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It is important to understand which observables exist in Quantum
Field Theory and what is their interpretation.

Recently, there has been interest in placing conformal field theories
on Sd via the stereographic map.

Since this is an angle-preserving transformation, there is a
canonical way to implement this compactification of conformal
field theories

ds2 = dx idx i −→ 1

(x2 + r2)2
dx idx i .
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Now the theory is free of infrared divergences because space is
compact. The UV divergences are the same as in flat space. One
can therefore try to compute

ZSd ≡
∫

[DX ]e−S[X ;gij ] , gij = δij
1

(x2 + r2)2

If the theory has various coupling constants λi then we can
compute

ZSd (λi )
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Is this well defined? The partition function has various power
divergences with the UV cutoff ΛUV of the sort

logZSd = Λd
UV r

d + Λd−2
UV rd−2 + ...

which correspond to the counter-terms

Λd
UV

∫
ddx
√
g + Λd−2

UV

∫
ddx
√
gR + · · ·

But there may be also terms that cannot be removed by changing
the scheme.

Zohar Komargodski Sphere Partition Functions and the Zamolodchikov Metric



In odd d , we can have a finite piece

logZSd = −F (λi )

and in even d we can have both a log and a finite piece

logZSd = a(λi ) log(rΛUV )− F (λi ) .
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In odd d , the finite piece

logZSd = −F (λi )

is physical! Interesting observable in QFT. Can prove that for
exactly marginal couplings F (λi ) = F

Measures the total number of degrees of freedom and
decreases along renormalization group flows

FUV > FIR .

Can be mapped to the Vacuum Entanglement Entropy
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In even d ,
logZSd = a(λi ) log(rΛUV )− F (λi )

and we can show that a(λi ) = a which counts degrees of freedom
and decreases along renormalization group flows

aUV > aIR .

The term F (λi ) is unphysical. It can be removed by the
counter-term ∫

ddxF (λi )Ed

with Ed the Gauss-Bonnet term (which exists only in even
dimensions).
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Interestingly, if we add supersymmetry, in some situations the
space of allowed counter-terms is sufficiently reduced to allow for a
physical finite part in d=2,4!
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Consider a (2, 2) supersymmetric theory in R2. We have four
supercharges Q+,Q−, Q̃+, Q̃−. Suppose the theory is
superconformal. Then we have additional four supercharges
S+,S−, S̃+, S̃−. In addition we have U(1)V × U(1)A R-symmetry.

Zohar Komargodski Sphere Partition Functions and the Zamolodchikov Metric



(2, 2) superconformal field theories often have exactly marginal
operators, that are either chiral primaries (D̄±Φ = 0) or twisted
chiral primaries (D̄+Y = D−Y = 0). So we can deform the action
by

δS =

∫
d2θλiΦi +

∫
d2θ̃λ̃AYA + c .c .

If our SCFT is a sigma model with Calabi-Yau target space, then
the chiral and twisted chiral exactly marginal operators describe
the complex structure and Kähler deformations of the Calabi-Yau.
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So such (2, 2) superconformal field theories are part of some space
of conformal theories – the conformal manifold

Mchiral ×Mt.chiral

such that both Mchiral , and Mt.chiral are Kähler spaces with
Kähler potential

K = Kchiral + Kt.chiral
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This space is interesting for various reasons

Mchiral ×Mt.chiral is the space of massless fields in space-time
if we interpret the (2, 2) SCFT as a string worldsheet. K is
the Kähler potential of these massless space-time fields.

The spaces Mchiral , Mt.chiral are interchanged by mirror
symmetry.

Duality symmetries should preserve Mchiral ×Mt.chiral .

The geometry on the space of CY deformations is interesting
to mathematicians.
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These theories can be placed on S2 while preserving all the
supercharges:

∇mε = γmη , ∇mε̃ = γmη̃ ,

which has eight solutions, corresponding to the 4 supercharges and
4 conformal supercharges.

SU(1, 1|1)× SU(1, 1|1) .

The bosonic generators of SU(2) lead to isometries of S2 and there
are also 3 conformal isometries.
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Since the partition functions are UV divergent, we need to discuss
massive subalgebras, namely, subalgebras that only include the
isometries. There are two maximal massive subalgebras. Our UV
regulator would be invariant under one of these massive
subalgebras.

The two Massive Subalgebras correspond to

SU(2|1)A ⊂ SU(1, 1|1)× SU(1, 1|1) ,

SU(2|1)B ⊂ SU(1, 1|1)× SU(1, 1|1) .

For example, in SU(2|1)A we retain only SU(2)× U(1)V and four
supercharges out of the original eight.
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Corresponding to these two massive subalgebras, we can define two
partition functions, ZS2;A and ZS2;B . The claim is that

ZS2;A = r
c
3 e−Kt.chiral

ZS2;B = r
c
3 e−Kchiral

Notice that this is unlike the non-SUSY case, in which the finite
part of S2 partition functions is non-universal.
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Using supersymmetric localization, one can actually explicitly
compute ZS2;A,ZS2;B in essentially every SCFT that can be
obtained as the infrared of some asymptotically free theory.
Therefore one can give explicit forms for Kt.chiral and Kchiral in a
large class of theories.
For example, in a sigma model with only twisted chiral fields,

ZS2;B = r c/3

∫
dY0e

−iW̃ (Y0)+c.c.

