Cubature formulas of multivariate polynomials arising from symmetric orbit functions

Lenka Motlochová

Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering

XI. International Workshop in Varna 15 - 21 June 2015

Joint work with J. Hrivnák and J. Patera.

2 Numerical integration

- Introduction
- Orthogonal polynomials
- Cubature formulas
- Application

A 3 3

Summary

Simple Lie groups

- simple roots: $\alpha_1, \ldots, \alpha_n$;
- simple dual roots: $\alpha_1^{\vee}, \ldots, \alpha_n^{\vee}$, where $\alpha_i^{\vee} = \frac{2\alpha_i}{\langle \alpha_i, \alpha_i \rangle}$;
- marks m_i of the highest root $\xi = m_1 \alpha_1 + \cdots + m_n \alpha_n$;
- Weyl group W generated by reflections r_i , i = 1, ..., n, $r_i(x) = x - \frac{2\langle x, \alpha_i \rangle}{\langle \alpha_i, \alpha_i \rangle} \alpha_i$ for $x \in \mathbb{R}^n$;
- affine Weyl group W^{aff} generated by r_i and r_0 , $r_0(x) = r_{\xi}(x) + \frac{2\xi}{\langle \xi, \xi \rangle}$, $r_{\xi}(x) = x - \frac{2\langle x, \xi \rangle}{\langle \xi, \xi \rangle} \xi$ for $x \in \mathbb{R}^n$;
- In fundamental domain F of W^{aff} given as convex hull of the points $\left\{0, \frac{\omega_1^{\vee}}{m_1}, \dots, \frac{\omega_n^{\vee}}{m_n}\right\}$ with $\langle \omega_i^{\vee}, \alpha_j \rangle = \delta_{ij}$.

Summary

Four types of lattices in \mathbb{R}^n

- root lattice: $Q = \mathbb{Z}\alpha_1 + \cdots + \mathbb{Z}\alpha_n$;
- Z-dual lattice to Q:

$$P^{\vee} = \left\{ \omega^{\vee} \in \mathbb{R}^n \mid \langle \omega^{\vee}, \alpha_i \rangle \in \mathbb{Z} \right\} = \mathbb{Z} \omega_1^{\vee} + \dots + \mathbb{Z} \omega_n^{\vee}$$

 $(\omega_i^{\vee} \text{ are called dual weights, } \langle \omega_i^{\vee}, \alpha_j \rangle = \delta_{ij});$ • dual root lattice:

$$Q^{\vee} = \mathbb{Z}\alpha_1^{\vee} + \cdots + \mathbb{Z}\alpha_n^{\vee}, \quad \alpha_i^{\vee} = \frac{2\alpha_i}{\langle \alpha_i, \alpha_i \rangle};$$

■ Z-dual lattice to Q[∨]:

$$P = \left\{ \omega \in \mathbb{R}^n \mid \langle \omega, \alpha_i^{\vee} \rangle \in \mathbb{Z} \right\} = \mathbb{Z}\omega_1 + \dots + \mathbb{Z}\omega_n$$

(ω_i are called weights, $\langle \omega_i, \alpha_j^{\vee} \rangle = \delta_{ij}$).

Summary

C, S, S^{s} - and S'-functions

For σ a "sign" homomorphism on W, we define

$$arphi^{\sigma}_{\lambda}(x) = \sum_{w \in W} \sigma(w) e^{2\pi i \langle w(\lambda), x
angle}$$

 $\begin{array}{ll} C\mbox{-functions:} & \sigma = 1\,, & \varphi^{\sigma} = \Phi\,; \\ S\mbox{-functions:} & \sigma = \det\,, & \varphi^{\sigma} = \varphi\,; \\ S^s\mbox{-functions:} & \sigma = \sigma^s\,, & \varphi^{\sigma} = \varphi^s\,; \\ S^l\mbox{-functions:} & \sigma = \sigma^l\,, & \varphi^{\sigma} = \varphi^l\,. \end{array}$

$$\label{eq:sigma} \begin{split} \sigma^{\rm s}: & \mbox{ all "short" signs equal to } -1, & \mbox{ all "long" signs equal to } 1; \\ \sigma^{\rm l}: & \mbox{ all "long" signs equal to } -1, & \mbox{ all "short" signs equal to } 1\,. \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Orthogonal polynomials Cubature formulas Application

Numerical integration

 A cubature formula is an approximation of a weighted integral of any function f of several variables by a linear combination of function values at points called nodes,

$$\int_{\Omega} f(y) \omega(y) \, dy \approx \sum_{j=1}^{N} \omega_j f(y^j) \, ,$$

where $y = (y_1, ..., y_n)$.

