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1 Introduction

The AdS/CFT duality [1] between string theories on curved space-

times with Anti-de Sitter subspaces and conformal field theories in

different dimensions has been actively investigated in the last years.

A lot of impressive progresses have been made in this field of research

based mainly on the integrability structures discovered on both sides

of the correspondence (for recent review on the AdS/CFT duality, see

[2]). For the most studied case of the N = 4 super Yang-Mills the-

ory, the anomalous dimensions of gauge-invariant single-trace opera-

tors match non-perturbatively with the string energies in the curved

AdS5 × S5 background. Integrability provides tools to solve the

finite-volume spectral problem exactly.

After these successes, one direction of interesting developments is

to generalize the duality to larger theories which include the original

AdS/CFT as a special case and the other is to go beyond the spectral

problem by computing general correlation functions, in particular,

the three-point functions, or the structure constants.

An interesting development for the former direction is to study the

string theory on the η-deformed AdS5 × S5 background [3]. The

bosonic part of the superstring sigma model Lagrangian on this η-

deformed background and perturbative worldsheet S-matrix were

obtained in [4]. The TBA for spectrum and explicit dispersion re-

lation for giant magnon [5] have been derived in [6]. Finite-size ef-

fect on the giant magnon spectrum has been computed in [7]. For

three-point correlation functions, quite a lot of interesting results on

both strong and weak coupling regions were accumulated although

non-perturbative results are much more difficult than the spectral
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problem.

In this letter, we compute the three-point correlation function of

two giant magnon heavy operators with finite-size J1 and a sin-

gle dilaton light operator of the string theory with the η-deformed

AdS5 × S5 background [3].

2 Exact semiclassical structure constant

According to [8], the three-point functions of two ”heavy” operators

and a ”light” operator can be approximated by a supergravity vertex

operator evaluated at the ”heavy” classical string configuration:

⟨VH(x1)VH(x2)VL(x3)⟩ = VL(x3)classical.

For |x1| = |x2| = 1, x3 = 0, the correlation function reduces to

⟨VH(x1)VH(x2)VL(0)⟩ =
C123

|x1 − x2|2∆H
.

Then, the normalized structure constant

C3 =
C123

C12

can be found from

C3 = c∆VL(0)classical, (2.1)

where c∆ is the normalized constant of the ”light” vertex operator.

Actually, we are going to compute the normalized structure constant

(2.1). For the case under consideration, the ”light” state is repre-

sented by the dilaton with zero momentum.
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According to [9], C3 for the infinite-size giant magnons and dilaton

with zero momentum in the undeformed AdS5 × S5 is given by

C3 = cd∆

∫ +∞

−∞

dτe

cosh4(κτe)

∫ +∞

−∞
dσ
(
κ2 + ∂XK ∂̄XK

)
(2.2)

=
4cd∆
3κ

∫ +∞

−∞
dσ
(
κ2 + ∂XK ∂̄XK

)
,

where t = κτe is the Euclidean AdS time and the term ∂XK ∂̄XK is

proportional to the string Lagrangian on S2 computed on the giant

magnon solution living in the Rt × S2 subspace.

Since here we are interested in finite-size giant magnons, we have

to replace ∫ +∞

−∞
dσ →

∫ +L

−L

dσ = 2

∫ θmax

θmin

dθ

θ′
,

where L gives the size of the giant magnon and θ is the non-isometric

angle on the two-sphere [11].

Going to the η-deformed AdS5 × S5 case, we have to compute

the term ∂XK ∂̄XK for this background, which is proportional to the

string Lagrangian on S2
η for finite-size giant magnons:

LS2
η
= −T

2
∂XK ∂̄XK,

where XK = (ϕ1, θ) are the isometric and non-isometric string coor-

dinates on S2
η correspondingly.

Working in conformal gauge and applying the ansatz

ϕ1(τ, σ) = τ + F1(ξ), θ(τ, σ) = θ(ξ),

ξ = ασ + βτ, α, β − constants,
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one finds

LS2
η
= −T

2

{
(α2 − β2)

θ′2

1 + η̃2(1− χ)
(2.3)

+(1− χ)
[
(α2 − β2)(F ′

1)
2 − 2βF ′

1 − 1
]}

,

where η̃ is related to the deformation parameter η according to [4]

η̃ =
2η

1− η2
, (2.4)

and the new variable χ is defined by

χ = cos2 θ.

The prime here and below is the derivative d/dξ. The string tension

T for the η deformed case is related to the coupling constant g by

T = g
√

1 + η̃2. (2.5)

The first integrals of the equations of motion F ′
1 and θ′ can be

written as

F ′
1 =

β

α2 − β2

(
− κ2

1− χ
+ 1

)
, (2.6)

θ′2 =
1 + η̃2(1− χ)

(α2 − β2)2

[
(α2 + β2)κ2 − β2κ4

1− χ
− α2(1− χ)

]
. (2.7)

Inserting (2.6), (2.7) in (2.3), we obtain:

LS2
η
= −T

2

β2κ2 + α2(κ2 − 2(1− χ))

α2 − β2
. (2.8)
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Now we introduce the new parameters

v = −β

α
, W = κ2,

which leads to

LS2
η
= −T

2

(1 + v2)W − 2(1− χ)

1− v2
. (2.9)

Therefore, for the case at hand, the normalized structure constant

takes the form

C η̃
3 =

8cd∆
3
√
W

∫ χp

χm

dχ

χ′

[
W +

(1 + v2)W − 2(1− χ)

1− v2

]
, (2.10)

where

χm = χmin, χp = χmax.

