Cubature formulas of multivariate polynomials arising from symmetric orbit functions

Lenka Motlochová

Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering
XI. International Workshop in Varna

$$
\text { 15-21 June } 2015
$$

Joint work with J. Hrivnák and J. Patera.

Outline

1 Orbit functions

- Summary

2 Numerical integration

- Introduction
- Orthogonal polynomials
- Cubature formulas
- Application

Simple Lie groups

■ simple roots: $\alpha_{1}, \ldots, \alpha_{n}$;

- simple dual roots: $\alpha_{1}^{\vee}, \ldots, \alpha_{n}^{\vee}$, where $\alpha_{i}^{\vee}=\frac{2 \alpha_{i}}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle}$;

■ marks m_{i} of the highest root $\xi=m_{1} \alpha_{1}+\cdots+m_{n} \alpha_{n}$;

- Weyl group W generated by reflections $r_{i}, i=1, \ldots, n$, $r_{i}(x)=x-\frac{2\left\langle x, \alpha_{i}\right\rangle}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle} \alpha_{i}$ for $x \in \mathbb{R}^{n}$;
- affine Weyl group $W^{\text {aff }}$ generated by r_{i} and r_{0}, $r_{0}(x)=r_{\xi}(x)+\frac{2 \xi}{\langle\xi, \xi\rangle}, r_{\xi}(x)=x-\frac{2\langle x, \xi\rangle}{\langle\xi, \xi\rangle} \xi$ for $x \in \mathbb{R}^{n}$;
- fundamental domain F of $W^{\text {aff }}$ given as convex hull of the points $\left\{0, \frac{\omega_{1}^{\vee}}{m_{1}}, \ldots, \frac{\omega_{n}^{\vee}}{m_{n}}\right\}$ with $\left\langle\omega_{i}^{\vee}, \alpha_{j}\right\rangle=\delta_{i j}$.

Four types of lattices in \mathbb{R}^{n}

- root lattice: $Q=\mathbb{Z} \alpha_{1}+\cdots+\mathbb{Z} \alpha_{n}$;
- \mathbb{Z}-dual lattice to Q :

$$
P^{\vee}=\left\{\omega^{\vee} \in \mathbb{R}^{n} \mid\left\langle\omega^{\vee}, \alpha_{i}\right\rangle \in \mathbb{Z}\right\}=\mathbb{Z} \omega_{1}^{\vee}+\cdots+\mathbb{Z} \omega_{n}^{\vee}
$$

$\left(\omega_{i}^{\vee}\right.$ are called dual weights, $\left.\left\langle\omega_{i}^{\vee}, \alpha_{j}\right\rangle=\delta_{i j}\right)$;

- dual root lattice:

$$
Q^{\vee}=\mathbb{Z} \alpha_{1}^{\vee}+\cdots+\mathbb{Z} \alpha_{n}^{\vee}, \quad \alpha_{i}^{\vee}=\frac{2 \alpha_{i}}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle}
$$

- \mathbb{Z}-dual lattice to Q^{\vee} :

$$
P=\left\{\omega \in \mathbb{R}^{n} \mid\left\langle\omega, \alpha_{i}^{\vee}\right\rangle \in \mathbb{Z}\right\}=\mathbb{Z} \omega_{1}+\cdots+\mathbb{Z} \omega_{n}
$$

$\left(\omega_{i}\right.$ are called weights, $\left.\left\langle\omega_{i}, \alpha_{j}^{\vee}\right\rangle=\delta_{i j}\right)$.

C, S, S^{s} - and S^{l}-functions

For σ a "sign" homomorphism on W, we define

$$
\varphi_{\lambda}^{\sigma}(x)=\sum_{w \in W} \sigma(w) e^{2 \pi i\langle w(\lambda), x\rangle}
$$

$$
\begin{array}{lll}
C \text {-functions: } & \sigma=1, & \varphi^{\sigma}=\Phi ; \\
S \text {-functions: } & \sigma=\operatorname{det}, & \varphi^{\sigma}=\varphi ; \\
S^{s} \text {-functions: } & \sigma=\sigma^{s}, & \varphi^{\sigma}=\varphi^{s} ; \\
S^{\prime} \text {-functions: } & \sigma=\sigma^{\prime}, & \varphi^{\sigma}=\varphi^{\prime} .
\end{array}
$$

σ^{s} : all "short" signs equal to -1 , all "long" signs equal to 1 ;
$\sigma^{\prime}:$ all "long" signs equal to -1, all "short" signs equal to 1 .