One criteria to specify cubature formulas is based on their behaviour for specific sets of functions. We require that cubature formulas are exact equalities for polynomial functions up to a certain degree.

イロト イヨト イヨト

Introduction Orthogonal polynomials Cubature formulas Application

Gaussian cubature formulas

Optimal cubature formulas with the lowest bounds for the number of nodal points required are known as Gaussian. The following statements characterising Gaussian cubature formulas hold.

- The number of nodes of a Gaussian cubature formula of degree 2n - 1 is equal to the dimension of polynomials of degree at most n - 1.
- A Gaussian cubature formula of degree 2n 1 exists if and only if the number of common distinct zeros of the corresponding orthogonal polynomials of degree n is equal to the dimension of the polynomials of degree at most n - 1.

Introduction Orthogonal polynomials Cubature formulas Application

Chebyshev polynomials

The Chebyshev polynomials of the first kind are the orthogonal polynomials given by

$$T_n(x) = \cos n\theta$$
, $x = \cos \theta$, $0 \le \theta \le \pi$

or by three-terms recurrence relation

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$.

They satisfy the orthogonality relation:

$$\int_{-1}^{1} T_m(x) T_k(x) \frac{dx}{\sqrt{1-x^2}} = \pi c_m \delta_{mk}$$

with $c_m = 1$ if m = 0 otherwise $c_m = \frac{1}{2}$.

Introduction Orthogonal polynomials Cubature formulas Application

Gauss-Chebyshev quadrature formula

The following formula holds for any polynomial of degree at most 2n-1

$$\int_{-1}^{1} \frac{p(x)}{\sqrt{1-x^2}} dx = \sum_{i=1}^{n} \frac{\pi}{n} \, p(\xi_i^{(n)}) \, ,$$

where $\xi_i^{(n)}$ are the points that satisfy

$$T_n(x)=\cos n\theta=0\,,$$

i.e.

$$\xi_i^{(n)} = \cos \frac{\pi (2i-1)}{2n}, \quad i = 1, \dots, n.$$

Introduction Orthogonal polynomials Cubature formulas Application

Polynomials arising from *C*-functions

We consider C-functions defined as the Weyl group orbit sums,

$$\mathcal{C}_{\lambda}(x)\equiv\sum_{
u\in W\lambda}e^{2\pi i\langle
u,x
angle},\lambda\in \mathcal{P}^{+},x\in\mathbb{R}^{n}.$$

Let $\nu = \nu_1 \omega_1 + \cdots + \nu_n \omega_n$, any function C_{λ} can be expressed as a polynomial in $Z_i = C_{\omega_i}$,

$$\mathcal{C}_{\lambda} = \sum_{
u \leq \lambda, \,
u \in \mathcal{P}^+} d_{
u} Z_1^{
u_1} Z_2^{
u_2} \dots Z_n^{
u_n}, \quad d_{
u} \in \mathbb{C}, \quad d_{\lambda} = 1.$$

The functions Z_i are real-valued except for the following cases.

$$\begin{array}{rll} A_{2k}(k \ge 1) : & Z_j = \overline{Z_{2k-j+1}}, \ j = 1, \dots, k, \\ A_{2k+1}(k \ge 1) : & Z_j = \overline{Z_{2k-j+2}}, \ j = 1, \dots, k, \\ D_{2k+1}(k \ge 2) : & Z_{2k} = \overline{Z_{2k+1}}, & E_6 : & Z_2 = \overline{Z_4}, Z_1 = \overline{Z_5}. \end{array}$$

Introduction Orthogonal polynomials Cubature formulas Application

Polynomial variables

■ Analogously to Chebyshev polynomials, we connect the abstract polynomial variables *y*₁,..., *y*_n with the real-valued functions.