[Benini-Cremonesi; Doroud-Gomis-Le Floch-Lee...]
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We now explain why the surprising claims

ZS2;A = e−Kt.chiral

ZS2;B = e−Kchiral

are correct.

The partition functions become physical in these theories because
a general Einstein-Hilbert counter-term cannot be
supersymmetrized. For instance, in SU(2|1)A one finds∫

d2θ̃F(λ̃A)R+ c .c . = F(λ̃A)R + c.c .+ · · ·

with F(λ̃A) a holomorphic function of the twisted chirals.
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The partition functions therefore have a smaller scheme
dependence than in the nonSUSY case; only a holomorphic
function of the twisted chirals is allowed in SU(2|1)A. This also
explains why ZS2;A = e−Kt.chiral is consistent with Kähler
transformations

Kt.chiral

(
λ̃A, ¯̃λĀ

)
→ Kt.chiral

(
λ̃A, ¯̃λĀ

)
+ F

(
λ̃A
)

+ F̄
(

¯̃λĀ
)
.
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Consider some general marginal operators in d = 2 CFTs:
δS =

∫
d2xλiOi (x). The two-point function

〈Oi (x)Oj(0)〉 =
Gij(λ)

x4
.

Gij(λ
i ) is the (Zamolodchikov) metric on the conformal manifold

{λi}. In momentum space

〈Oi (x)Oj(0)〉 = Gij(λ)p2 log

(
µ2

p2

)
.

This logarithm in a CFT signifies a trace anomaly.
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〈Oi (x)Oj(0)〉 = Gij(λ)p2 log

(
µ2

p2

)
.

The complete trace anomaly is thus given by

Tµ
µ =

−c
24π

R + Gij(λ)∂µλi∂µλ
j .

These two trace anomalies are fundamentally different: the usual
central charge trace anomaly never manifests itself with logarithms
in correlation functions, while the new trace anomaly does come
from a logarithm. The former type is called type A and the latter
type B.
Such trace anomalies also appeared in the formalism of [Osborn].
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Let us be more precise. In general, we could have improved the
energy momentum tensor by adding

Tµν → Tµν +
(
∂µ∂ν − ηµν∂2

)
F (λi ) ,

with an arbitrary function F (λi ). So the formula for the trace
would be

Tµ
µ =

−c
24π

R + Gij(λ)∂µλi∂µλ
j + �F (λi ) .

While the first two pieces are fixed, the third piece is arbitrary.
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In supersymmetric theories there are additional constraints.

The metric Gij is Kähler and factorizes between chirals and
twisted chirals

Gi j̄ = ∂i∂j̄Kchiral , GAB̄ = ∂A∂B̄Kt.chiral

Tµ
µ appears as the SUSY variation of the R-current, so this

allows us to fix the improvement ambiguity almost completely.
(For the details of how the multiplet looks like see
[Dumitrescu-Seiberg])
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Implementing the constraints of supersymmetry we find that the
trace of the energy-momentum tensor in SU(2|1)A is

Tµ
µ =

−c
24π

R + Gij(λ)∂µλi∂µλ
j + �K (λ̃A, ¯̃λĀ) .

There is a leftover ambiguity that corresponds to Kähler
transformations that we have not written down explicitly.

We see that SU(2|1)A fixes the improvement in terms of the
Kähler potential for twisted chiral fields.
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Under Weyl transformations, the partition function transforms by

δσ log(Z ) =

∫
d2x
√
gσ〈Tµ

µ 〉

and we thus see that we have the term

δσ log(ZS2;A) =

∫
d2x
√
g�σK (λ̃A, ¯̃λĀ)

This can be integrated for large conformal transformations to take

the form logZS2;A ⊃
∫
d2x
√
gRK (λ̃A, ¯̃λĀ).

By the Gauss-Bonnet theorem
∫
S2 R = 1 and thus we derive

ZS2;A = e−K(λ̃A,¯̃λĀ) .
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Final Comments

An analogous derivation can be done for ZS2;B .

A similar new anomaly associated to the conformal manifold
exists in d = 4 theories and it leads in N = 2 theories to a
similar conclusion Z = e−K . This can be useful for the
geometry of AdS5 vacua, the relation to 2d Liouville theories,
exact computations of extremal correlators etc. (see e.g.
[Baggio-Niarchos-Papadodimas])

Some outstanding open questions includes various other
superalgebras that can be realized on S2. For example, we
can thread the S2 with monopole flux. What does this
compute? see e.g. [Closset-Cremonesi-Park]

What are the global properties of the conformal manifold?
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