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Simple Lie groups

simple roots: α1, . . . , αn;

simple dual roots: α∨1 , . . . , α
∨
n , where α∨i = 2αi

〈αi ,αi 〉 ;

marks mi of the highest root ξ = m1α1 + · · ·+ mnαn;

Weyl group W generated by reflections ri , i = 1, . . . , n,
ri (x) = x − 2〈x ,αi 〉

〈αi ,αi 〉αi for x ∈ Rn;

affine Weyl group W aff generated by ri and r0,
r0(x) = rξ(x) + 2ξ

〈ξ,ξ〉 , rξ(x) = x − 2〈x ,ξ〉
〈ξ,ξ〉 ξ for x ∈ Rn;

fundamental domain F of W aff given as convex hull of the

points
{

0,
ω∨

1
m1
, . . . , ω

∨
n

mn

}
with 〈ω∨i , αj〉 = δij .
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Four types of lattices in Rn

root lattice: Q = Zα1 + · · ·+ Zαn ;

Z-dual lattice to Q:

P∨ =
{
ω∨ ∈ Rn | 〈ω∨, αi 〉 ∈ Z

}
= Zω∨1 + · · ·+ Zω∨n

(ω∨i are called dual weights, 〈ω∨i , αj〉 = δij);

dual root lattice:

Q∨ = Zα∨1 + · · ·+ Zα∨n , α∨i =
2αi

〈αi , αi 〉
;

Z-dual lattice to Q∨:

P =
{
ω ∈ Rn | 〈ω, α∨i 〉 ∈ Z

}
= Zω1 + · · ·+ Zωn

(ωi are called weights, 〈ωi , α
∨
j 〉 = δij).
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C , S , S s- and S l -functions

For σ a “sign” homomorphism on W , we define

ϕσλ(x) =
∑
w∈W

σ(w)e2πi〈w(λ),x〉 .

C -functions: σ = 1 , ϕσ = Φ ;

S-functions: σ = det , ϕσ = ϕ ;

S s -functions: σ = σs , ϕσ = ϕs ;

S l -functions: σ = σl , ϕσ = ϕl .

σs : all “short” signs equal to− 1, all “long” signs equal to 1 ;

σl : all “long” signs equal to− 1, all “short” signs equal to 1 .
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Numerical integration

A cubature formula is an approximation of a weighted integral
of any function f of several variables by a linear combination
of function values at points called nodes,∫

Ω
f (y)ω(y) dy ≈

N∑
j=1

ωj f (y j) ,

where y = (y1, . . . , yn).

One criteria to specify cubature formulas is based on their
behaviour for specific sets of functions. We require that
cubature formulas are exact equalities for polynomial
functions up to a certain degree.
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Gaussian cubature formulas

Optimal cubature formulas with the lowest bounds for the number
of nodal points required are known as Gaussian. The following
statements characterising Gaussian cubature formulas hold.

The number of nodes of a Gaussian cubature formula of
degree 2n − 1 is equal to the dimension of polynomials of
degree at most n − 1.

A Gaussian cubature formula of degree 2n − 1 exists if and
only if the number of common distinct zeros of the
corresponding orthogonal polynomials of degree n is equal to
the dimension of the polynomials of degree at most n − 1.
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Chebyshev polynomials

The Chebyshev polynomials of the first kind are the orthogonal
polynomials given by

Tn(x) = cos nθ , x = cos θ , 0 ≤ θ ≤ π

or by three-terms recurrence relation

T0(x) = 1 , T1(x) = x , Tn+1(x) = 2xTn(x)− Tn−1(x) .

They satisfy the orthogonality relation:∫ 1

−1
Tm(x)Tk(x)

dx√
1− x2

= πcmδmk

with cm = 1 if m = 0 otherwise cm = 1
2 .
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Gauss-Chebyshev quadrature formula

The following formula holds for any polynomial of degree at most
2n − 1 ∫ 1

−1

p(x)√
1− x2

dx =
n∑

i=1

π

n
p(ξ

(n)
i ) ,

where ξ
(n)
i are the points that satisfy

Tn(x) = cos nθ = 0 ,

i.e.

