
holds that

SDX/[waff(%)(a) CAS ¢(waﬂ) v (a)
MH?Y ie.

5 (a). (1)
Moreover the functions ¢7 are identically zero on the boundary
0l =0, be MH"". (2)
o we can consider the functions ¢f (a), a € 3 P¥ with the labels b
from M F°V only

_ R
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o the set of points

1

Ff = —

PYNF°
Vi N
o the set of labels of orbit functions

¢, =PNMF.

It holds that

|A%,| = [Fl-
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For any b,b' € ¢ + Pt it holds that

i (a)@f (a) da = [W] |F||Stabw (b)] b,

For any b,b’ € A9, it holds that

b
Stabgpas (M)‘ Ob,b »
a€Fy,

> IStabyar(a)| " e ()5 (a) = eM™ :

= = 12N G4
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o the mapping X : R" — C"

Illlllllllllllllllllllﬁ

T{(X(2) = x§(¢), Ae Pt

K(X(2)) = |og (=)

J7(X () = Ixgo (@)

[
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o the mapping X : R" — C"

X(z) = (X, (), -

o the restriction of X to Ff;

s X, (%))

XI(\}E rp&
Q° = X(F°)
Qf = X3 (Fip)
«O0>» «Fr» «E»>» «E)» = a




For any A\, X' € P it holds that
/ J7)

K(y)

—==T3(y)T%, (y) dy = (27)"|Stabw (A + 0°)| 6 x'-
For any A\, X € A, — o7 it holds that

3 J7(y)
yeas, |Stabyyae (Xt~ y)|

T W)TS, (y) = cM™

A+ o
Stabwaff ( MQ )

N
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o discrete and continuous orthogonality of ¢§ and TS explicitly
o polynomial interpolation methods, cubature formulas
o possible generalizations: the shifted transforms'

o recurrence formulas and generating functions for T

1T, Czyzycki, J. Hrivndk, Generalized discrete orbit function transforms of ‘%

affine Weyl groups, J. Math. Phys. 55, (2014) 113508« o = = =
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o modified multiplication and Galois symmetry in conformal field
theory 2

2J. Hrivndk, M. Walton, Discretized Weyl-orbit functions: modified %
multiplication and Galois symmetry, J. Phys. A: Math. ‘Theors 48 (2015)475205 <©ac
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o J. Hrivnak, L. Motlochova, J. Patera, Cubature formulas of
multivariate polynomials arising from symmetric orbit functions,
(preprint)

o J. Hrivnak, M. Walton, Discretized Weyl-orbit functions:
modified multiplication and Galois symmetry, J. Phys. A: Math.
Theor. 48 (2015) 175205

o J. Hrivnak, J. Patera, M. Szajewska Discretely orthogonal
polynomials of two variables, (preprint)

o T. Czyzycki, J. Hrivndk, Generalized discrete orbit function
transforms of affine Weyl groups, J. Math. Phys. 55, (2014)

113508

o R. V. Moody, L. Motlochova, J. Patera, Gaussian cubature
arising from hybrid characters of simple Lie groups , J. Fourier
Anal. Appl. (2014), 20, Issue 6, 1257-1290.

o J. Hrivnak, L. Motlochova, J. Patera, On discretization of tori of
compact simple Lie groups II, J. Phys. A: Math. Theor. 45
(2012) 255201, arXiv:1206.0240

o J. Hrivnak, J. Patera, On discretization of tori of compact simple %
Lie groups, J. Phys. A: Math. Theor. 42 (%009)@385298 I
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