• For the real-valued Z_j , we define $y_j = Z_j$, otherwise

$$\begin{array}{ll} A_{2k}: & y_j = \Re(Z_j), \ y_{2k-j+1} = \Im(Z_j), \ j = 1, \dots, k, \\ A_{2k+1}: & y_j = \Re(Z_j), \ y_{2k-j+2} = \Im(Z_j), \ j = 1, \dots, k, \\ D_{2k+1}: & y_{2k} = \Re(Z_{2k}), \ y_{2k+1} = \Im(Z_{2k}), \\ E_6: & y_1 = \Re(Z_1), \ y_2 = \Re(Z_2), \ y_4 = \Im(Z_2), \ y_5 = \Im(Z_1). \end{array}$$

Any function C_{λ} , $\lambda \in P^+$, can be rewritten as a polynomial in y_j .

Introduction Orthogonal polynomials Cubature formulas Application

m-degree

• We say that a monomial $y^{\lambda} \equiv y_1^{\lambda_1} \dots y_n^{\lambda_n}$ has *m*-degree

$$\deg_m y^{\lambda} = m_1^{\vee} \lambda_1 + \cdots + m_n^{\vee} \lambda_n.$$

The *m*-degree of any polynomial $p \in \mathbb{C}[y]$ is defined as the largest *m*-degree of a monomial occurring in p(y).

The C-function C_{λ} , $\lambda = \lambda_1 \omega_1 + \cdots + \lambda_n \omega_n \in P^+$, expressed as a polynomial in y has m-degree equal to

$$|\lambda|_m = m_1^{\vee}\lambda_1 + \cdots + m_n^{\vee}\lambda_n.$$

■ The subspace Π_M ⊂ ℂ[y] is formed by the polynomials of m-degree at most M, i.e.

$$\Pi_M \equiv \{ p \in \mathbb{C}[y] \mid \deg_m p \leq M \} \ .$$

Introduction Orthogonal polynomials Cubature formulas Application

Integration region and set of nodes

The variables y_1, \ldots, y_n induce a map $\Xi : \mathbb{R}^n \to \mathbb{R}^n$:

$$\Xi(x) = (y_1(x), \ldots, y_n(x)), \quad x \in \mathbb{R}^n.$$

The image Ω ⊂ ℝⁿ of the fundamental domain F under the map Ξ forms the integration domain on which the cubature rule is formulated, i.e.

$$\Omega \equiv \Xi(F).$$

• The image $\Omega_M \subset \mathbb{R}^n$ of the set of points

$$F_M \equiv rac{1}{M} P^{ee} / Q^{ee} \cap F$$

under the map Ξ forms the set of nodes for the cubature rule, i.e.

$$\Omega_M \equiv \Xi(F_M).$$

Introduction Orthogonal polynomials Cubature formulas Application

Lie algebra A_2 : Ω and Ω_{15}

The boundary of Ω is defined by the equation

$$K(y_1, y_2) = -(y_1^2 + y_2^2 + 9)^2 + 8(y_1^3 - 3y_1y_2^2) + 108 = 0.$$

Introduction Orthogonal polynomials Cubature formulas Application

Lie algebra C_2 : Ω and Ω_{15}

イロト イヨト イヨト

 \exists

Introduction Orthogonal polynomials Cubature formulas Application

Lie algebra G_2 : Ω and Ω_{15}

イロト イヨト イヨト

Э

Introduction Orthogonal polynomials Cubature formulas Application

Weight functions

We define

 \blacksquare the strictly positive function in the interior of Ω by

$$K(y_1,\ldots,y_n)\equiv |S_{\varrho}|^2,$$

where
$$\varrho = \sum_{i} \omega_{i}$$
, and

the discrete function

$$\tilde{\varepsilon}(y) \equiv \varepsilon(\Xi_M^{-1}y), \quad y \in \Omega_M,$$

where $\varepsilon(x) = |Wx|$ and $\Xi_M \equiv \Xi \upharpoonright_{F_M}$.

The functions K and $\tilde{\varepsilon}$ are well-defined since $S_{\varrho}\overline{S_{\varrho}}$ is W-invariant and Ξ_M is injective.