Numerical integration

- A cubature formula is an approximation of a weighted integral of any function f of several variables by a linear combination of function values at points called nodes,

$$
\int_{\Omega} f(y) \omega(y) d y \approx \sum_{j=1}^{N} \omega_{j} f\left(y^{j}\right),
$$

where $y=\left(y_{1}, \ldots, y_{n}\right)$.

- One criteria to specify cubature formulas is based on their behaviour for specific sets of functions. We require that cubature formulas are exact equalities for polynomial functions up to a certain degree.

Gaussian cubature formulas

Optimal cubature formulas with the lowest bounds for the number of nodal points required are known as Gaussian. The following statements characterising Gaussian cubature formulas hold.

- The number of nodes of a Gaussian cubature formula of degree $2 n-1$ is equal to the dimension of polynomials of degree at most $n-1$.
- A Gaussian cubature formula of degree $2 n-1$ exists if and only if the number of common distinct zeros of the corresponding orthogonal polynomials of degree n is equal to the dimension of the polynomials of degree at most $n-1$.

Chebyshev polynomials

The Chebyshev polynomials of the first kind are the orthogonal polynomials given by

$$
T_{n}(x)=\cos n \theta, \quad x=\cos \theta, \quad 0 \leq \theta \leq \pi
$$

or by three-terms recurrence relation

$$
T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
$$

They satisfy the orthogonality relation:

$$
\int_{-1}^{1} T_{m}(x) T_{k}(x) \frac{d x}{\sqrt{1-x^{2}}}=\pi c_{m} \delta_{m k}
$$

with $c_{m}=1$ if $m=0$ otherwise $c_{m}=\frac{1}{2}$.

Gauss-Chebyshev quadrature formula

The following formula holds for any polynomial of degree at most $2 n-1$

$$
\int_{-1}^{1} \frac{p(x)}{\sqrt{1-x^{2}}} d x=\sum_{i=1}^{n} \frac{\pi}{n} p\left(\xi_{i}^{(n)}\right)
$$

where $\xi_{i}^{(n)}$ are the points that satisfy

$$
T_{n}(x)=\cos n \theta=0
$$

i.e.

$$
\xi_{i}^{(n)}=\cos \frac{\pi(2 i-1)}{2 n}, \quad i=1, \ldots, n .
$$

Polynomials arising from C-functions

We consider C-functions defined as the Weyl group orbit sums,

$$
C_{\lambda}(x) \equiv \sum_{\nu \in W \lambda} e^{2 \pi i\langle\nu, x\rangle}, \lambda \in P^{+}, x \in \mathbb{R}^{n}
$$

Let $\nu=\nu_{1} \omega_{1}+\cdots+\nu_{n} \omega_{n}$, any function C_{λ} can be expressed as a polynomial in $Z_{i}=C_{\omega_{i}}$,

$$
C_{\lambda}=\sum_{\nu \preceq \lambda, \nu \in P^{+}} d_{\nu} Z_{1}^{\nu_{1}} Z_{2}^{\nu_{2}} \ldots Z_{n}^{\nu_{n}}, \quad d_{\nu} \in \mathbb{C}, \quad d_{\lambda}=1 .
$$

The functions Z_{j} are real-valued except for the following cases.

$$
\begin{aligned}
A_{2 k}(k \geq 1): & Z_{j}=\overline{Z_{2 k-j+1}}, j=1, \ldots, k, \\
A_{2 k+1}(k \geq 1): & Z_{j}=\overline{Z_{2 k-j+2}}, j=1, \ldots, k, \\
D_{2 k+1}(k \geq 2): & Z_{2 k}=\overline{Z_{2 k+1}}, \quad E_{6}: \quad Z_{2}=\overline{Z_{4}}, Z_{1}=\overline{Z_{5}} .
\end{aligned}
$$

