
Lie algebras with a set grading

Antonio J. Calderón Martín
University of Cadiz. Spain

**Lie Theory
and its applications in
physics**

June 2015, Varna

Definition

Let L be an algebra and let $(G, +)$ be an abelian group. It is said that L is **group-graded algebra** if we have

$$L = \bigoplus_{g \in G} L_g$$

where any L_g is a linear subspace of L and where

$$[L_g, L_h] \subset L_{g+h}$$

for any $g, h \in G$.

**BY WORKING ON THE SUPPORT OF THE GRADING
IT IS POSSIBLE TO DESCRIBE
THE STRUCTURE OF THE WHOLE ALGEBRA
IN THE CASE OF **GROUP-GRADED LIE ALGEBRAS****

OBJETIVE

**EXTEND THE RESULTS ON GROUP-GRADED
LIE ALGEBRAS TO LIE ALGEBRAS
GRADED BY AN ARBITRARY SET**

Definition

Let L be a Lie algebra and I an arbitrary (non-empty) set. It is said that L has a **set grading**, by means of I , if

$$L = \bigoplus_{i \in I} L_i$$

where any L_i is a linear subspace satisfying that for any $j \in I$ either $[L_i, L_j] = 0$ or $0 \neq [L_i, L_j] \subset L_k$ for some (unique) $k \in I$.

We call **support** of the grading to the set $\Sigma = \{i \in I : L_i \neq 0\}$.

We can write

$$L = \bigoplus_{i \in \Sigma} L_i$$

GENERAL PROCEDURE

Step 1. Define an **equivalence relation** \sim on Σ (*connection relation*). Consider the set $\Sigma/\sim := \{[i] : i \in \Sigma\}$.

Step 2. Associate an adequate **ideal** $I_{[i]}$ to any $[i] \in \Sigma/\sim$ satisfying $[I_{[i]}, I_{[j]}] = 0$ if $[i] \neq [j]$.

Step 3. State that $L = \bigoplus_{[i] \in \Sigma/\sim} I_{[i]}$.

Step 4. Study when the **simplicity** of L can be characterized by the connectivity of Σ and show that the above decompositions is by means of the family of the minimal (simple) ideals of L .

Let $L = \bigoplus_{i \in \Sigma} L_i$ be an I -graded Lie algebra.

Step 1. Define an equivalence relation \sim on Σ (*connection relation*).

Let $L = \bigoplus_{i \in \Sigma} L_i$ be an I -graded Lie algebra.

For each $i \in \Sigma$, a new variable $\bar{i} \notin \Sigma$ is introduced and we denote by

$$\bar{\Sigma} := \{\bar{i} : i \in \Sigma\}$$

the set consisting of all these new symbols.

We will also denote by $\mathcal{P}(A)$ the power set of a given set A .

Next, we consider the following operation,

$$\star : (\Sigma \dot{\cup} \overline{\Sigma}) \times (\Sigma \dot{\cup} \overline{\Sigma}) \rightarrow \mathcal{P}(\Sigma),$$

given by

- For $i, j \in \Sigma$,

$$i \star j = \begin{cases} \emptyset, & \text{if } [L_i, L_j] = 0; \\ \{k\}, & \text{if } 0 \neq [L_i, L_j] \subset L_k. \end{cases}$$

- For $i \in \Sigma$ and $\bar{j} \in \overline{\Sigma}$,

$$i \star \bar{j} = \bar{j} \star i = \{k \in \Sigma : 0 \neq [L_k, L_j] \subset L_i\}.$$

- For $\bar{i}, \bar{j} \in \overline{\Sigma}$,

$$\bar{i} \star \bar{j} = \emptyset.$$

In this moment we have to note that sometimes it is interesting to distinguish one element o in the support of the grading, because the homogeneous space L_o has, in a sense, a special behavior than the remaining elements in the set of homogeneous spaces $L_i, i \in \Sigma$.

Hence, let us now fix an element o such that either $o \in \Sigma$ satisfying the property $o \star i \neq \{o\}$ for any $i \in \Sigma \setminus \{o\}$, or $o = \emptyset$.

Note that the possibility $o = \emptyset$ holds for the case in which it is not wished to distinguish any element in Σ .

Finally, we need to introduce the following map:

$$\phi : \mathcal{P}((\Sigma \dot{\cup} \bar{\Sigma}) \setminus \{\mathfrak{o}, \bar{\mathfrak{o}}\}) \times (\Sigma \dot{\cup} \bar{\Sigma}) \rightarrow \mathcal{P}((\Sigma \dot{\cup} \bar{\Sigma}) \setminus \{\mathfrak{o}, \bar{\mathfrak{o}}\}),$$

as

- $\phi(\emptyset, \Sigma \dot{\cup} \bar{\Sigma}) = \emptyset$,
- For any $\emptyset \neq \mathfrak{A} \in \mathcal{P}((\Sigma \dot{\cup} \bar{\Sigma}) \setminus \{\mathfrak{o}, \bar{\mathfrak{o}}\})$ and $a \in \Sigma \dot{\cup} \bar{\Sigma}$,

$$\phi(\mathfrak{A}, a) = ((\bigcup_{x \in \mathfrak{A}} (x \star a)) \setminus \{\mathfrak{o}\}) \cup \overline{((\bigcup_{x \in \mathfrak{A}} (x \star a)) \setminus \{\mathfrak{o}\})}.$$

Definition

Let i and j be two elements in $\Sigma \setminus \{\circ\}$. We say that i is *connected* to j if either $i = j$ or there exists a family

$$\{a_1, a_2, \dots, a_{n-1}, a_n\} \subset \Sigma \dot{\cup} \overline{\Sigma}$$

satisfying the following conditions:

1. $a_1 \in \{i, \bar{i}\}$.
2. $\phi(\{a_1\}, a_2) \neq \emptyset$,
 $\phi(\phi(\{a_1\}, a_2), a_3) \neq \emptyset$,
 $\phi(\phi(\phi(\{a_1\}, a_2), a_3), a_4) \neq \emptyset$,
 $\dots \dots \dots$
 $\phi(\phi(\dots (\phi(\{a_1\}, a_2), \dots), a_{n-2}), a_{n-1}) \neq \emptyset$.
3. $j \in \phi(\phi(\dots (\phi(\{a_1\}, a_2), \dots), a_{n-1}), a_n)$.