イロト イヨト イヨト

Introduction Orthogonal polynomials Cubature formulas Application

Weight functions for Lie algebras of rank 2

A₂:
$$K(y_1, y_2) = -(y_1^2 + y_2^2 + 9)^2 + 8(y_1^3 - 3y_1y_2^2) + 108.$$

$$C_2$$
: $K(y_1, y_2) = (y_1^2 - 4y_2)((y_2 + 4)^2 - 4y_1^2).$

 $G_2: K(y_1, y_2) = (y_2^2 - 4y_1 - 12)(y_1^2 - 4y_2^3 + 12y_1y_2 + 24y_1 + 36y_2 + 36).$

イロト イポト イヨト イヨト

=

Introduction Orthogonal polynomials Cubature formulas Application

Cubature formulas

Theorem

For any $M \in \mathbb{N}$ and any $p \in \Pi_{2M-1}$ it holds that

 κ

$$\int_{\Omega} p(y) \mathcal{K}^{-\frac{1}{2}}(y) \, dy = \frac{\kappa}{c|W|} \left(\frac{2\pi}{M}\right)^n \sum_{y \in \Omega_M} \tilde{\varepsilon}(y) p(y) \, ,$$

where

$$= \begin{cases} 2^{-\lfloor \frac{n}{2} \rfloor} & \text{for } A_n \\ \frac{1}{2} & \text{for } D_{2k+1} \\ \frac{1}{4} & \text{for } E_6 \\ 1 & \text{otherwise.} \end{cases}$$

イロト イヨト イヨト

 \exists

Introduction Orthogonal polynomials Cubature formulas Application

Example of numerical integration

The cubature formula is the exact equality for any polynomial function of *m*-degree up to 2M - 1. It can be used in numerical integration to approximate a weighted integral of any function by finite summing.

As our test function, we choose the function

$$f(y_1, y_2) = K^{\frac{1}{2}}(y_1, y_2).$$

Μ	10	20	50	100	exact value
A_2	6.0751	6.2314	6.2749	6.2811	$2\pi \doteq 6.2832$
<i>C</i> ₂	10.056	10.5133	10.6421	10.6605	$32/3 = 10.666\overline{6}$
G ₂	7.4789	8.2561	8.4885	8.5221	$128/15 = 8.533\overline{3}$

・ロト ・回ト ・ヨト ・ヨト

Introduction Orthogonal polynomials Cubature formulas Application

Symmetric cosine functions

The symmetric *C*-functions arising from B_n and C_n coincide, up to a constant, with the symmetric cosine functions given by

$$\cos_k^+(x) = \sum_{\sigma \in S_n} \cos\left(\pi k_{\sigma(1)} x_1\right) \cos\left(\pi k_{\sigma(2)} x_2\right) \cdots \cos\left(\pi k_{\sigma(n)} x_n\right)$$

with $k = (k_1, \ldots, k_n) \in \mathbb{Z}^n$ satisfying $k_1 \ge k_2 \ge \cdots \ge k_n \ge 0$. They can be expressed as polynomials in variables

$$y_1 = \cos^+_{(1,0,\dots,0)}, \ y_2 = \cos^+_{(1,1,0,\dots,0)}, \ \dots, \ y_n = \cos^+_{(1,1,\dots,1)}.$$

Introduction Orthogonal polynomials Cubature formulas Application

Gaussian cubature formula

Theorem

For any $N \in \mathbb{N}$ and any polynomial f of degree at most 2N - 1, the following cubature formulas are exact.

$$\int_{\mathfrak{F}(\tilde{S}_n^{\mathrm{aff}})} f(y) \omega^{I,+}(y) \, dy = \left(\frac{1}{N}\right)^n \sum_{y \in \mathfrak{F}_N^{\mathrm{II},+}} \mathcal{H}_y^{-1} f(y).$$

This formula is Gaussian since number of nodes in $\mathfrak{F}_N^{\text{II},+}$ is equal to the dimension of polynomials of degree at most N-1. Moreover, the nodes $\mathfrak{F}_N^{\text{II},+}$ are common zeros of the set of orthogonal polynomials \cos_k^+ with $k_1 = N$ of degree N.