Polynomial variables

■ Analogously to Chebyshev polynomials, we connect the abstract polynomial variables y_{1}, \ldots, y_{n} with the real-valued functions.
$■$ For the real-valued Z_{j}, we define $y_{j}=Z_{j}$, otherwise

$$
\begin{array}{ll}
A_{2 k}: & y_{j}=\Re\left(Z_{j}\right), y_{2 k-j+1}=\Im\left(Z_{j}\right), j=1, \ldots, k, \\
A_{2 k+1}: & y_{j}=\Re\left(Z_{j}\right), y_{2 k-j+2}=\Im\left(Z_{j}\right), j=1, \ldots, k, \\
D_{2 k+1}: & y_{2 k}=\Re\left(Z_{2 k}\right), y_{2 k+1}=\Im\left(Z_{2 k}\right), \\
E_{6}: & y_{1}=\Re\left(Z_{1}\right), y_{2}=\Re\left(Z_{2}\right), y_{4}=\Im\left(Z_{2}\right), y_{5}=\Im\left(Z_{1}\right) .
\end{array}
$$

- Any function $C_{\lambda}, \lambda \in P^{+}$, can be rewritten as a polynomial in y_{j}.

m-degree

- We say that a monomial $y^{\lambda} \equiv y_{1}^{\lambda_{1}} \ldots y_{n}^{\lambda_{n}}$ has m-degree

$$
\operatorname{deg}_{m} y^{\lambda}=m_{1}^{\vee} \lambda_{1}+\cdots+m_{n}^{\vee} \lambda_{n}
$$

The m-degree of any polynomial $p \in \mathbb{C}[y]$ is defined as the largest m-degree of a monomial occurring in $p(y)$.

- The C-function $C_{\lambda}, \lambda=\lambda_{1} \omega_{1}+\cdots+\lambda_{n} \omega_{n} \in P^{+}$, expressed as a polynomial in y has m-degree equal to

$$
|\lambda|_{m}=m_{1}^{\vee} \lambda_{1}+\cdots+m_{n}^{\vee} \lambda_{n} .
$$

- The subspace $\Pi_{M} \subset \mathbb{C}[y]$ is formed by the polynomials of m-degree at most M, i.e.

$$
\Pi_{M} \equiv\left\{p \in \mathbb{C}[y] \mid \operatorname{deg}_{m} p \leq M\right\}
$$

Integration region and set of nodes

The variables y_{1}, \ldots, y_{n} induce a map $\equiv: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$:

$$
\equiv(x)=\left(y_{1}(x), \ldots, y_{n}(x)\right), \quad x \in \mathbb{R}^{n} .
$$

- The image $\Omega \subset \mathbb{R}^{n}$ of the fundamental domain F under the map 三forms the integration domain on which the cubature rule is formulated, i.e.

$$
\Omega \equiv \equiv(F) .
$$

■ The image $\Omega_{M} \subset \mathbb{R}^{n}$ of the set of points

$$
F_{M} \equiv \frac{1}{M} P^{\vee} / Q^{\vee} \cap F
$$

under the map \equiv forms the set of nodes for the cubature rule, i.e.

$$
\Omega_{M} \equiv \equiv\left(F_{M}\right)
$$

Lie algebra $A_{2}: \Omega$ and Ω_{15}

The boundary of Ω is defined by the equation

$$
K\left(y_{1}, y_{2}\right)=-\left(y_{1}^{2}+y_{2}^{2}+9\right)^{2}+8\left(y_{1}^{3}-3 y_{1} y_{2}^{2}\right)+108=0 .
$$

Orbit functions

Lie algebra $C_{2}: \Omega$ and Ω_{15}

Orbit functions Numerical integration Concluding remarks

Lie algebra $G_{2}: \Omega$ and Ω_{15}

Weight functions

We define

- the strictly positive function in the interior of Ω by

$$
K\left(y_{1}, \ldots, y_{n}\right) \equiv\left|S_{\varrho}\right|^{2}
$$

where $\varrho=\sum_{i} \omega_{i}$, and

- the discrete function

$$
\begin{aligned}
& \qquad \tilde{\varepsilon}(y) \equiv \varepsilon\left(\Xi_{M}^{-1} y\right), \quad y \in \Omega_{M}, \\
& \text { where } \varepsilon(x)=|W x| \text { and } \Xi_{M} \equiv \equiv \upharpoonright_{F_{M}} .
\end{aligned}
$$

The functions K and $\tilde{\varepsilon}$ are well-defined since $S_{\varrho} \overline{S_{\varrho}}$ is W-invariant and $\bar{\Xi}_{M}$ is injective.