Proposition

The connection relation is an equivalence relation on $\Sigma \setminus \{\mathfrak{o}\}$.

Proposition

The connection relation is an equivalence relation on $\Sigma \setminus \{\mathfrak{o}\}$.

From here, we can consider the set $(\Sigma \setminus \{\mathfrak{o}\})/\sim := \{[i] : i \in \Sigma \setminus \{\mathfrak{o}\}\}$.

Step 2. Associate an adequate **ideal** $I_{[i]}$ to any $[i] \in (\Sigma \setminus \{\mathfrak{o}\})/\sim$ satisfying $[I_{[i]}, I_{[j]}] = 0$ if $[i] \neq [j]$.

Step 2. Associate an adequate **ideal** $I_{[i]}$ to any $[i] \in (\Sigma \setminus \{\mathbf{o}\}) / \sim$ satisfying $[I_{[i]}, I_{[j]}] = 0$ if $[i] \neq [j]$.

- $L_{\mathbf{o},[i]} \subset L_{\mathbf{o}}$ as follows

$$L_{\mathbf{o},[i]} := \left(\sum_{j,k \in [i]} [L_j, L_k] \right) \cap L_{\mathbf{o}},$$

where $L_{\mathbf{o}} := \{0\}$ whence $\mathbf{o} = \emptyset$.

Next, we define

$$V_{[i]} := \bigoplus_{j \in [i]} L_j$$

Finally, we denote by $I_{[i]}$ the direct sum of the two subspaces above, that is,

$$I_{[i]} := L_{\mathbf{o},[i]} \oplus V_{[i]}.$$

Theorem.

The following assertions hold.

1. ***Proposition.***

For any $i \in \Sigma \setminus \{\mathbf{0}\}$, the graded linear subspace $I_{[i]}$ is an ideal of L .

2. ***Corollary.***

If L is simple, then there exists a connection between any two elements of $\Sigma \setminus \{\mathbf{0}\}$.

Step 3. State that $L = \bigoplus_{[i] \in (\Sigma \setminus \{\mathfrak{o}\})/\sim} I_{[i]}$.

■ **Theorem.**

A set-graded Lie algebra L decomposes as

$$L = \mathfrak{u} \oplus \left(\sum_{[i] \in (\Sigma \setminus \{\circ\})/\sim} I_{[i]} \right),$$

where \mathfrak{u} is a linear complement of $\sum_{[i] \in (\Sigma \setminus \{\circ\})/\sim} L_{\circ, [i]}$ in L_{\circ} and any $I_{[i]}$ is one of the ideals given above. Furthermore

$$[I_{[i]}, I_{[j]}] = 0$$

whenever $[i] \neq [j]$.

■ **Corollary.**

If $\mathbf{o} = \emptyset$, then

$$L = \bigoplus_{[i] \in (\Sigma \setminus \{\mathbf{o}\}) / \sim} I_{[i]},$$

where any $I_{[i]}$ is one of the ideals given above.

■ **Corollary.**

Suppose L is centerless and $L_{\mathbf{o}}$ is tight, then the set-graded Lie algebra L decomposes as the direct sum of the ideals given above,

$$L = \bigoplus_{[i] \in (\Sigma \setminus \{\mathbf{o}\}) / \sim} I_{[i]}.$$

Step 4. Study when the simplicity of L can be characterized by the connectivity of $\Sigma \setminus \{\mathfrak{o}\}$ and show that the above decompositions is by means of the family of the minimal ideals of L .

Step 4. Study when the simplicity of L can be characterized by the connectivity of $\Sigma \setminus \{\mathfrak{o}\}$ and show that the above decompositions is by means of the family of the minimal ideals of L .

Definitions

- We say that L is of *maximal length* if $\dim L_i = 1$ for any $i \in \Sigma \setminus \{\mathfrak{o}\}$.
- We say that L is Σ -multiplicative if given $i, j \in \Sigma \setminus \{\mathfrak{o}\}$ such that and $i \in j \star a$ for some $a \in \Sigma \dot{\cup} \overline{\Sigma}$ then $L_i \subset [L_j, L_a + L_{\overline{a}}]$.

Theorem.

- *Let L be a centerless Σ -multiplicative Lie algebra with a set grading of maximal length and with L_0 tight. Then L is simple if and only if it has all of the elements in $\Sigma \setminus \{0\}$ connected.*

Theorem.

- Let L be a centerless Σ -multiplicative Lie algebra with a set grading of maximal length and with L_0 tight. Then L is simple if and only if it has all of the elements in $\Sigma \setminus \{\mathbf{0}\}$ connected.

Theorem.

- Let L be a centerless Σ -multiplicative Lie algebra with a set grading of maximal length and with L_0 tight. Then L is the direct sum of the family of its minimal ideals,

$$L = \bigoplus_{[i] \in (\Sigma \setminus \{\mathbf{0}\}) / \sim} I_{[i]},$$

each one being a simple Lie algebra with a set grading having all of the elements different to $\mathbf{0}$ in its support connected.

THANK YOU FOR YOUR ATTENTION