<ロト <回ト < 臣ト < 臣ト

Introduction Orthogonal polynomials Cubature formulas Application

Polynomial approximation

We define a weighted Hilbert space $\mathcal{L}_{K}^{2}(\Omega)$ as a space of cosets of measurable complex-valued functions f such that $\int_{\Omega} |f|^{2} K^{-\frac{1}{2}} < \infty$ with an inner product defined by

$$(f,g)_{\mathcal{K}}=rac{1}{\kappa(2\pi)^n}\int_{\Omega}f(y)\overline{g(y)}\mathcal{K}^{-rac{1}{2}}(y)\,dy.$$

The set of *C*-functions C_{λ} , $\lambda \in P^+$, expressed as polynomials in *y* forms a Hilbert basis of $\mathcal{L}^2_{\mathcal{K}}(\Omega)$, i.e. any $f \in \mathcal{L}^2_{\mathcal{K}}(\Omega)$ can be expanded in terms of C_{λ} ,

$$f = \sum_{\lambda \in \mathcal{P}^+} \mathsf{a}_\lambda \mathsf{C}_\lambda \,, \quad \mathsf{a}_\lambda = \mathsf{h}_\lambda \, (f, \mathsf{C}_\lambda)_K$$

Introduction Orthogonal polynomials Cubature formulas Application

Optimality

Theorem

For any $f \in \mathcal{L}^2_{\mathcal{K}}(\Omega)$ the polynomial

$$u_M[f] = \sum_{|\lambda|_m \leq M} a_\lambda C_\lambda, \quad a_\lambda = h_\lambda (f, C_\lambda)_K.$$

is the best approximation of f, relative to the $\mathcal{L}^2_K(\Omega)$ -norm, by any polynomial from Π_M .

Rather than the optimal polynomial approximation one may consider for practical applications its weakened version:

$$v_{M}[f] = \sum_{\lambda \in P_{M}^{+}} a_{\lambda} p_{\lambda} , \quad a_{\lambda} = \frac{h_{\lambda}}{c |W| M^{n}} \sum_{y \in \Omega_{M}} \tilde{\varepsilon}(y) f(y) \overline{p_{\lambda}(y)}.$$

Introduction Orthogonal polynomials Cubature formulas Application

Example of cubature polynomial approximation

As a specific example of a continuous model function in the case C_2 , we consider

$$f(y_1, y_2) = e^{-(y_1^2 + (y_2 + 1.8)^2)/(2 \times 0.35^2)}.$$

3.1

Introduction Orthogonal polynomials Cubature formulas Application

Lie algebra C_2 : Approximations $v_{20}[f]$ and $v_{30}[f]$

Concluding remarks

- studying Clenshaw-Curtis method for deriving cubature formulas;
- studying common zeros of C-functions;
- determining of Lebesgue constant;
- construction of cubature formulas of higher efficiency;
- possibility of an extension of the current cubature formulas to Macdonald polynomials.

・ 同 ト ・ ヨ ト ・ ヨ ト

References

- J. Hrivnák, L. Motlochová, J. Patera: Cubature formulas of multivariate polynomials arising from symmetric orbit functions.
- R.V. Moody, L. Motlochová, J. Patera: Gaussian cubature arising from hybrid characters of simple Lie groups. J. Fourier Anal. Appl. 20, Issue 6, 1257-1290 (2014).
- J. Hrivnák, L. Motlochová: Discrete transforms and orthogonal polynomials of (anti)symmetric multivariate cosine functions. SIAM J. Numer. Anal. 52, no. 6, 3021-3055 (2014).

- 4 同 ト 4 ヨ ト 4 ヨ ト

References

- J. Hrivnák, J. Patera: On discretization of tori of compact simple Lie groups. J. Phys. A: Math. Theor. 42, 385208 (2009).
- R.V. Moody, J. Patera: Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups. Advances in Applied Mathematics 47, 509-535 (2011).
- H. Li, J. Sun, Y. Xu: *Discrete Fourier Analysis and Chebyshev Polynomials with G*₂ *Group.* SIGMA **8**, Paper 067, 29 (2012).
- H. Li, Y. Xu: Discrete Fourier analysis on fundamental domain and simplex of A_d lattice in d-variables, J. Fourier Anal. Appl. 16, 383-433, (2010).

Acknowledgement

This work was supported by the European social fund within the framework of realizing the project Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague, CZ.1.07/2.3.00/30.0034.

INVESTMENTS IN EDUCATION DEVELOPMENT