Weight functions for Lie algebras of rank 2

$$
A_{2}: K\left(y_{1}, y_{2}\right)=-\left(y_{1}^{2}+y_{2}^{2}+9\right)^{2}+8\left(y_{1}^{3}-3 y_{1} y_{2}^{2}\right)+108 .
$$

$$
C_{2}: K\left(y_{1}, y_{2}\right)=\left(y_{1}^{2}-4 y_{2}\right)\left(\left(y_{2}+4\right)^{2}-4 y_{1}^{2}\right) .
$$

$$
G_{2}: K\left(y_{1}, y_{2}\right)=\left(y_{2}^{2}-4 y_{1}-12\right)\left(y_{1}^{2}-4 y_{2}^{3}+12 y_{1} y_{2}+24 y_{1}+36 y_{2}+36\right) .
$$

Cubature formulas

Theorem

For any $M \in \mathbb{N}$ and any $p \in \Pi_{2 M-1}$ it holds that

$$
\int_{\Omega} p(y) K^{-\frac{1}{2}}(y) d y=\frac{\kappa}{c|W|}\left(\frac{2 \pi}{M}\right)^{n} \sum_{y \in \Omega_{M}} \tilde{\varepsilon}(y) p(y)
$$

where

$$
\kappa= \begin{cases}2^{-\left\lfloor\frac{n}{2}\right\rfloor} & \text { for } A_{n} \\ \frac{1}{2} & \text { for } D_{2 k+1} \\ \frac{1}{4} & \text { for } E_{6} \\ 1 & \text { otherwise }\end{cases}
$$

Example of numerical integration

The cubature formula is the exact equality for any polynomial function of m-degree up to $2 M-1$. It can be used in numerical integration to approximate a weighted integral of any function by finite summing.
As our test function, we choose the function

$$
f\left(y_{1}, y_{2}\right)=K^{\frac{1}{2}}\left(y_{1}, y_{2}\right) .
$$

M	10	20	50	100	exact value
A_{2}	6.0751	6.2314	6.2749	6.2811	$2 \pi \doteq 6.2832$
C_{2}	10.056	10.5133	10.6421	10.6605	$32 / 3=10.666 \overline{6}$
G_{2}	7.4789	8.2561	8.4885	8.5221	$128 / 15=8.533 \overline{3}$

Symmetric cosine functions

The symmetric C-functions arising from B_{n} and C_{n} coincide, up to a constant, with the symmetric cosine functions given by

$$
\cos _{k}^{+}(x)=\sum_{\sigma \in S_{n}} \cos \left(\pi k_{\sigma(1)} x_{1}\right) \cos \left(\pi k_{\sigma(2)} x_{2}\right) \cdots \cos \left(\pi k_{\sigma(n)} x_{n}\right)
$$

with $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$ satisfying $k_{1} \geq k_{2} \geq \cdots \geq k_{n} \geq 0$.
They can be expressed as polynomials in variables

$$
y_{1}=\cos _{(1,0, \ldots, 0)}^{+}, y_{2}=\cos _{(1,1,0, \ldots, 0)}^{+}, \ldots, y_{n}=\cos _{(1,1, \ldots, 1)}^{+}
$$

Gaussian cubature formula

Theorem

For any $N \in \mathbb{N}$ and any polynomial f of degree at most $2 N-1$, the following cubature formulas are exact.

$$
\int_{\mathfrak{F}\left(\tilde{S}_{n}^{\text {aff }}\right)} f(y) \omega^{I,+}(y) d y=\left(\frac{1}{N}\right)^{n} \sum_{y \in \mathfrak{F}_{N}^{\mathrm{II},+}} \mathcal{H}_{y}^{-1} f(y)
$$

This formula is Gaussian since number of nodes in $\mathfrak{F}_{N}^{\mathrm{II},+}$ is equal to the dimension of polynomials of degree at most $N-1$. Moreover, the nodes $\mathfrak{F}_{N}^{\mathrm{II},+}$ are common zeros of the set of orthogonal polynomials $\cos _{k}^{+}$with $k_{1}=N$ of degree N.

