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Orbit functions
Summary

Simple Lie groups

m simple roots: ag,...,ap;

m simple dual roots: oy, ..., ), where o) = <£‘f‘&l_>,

m marks m; of the highest root £ = mya; + -+ - + mpap;
m Weyl group W generated by reflections r;, i=1,...,n

r,-(x) =X — ?S’( a,)) a; for x € R7;

m affine Weyl group Waff generated b r, and rp,
_ 28
ro(x) = re(x) + €8 re(x) =
m fundamental domain F of W2 given as convex hull of the
Vv
points {0, %, e, “r:,—'z} with (w, o) = dj;.
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Orbit functions

Four types of lattices in R”

m root lattice: Q = Zag + -+ + Zay ;
m Z-dual lattice to Q:

PV ={wY eR"| (wY,a) € Z} = Zwy + - + Zw)

n
(wy are called dual weights, (wY, ;) = &;);

m dual root lattice:

QV=Zo{ + - +Za), af = ;

n

® Z-dual lattice to QV:
P:{WER” ‘ <w,a>/> GZ}IZW1+---—|—an
Y

(w; are called weights, (w;,aJ ) = 0ij).
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Orbit functions

C,S, 5% and S'-functions

For o a “sign” homomorphism on W, we define

K= Y a(w)ert )
weW

C-functions: c=1, ¢’ =09,

S-functions: o=det, ¢’ =y;
S°-functions: o=0°, ¢ =¢°;
S'-functions: c=0o, =y

o®: all “short” signs equal to — 1, all “long” signs equal to 1;

o' . all “long” signs equal to — 1, all “short” signs equal to 1.
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Numerical integration

m A cubature formula is an approximation of a weighted integral
of any function f of several variables by a linear combination
of function values at points called nodes,

N
/ F)w(y)dy = D wif(y)),
Q =

where y = (y1,...,¥n).

m One criteria to specify cubature formulas is based on their
behaviour for specific sets of functions. We require that
cubature formulas are exact equalities for polynomial
functions up to a certain degree.
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Gaussian cubature formulas

Optimal cubature formulas with the lowest bounds for the number
of nodal points required are known as Gaussian. The following
statements characterising Gaussian cubature formulas hold.

m The number of nodes of a Gaussian cubature formula of
degree 2n — 1 is equal to the dimension of polynomials of
degree at most n — 1.

m A Gaussian cubature formula of degree 2n — 1 exists if and
only if the number of common distinct zeros of the
corresponding orthogonal polynomials of degree n is equal to
the dimension of the polynomials of degree at most n — 1.
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Chebyshev polynomials

The Chebyshev polynomials of the first kind are the orthogonal
polynomials given by

Ta(x)=cosnf, x=cosf, 0<6<m
or by three-terms recurrence relation
To(x)=1, Ti(x)=x, Tpr1(x)=2xTp(x) — Tph-1(x).

They satisfy the orthogonality relation:

1 dx
/_1 Tm(X)Tk(X)ﬁ = TCmOmk

with ¢,; = 1 if m = 0 otherwise ¢, = %
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Gauss-Chebyshev quadrature formula

The following formula holds for any polynomial of degree at most

2n—1
1

PX) N~ ()
. mdx - ; n p(§1 )7

where ff") are the points that satisfy

Ta(x) =cosnf =0,

LGl BT

(n) _
§ ~ = cos o
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Polynomials arising from C-functions

We consider C-functions defined as the Weyl group orbit sums,

Ci(x) = Z ™) N e Pt x e R".
veWi

Let v = viw1 + - - - + Vpwy, any function Cy can be expressed as a
polynomial in Z; = C,,,

G= Y, dzpzy...70, d,eC, d=1
V=N, vEPT
The functions Z; are real-valued except for the following cases.
Aok >1): Zi=2ok—j11,j=1,...,k,
Aoks1(k > 1)  Zj=Zop_jia, j=1,...,k,
Doks1(k >2): Zog = Zogi1, Eo: Zo=124,21=17s.
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Polynomial variables

m Analogously to Chebyshev polynomials, we connect the

abstract polynomial variables yi, ..., y, with the real-valued
functions.

m For the real-valued Z;, we define y; = Z;, otherwise
Aty =R(Z)), yok—jr1 = S(
Asig1: Y =R(Z), yok—jro = S(Z
Dops1 i yok = R(Zok), yokt1 = S(Zok)s
Es : 1 =R(Z1), yo = R(2), ya = (22), y5 = ().

m Any function Cy, A € P, can be rewritten as a polynomial in

Y-
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m-degree

m We say that a monomial y* = yl)‘1 ...y has m-degree
deg, y* = m{ A1 + -+ m/\,.

The m-degree of any polynomial p € CJ[y] is defined as the
largest m-degree of a monomial occurring in p(y).

m The C-function Cy, A = \iw1 + -+ - + A\pwp € PT, expressed
as a polynomial in y has m-degree equal to

Al = mYA + -+ mYAn.

m The subspace My, C C[y] is formed by the polynomials of
m-degree at most M, i.e.