ξ
(n)
i = cos

π(2i − 1)

2n
, i = 1, . . . , n.
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Polynomials arising from C -functions

We consider C -functions defined as the Weyl group orbit sums,

Cλ(x) ≡
∑
ν∈Wλ

e2πi〈ν,x〉 , λ ∈ P+ , x ∈ Rn.

Let ν = ν1ω1 + · · ·+ νnωn, any function Cλ can be expressed as a
polynomial in Zi = Cωi ,

Cλ =
∑

ν�λ, ν∈P+

dνZ ν1
1 Z ν2

2 . . .Z νn
n , dν ∈ C, dλ = 1.

The functions Zj are real-valued except for the following cases.

A2k(k ≥ 1) : Zj = Z2k−j+1, j = 1, . . . , k ,

A2k+1(k ≥ 1) : Zj = Z2k−j+2, j = 1, . . . , k ,

D2k+1(k ≥ 2) : Z2k = Z2k+1, E6 : Z2 = Z4,Z1 = Z5.
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Polynomial variables

Analogously to Chebyshev polynomials, we connect the
abstract polynomial variables y1, . . . , yn with the real-valued
functions.

For the real-valued Zj , we define yj = Zj , otherwise

A2k : yj = <(Zj), y2k−j+1 = =(Zj), j = 1, . . . , k ,

A2k+1 : yj = <(Zj), y2k−j+2 = =(Zj), j = 1, . . . , k ,

D2k+1 : y2k = <(Z2k), y2k+1 = =(Z2k),

E6 : y1 = <(Z1), y2 = <(Z2), y4 = =(Z2), y5 = =(Z1).

Any function Cλ, λ ∈ P+, can be rewritten as a polynomial in
yj .
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m-degree

We say that a monomial yλ ≡ yλ1
1 . . . yλnn has m-degree

degmyλ = m∨1 λ1 + · · ·+ m∨n λn.

The m-degree of any polynomial p ∈ C[y ] is defined as the
largest m-degree of a monomial occurring in p(y).

The C -function Cλ, λ = λ1ω1 + · · ·+ λnωn ∈ P+, expressed
as a polynomial in y has m-degree equal to

|λ|m = m∨1 λ1 + · · ·+ m∨n λn .

The subspace ΠM ⊂ C[y ] is formed by the polynomials of
m-degree at most M, i.e.

ΠM ≡ {p ∈ C[y ] | degm p ≤ M} .
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Integration region and set of nodes

The variables y1, . . . , yn induce a map Ξ : Rn → Rn:

Ξ(x) = (y1(x), . . . , yn(x)), x ∈ Rn.

The image Ω ⊂ Rn of the fundamental domain F under the
map Ξ forms the integration domain on which the cubature
rule is formulated, i.e.

Ω ≡ Ξ(F ).

The image ΩM ⊂ Rn of the set of points

FM ≡
1

M
P∨/Q∨ ∩ F

under the map Ξ forms the set of nodes for the cubature rule,
i.e.

ΩM ≡ Ξ(FM).
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Lie algebra A2: Ω and Ω15

The boundary of Ω is defined by the equation

K (y1, y2) = −(y 2
1 + y 2

2 + 9)2 + 8(y 3
1 − 3y1y 2

2 ) + 108 = 0.
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Lie algebra C2: Ω and Ω15
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Lie algebra G2: Ω and Ω15
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Weight functions

We define

the strictly positive function in the interior of Ω by

K (y1, . . . , yn) ≡ |S%|2,

where % =
∑

i ωi , and

the discrete function

ε̃(y) ≡ ε(Ξ−1
M y), y ∈ ΩM ,

where ε(x) = |Wx | and ΞM ≡ Ξ �FM
.

The functions K and ε̃ are well-defined since S%S% is W -invariant
and ΞM is injective.
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Weight functions for Lie algebras of rank 2

A2: K (y1, y2) = −(y 2
1 + y 2

2 + 9)2 + 8(y 3
1 − 3y1y 2

2 ) + 108.

C2: K (y1, y2) = (y 2
1 − 4y2)((y2 + 4)2 − 4y 2

1 ).