Polynomial approximation

We define a weighted Hilbert space $\mathcal{L}_{K}^{2}(\Omega)$ as a space of cosets of measurable complex-valued functions f such that $\int_{\Omega}|f|^{2} K^{-\frac{1}{2}}<\infty$ with an inner product defined by

$$
(f, g)_{K}=\frac{1}{\kappa(2 \pi)^{n}} \int_{\Omega} f(y) \overline{g(y)} K^{-\frac{1}{2}}(y) d y
$$

The set of C-functions $C_{\lambda}, \lambda \in P^{+}$, expressed as polynomials in y forms a Hilbert basis of $\mathcal{L}_{K}^{2}(\Omega)$, i.e. any $f \in \mathcal{L}_{K}^{2}(\Omega)$ can be expanded in terms of C_{λ},

$$
f=\sum_{\lambda \in P^{+}} a_{\lambda} C_{\lambda}, \quad a_{\lambda}=h_{\lambda}\left(f, C_{\lambda}\right)_{k}
$$

Optimality

Theorem

For any $f \in \mathcal{L}_{K}^{2}(\Omega)$ the polynomial

$$
u_{M}[f]=\sum_{|\lambda|_{m} \leq M} a_{\lambda} C_{\lambda}, \quad a_{\lambda}=h_{\lambda}\left(f, C_{\lambda}\right)_{K} .
$$

is the best approximation of f, relative to the $\mathcal{L}_{K}^{2}(\Omega)$-norm, by any polynomial from Π_{M}.

Rather than the optimal polynomial approximation one may consider for practical applications its weakened version:

$$
v_{M}[f]=\sum_{\lambda \in P_{M}^{+}} a_{\lambda} p_{\lambda}, \quad a_{\lambda}=\frac{h_{\lambda}}{c|W| M^{n}} \sum_{y \in \Omega_{M}} \tilde{\varepsilon}(y) f(y) \overline{p_{\lambda}(y)}
$$

Example of cubature polynomial approximation

As a specific example of a continuous model function in the case C_{2}, we consider

$$
f\left(y_{1}, y_{2}\right)=e^{-\left(y_{1}^{2}+\left(y_{2}+1.8\right)^{2}\right) /\left(2 \times 0.35^{2}\right)}
$$

Lie algebra C_{2} : Approximations $v_{20}[f]$ and $v_{30}[f]$

M	10	20	30
$\int_{\Omega}\left\|f-v_{M}[f]\right\|^{2} K^{-\frac{1}{2}} d y_{1} d y_{2}$	0.0636842	0.0035217	0.0000636

Concluding remarks

- studying Clenshaw-Curtis method for deriving cubature formulas;
- studying common zeros of C-functions;
- determining of Lebesgue constant;
- construction of cubature formulas of higher efficiency;
- possibility of an extension of the current cubature formulas to Macdonald polynomials.

References

■ J. Hrivnák, L. Motlochová, J. Patera: Cubature formulas of multivariate polynomials arising from symmetric orbit functions.

■ R.V. Moody, L. Motlochová, J. Patera: Gaussian cubature arising from hybrid characters of simple Lie groups. J. Fourier Anal. Appl. 20, Issue 6, 1257-1290 (2014).
■ J. Hrivnák, L. Motlochová: Discrete transforms and orthogonal polynomials of (anti)symmetric multivariate cosine functions. SIAM J. Numer. Anal. 52, no. 6, 3021-3055 (2014).

References

■ J. Hrivnák, J. Patera: On discretization of tori of compact simple Lie groups. J. Phys. A: Math. Theor. 42, 385208 (2009).

- R.V. Moody, J. Patera: Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups. Advances in Applied Mathematics 47, 509-535 (2011).
- H. Li, J. Sun, Y. Xu: Discrete Fourier Analysis and Chebyshev Polynomials with G_{2} Group. SIGMA 8, Paper 067, 29 (2012).
- H. Li, Y. Xu: Discrete Fourier analysis on fundamental domain and simplex of A_{d} lattice in d-variables, J. Fourier Anal. Appl. 16, 383-433, (2010).

Acknowledgement

This work was supported by the European social fund within the framework of realizing the project Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague, CZ.1.07/2.3.00/30.0034.

MINISTRY OF EDUCATION
EUROPEAN UNION
YOUTH AND SPORTS
 for Competitiveness

INVESTMENTS IN EDUCATION DEVELOPMENT