My ={p € Cly] | deg, p < M} .
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Integration region and set of nodes

The variables y1,...,y, induce a map = : R” — R":
=(x) = (yi(x), ..., ya(x)), xeR".

m The image Q2 C R" of the fundamental domain F under the
map = forms the integration domain on which the cubature
rule is formulated, i.e.

Q==(F).
m The image Qp C R” of the set of points
1
Fy=—P'/Q'NF
M= /QY N
under the map = forms the set of nodes for the cubature rule,
i.e.
QM = E(F/\/I)
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Lie algebra Ay: Q and Q15

The boundary of € is defined by the equation
K(yey2) = —(F + 53 +9)* +8(y7 — 3y1y3) +108 = 0.

Lenka Motlochova Cubature formulas



Introduction
Orthogonal polynomials
Cubature formulas
Application

Numerical integration

Lie algebra C: Q and Q15
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Lie algebra Gy: Q and Q15

1 2 3 4 5 5 Yy

v1=2((32+3)? — 3g2— 6)
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Weight functions

We define
m the strictly positive function in the interior of Q by

K(yla s ,}/n) = ‘50‘2’

where o = >, wj, and
m the discrete function

Ey)=<cEny): ¥ € Qm,

where e(x) = |Wx| and =y = = [F,,.
The functions K and & are well-defined since S,S, is W-invariant
and = is injective.
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Weight functions for Lie algebras of rank 2

Ao K(yi,y2) = —(v? + y3 +9)? +8(y§ — 3y1y3) + 108.
G Ky, y2) = (V2 — 4y2)((y2 + 4)% — 4y2).

Go: K(y1,y2) = (v3—4y1—12)(y?—4y3+12y1y»+24y1+36y-+36).
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Cubature formulas

For any M € N and any p € lyp_1 it holds that

Lenrira -2 (5) 3 e,

yEQM
where .
272 for A,
. : for Doy 1
% for Eg
1 otherwise.
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Example of numerical integration

The cubature formula is the exact equality for any polynomial
function of m-degree up to 2M — 1. It can be used in numerical
integration to approximate a weighted integral of any function by
finite summing.

As our test function, we choose the function

1
f(y1,y2) = K2(y1,y2) -

M H 10 ‘ 20 ‘ 50 ‘ 100 ‘ exact value
A || 6.0751 | 6.2314 | 6.2749 | 6.2811 21 = 6.2832
G || 10.056 | 10.5133 | 10.6421 | 10.6605 | 32/3 = 10.6666
G, || 7.4789 | 8.2561 | 8.4885 | 8.5221 | 128/15 = 8.5333
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Symmetric cosine functions

The symmetric C-functions arising from B, and C, coincide, up to
a constant, with the symmetric cosine functions given by

cos; (x) = Z cos (mky(1)X1) c0s (Tky(2)X2) - - - €S (T Ky(n)Xn)
oES,

with k = (ki,..., kn) € Z" satisfying ky > ko > -+ > k, > 0.
They can be expressed as polynomials in variables

ot ot ot
Y1 =0C0519,..0)0 Y2=O5710,..0p > Yn =511 . 1)"
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Gaussian cubature formula

Theorem

For any N € N and any polynomial f of degree at most 2N — 1,
the following cubature formulas are exact.

/3(3,?“) o)y = (%) > M)

11,
yegy ™

This formula is Gaussian since number of nodes in Si\lﬁ is equal to
the dimension of polynomials of degree at most N — 1. Moreover,
the nodes 3’%* are common zeros of the set of orthogonal
polynomials cos;(|r with k; = N of degree N.
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Polynomial approximation

We define a weighted Hilbert space £2 () as a space of cosets of

measurable complex-valued functions f such that [, IFPK™2 < oo
with an inner product defined by

(F-8) = 37 | FOEDK ) .

The set of C-functions Cy, A € PT, expressed as polynomials in y
forms a Hilbert basis of £2(Q), i.e. any f € £%(f) can be
expanded in terms of C,,

f= Z axC, ax=hmh(f,C)k
AeP+
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Optimality

For any f € £2() the polynomial

UM[f] = Z a)\C,\, dy — h)\ (f, C)\)K.
[Alm<M

is the best approximation of f, relative to the £L3(Q)-norm, by any
polynomial from Tyy.

Rather than the optimal polynomial approximation one may
consider for practical applications its weakened version:

wlfl= 3 o = s 3 ENFRO)

AEPY, yEQu
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Example of cubature polynomial approximation

As a specific example of a continuous model function in the case
(G5, we consider

y2+(y2+1.8)2)/(2x0.352)

fyr,y2) = e
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Lie algebra C,: Approximations vy[f] and vsg[f]

M | 10 20 30
Jo |f — vm[flPK =2 dyy dy» || 0.0636842 | 0.0035217 | 0.0000636
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Concluding remarks

m studying Clenshaw-Curtis method for deriving cubature
formulas;

studying common zeros of C-functions;
determining of Lebesgue constant;

construction of cubature formulas of higher efficiency;

possibility of an extension of the current cubature formulas to
Macdonald polynomials.
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