G2: K (y1, y2) = (y 2
2−4y1−12)(y 2

1−4y 3
2 +12y1y2+24y1+36y2+36).
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Cubature formulas

Theorem

For any M ∈ N and any p ∈ Π2M−1 it holds that∫
Ω

p(y)K−
1
2 (y) dy =

κ

c |W |

(
2π

M

)n ∑
y∈ΩM

ε̃(y)p(y) ,

where

κ =


2−b

n
2
c for An

1
2 for D2k+1

1
4 for E6

1 otherwise.
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Example of numerical integration

The cubature formula is the exact equality for any polynomial
function of m-degree up to 2M − 1. It can be used in numerical
integration to approximate a weighted integral of any function by
finite summing.
As our test function, we choose the function

f (y1, y2) = K
1
2 (y1, y2) .

M 10 20 50 100 exact value

A2 6.0751 6.2314 6.2749 6.2811 2π
.

= 6.2832

C2 10.056 10.5133 10.6421 10.6605 32/3 = 10.6666̄

G2 7.4789 8.2561 8.4885 8.5221 128/15 = 8.5333̄
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Symmetric cosine functions

The symmetric C -functions arising from Bn and Cn coincide, up to
a constant, with the symmetric cosine functions given by

cos+
k (x) =

∑
σ∈Sn

cos (πkσ(1)x1) cos (πkσ(2)x2) · · · cos (πkσ(n)xn)

with k = (k1, . . . , kn) ∈ Zn satisfying k1 ≥ k2 ≥ · · · ≥ kn ≥ 0.
They can be expressed as polynomials in variables

y1 = cos+
(1,0,...,0), y2 = cos+

(1,1,0,...,0), . . . , yn = cos+
(1,1,...,1) .

Lenka Motlochová Cubature formulas



Orbit functions
Numerical integration

Concluding remarks

Introduction
Orthogonal polynomials
Cubature formulas
Application

Gaussian cubature formula

Theorem

For any N ∈ N and any polynomial f of degree at most 2N − 1,
the following cubature formulas are exact.∫

F(S̃aff
n )

f (y)ωI ,+(y) dy =

(
1

N

)n ∑
y∈FII,+

N

H−1
y f (y).

This formula is Gaussian since number of nodes in FII,+
N is equal to

the dimension of polynomials of degree at most N − 1. Moreover,
the nodes FII,+

N are common zeros of the set of orthogonal
polynomials cos+

k with k1 = N of degree N.
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Polynomial approximation

We define a weighted Hilbert space L2
K (Ω) as a space of cosets of

measurable complex-valued functions f such that
∫

Ω |f |
2K−

1
2 <∞

with an inner product defined by

(f , g)K =
1

κ(2π)n

∫
Ω

f (y)g(y)K−
1
2 (y) dy .

The set of C -functions Cλ, λ ∈ P+, expressed as polynomials in y
forms a Hilbert basis of L2

K (Ω), i.e. any f ∈ L2
K (Ω) can be

expanded in terms of Cλ,

f =
∑
λ∈P+

aλCλ , aλ = hλ (f ,Cλ)K
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Optimality

Theorem

For any f ∈ L2
K (Ω) the polynomial

uM [f ] =
∑
|λ|m≤M

aλCλ , aλ = hλ (f ,Cλ)K .

is the best approximation of f , relative to the L2
K (Ω)-norm, by any

polynomial from ΠM .

Rather than the optimal polynomial approximation one may
consider for practical applications its weakened version:

vM [f ] =
∑
λ∈P+

M

aλpλ , aλ =
hλ

c |W |Mn

∑
y∈ΩM

ε̃(y)f (y)pλ(y).
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Example of cubature polynomial approximation

As a specific example of a continuous model function in the case
C2, we consider

f (y1, y2) = e−(y2
1 +(y2+1.8)2)/(2×0.352).
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Lie algebra C2: Approximations v20[f ] and v30[f ]

M 10 20 30∫
Ω |f − vM [f ]|2K−

1
2 dy1 dy2 0.0636842 0.0035217 0.0000636
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studying Clenshaw-Curtis method for deriving cubature
formulas;

studying common zeros of C -functions;

determining of Lebesgue constant;

construction of cubature formulas of higher efficiency;

possibility of an extension of the current cubature formulas to
Macdonald polynomials.
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