One can rewrite Eq.(2.7) as

χ′ =
2η̃

1− v2

√
(χη − χ)(χp − χ)(χ− χm)χ, (2.11)

where [7]

χm = 1−W, χp = 1− v2W, χη = 1 +
1

η̃2
. (2.12)

Using this, we can express all the results in terms of χp, χm by

eliminating v, W .

Replacing (2.11) into (2.10) and using (2.12), we obtain

C η̃
3 =

8cd∆
3η̃
√
1− χm

∫ χp

χm

√
χ− χm

(χη − χ)(χp − χ)χ
dχ. (2.13)
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The above integral can be easily expressed byK andΠ - the complete

elliptic integrals of first and third kind, respectively, as follows:

C η̃
3 =

16cd∆
3η̃

χm√
χp(1− χm)(χη − χm)

× (2.14)[
Π

(
1− χm

χp
, 1− ϵ

)
−K (1− ϵ)

]
,

where we introduced the short notation ϵ by

ϵ =
χm(χη − χp)

χp(χη − χm)
. (2.15)

Eq.(2.14) is our main result, which is an exact semiclassical result

for the normalized structure constant C η̃
3 valid for any value of η̃ and

the string angular momentum J1. Here, χp and χm are determined

by J1 and the world-sheet momentum p from the following equations:

J1 =
2T

η̃

1√
χp(χη − χm)

×[
χpK (1− ϵ)− χmΠ

(
1− χm

χp
, 1− ϵ

)]
, (2.16)

p =
2χm

η̃

√
1− χp

χp(1− χm)(χη − χm)
×[

K (1− ϵ)−Π

(
χp − χm

χp(1− χm)
, 1− ϵ

)]
. (2.17)

The world-sheet energy of the giant magnon is given by

E =
2T

η̃

χp − χm√
χp(1− χm)(χη − χm)

K (1− ϵ) .. (2.18)

One nontrivial check of the above result is that the g derivative

of the conformal dimension ∆ = E − J1 should be proportional to
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the normalized structure constant C η̃
3 since the g derivative of the

two-point function inserts the dilaton (Lagrangian) operator into the

two-point function of the heavy operators [10]. This can be expressed

by

C η̃
3 =

8cd∆

3
√
1 + η̃2

∂∆

∂g
. (2.19)

To check that if Eqs.(2.14), (2.16), and (2.18) do satisfy Eq.(2.19),

we use the fact that

∂J1
∂g

=
∂p

∂g
= 0 (2.20)

as noticed in [11] for the case of undeformed giant magnons. From

these, we can obtain the expressions for ∂χp/∂g and ∂χm/∂g which

can be inserted into ∂∆/∂g. The η-deformed case involves much

more complicated expressions which can be dealt with Mathematica.

It can be shown that Eq.(2.14) do satisfy the consistency condition

(2.19) exactly.

In the limit η̃ → 0 with η̃2χη → 1, Eq.(2.14) becomes

C0
3 =

16cd∆
3

√
χp

1− χm
[E (1− ϵ)− ϵK (1− ϵ)] , ϵ =

χm

χp
, (2.21)

where we used the identity (1 − a)Π(a, a) = E(a). This is the

structure constant of the undeformed theory derived in [11].

3 Leading finite-size effect on C η̃
3

It is straightforward to compute the leading finite-size effect on C η̃
3

for J1 ≫ g by taking the limit ϵ → 0 in (2.14).
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First, we expand the parameters χp,W and v for small ϵ as follows:

χp = χp0 + (χp1 + χp2 log ϵ)ϵ, (3.1)

W = 1 +W1ϵ,

v = v0 + (v1 + v2 log ϵ)ϵ.

Inserting into Eq.(2.14), we obtain

Cd
η̃ ≈ 16cd∆

3η̃2
√(

1 + 1
η̃2

)
χp0

{√
(1 + η̃2)χp0 arctanh

η̃
√
χp0√

1 + η̃2
(3.2)

−

[
W1

2

√
(1 + η̃2)χp0 arctanh

η̃
√
χp0√

1 + η̃2
+

η̃

4 (1 + η̃2(1− χp0))
×(

(1 + η̃2)(χp0 − 2χp1)

−4
(
(1 + η̃2)χp0 + 2W1

(
1 + η̃2(1− χp0)

))
log 2

) ]
ϵ

− η̃

4 (1 + η̃2(1− χp0))

((
(1 + η̃2)(χp0 − 2χp2)

+ 2W1

(
1 + η̃2(1− χp0)

)))
ϵ log ϵ

}
.

In view of Eqs.(2.12) and (2.15), we can express all the auxiliary

parameters in terms of v (or its coefficients v0, v1, and v2):

χp0 = 1− v20, χp1 = 1− v20 − 2v0v1 −
(1− v20)

2

1 + η̃2v20
, (3.3)

χp2 = −2v0v2, W1 = −(1 + η̃2)(1− v20)

1 + η̃2v20
.
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This leads to

C η̃
3 ≈ 16cd∆

3η̃

{
arctanh

η̃
√

1− v20√
1 + η̃2

+
1

4
√

(1 + η̃2)(1− v20)(1 + η̃2v20)
2 ×[

(1 + η̃2)
(
(1− v20)

(
1 + η̃2v20

)
(
2
√

(1 + η̃2) ((1− v20)arctanh
η̃
√
1− v20√
1 + η̃2

− η̃ log 16

)

−η̃
(
1− v0(3v0 − 2v30 − 4v1 + v0(1− v20 − 4v0v1)η̃

2)
)) ]

ϵ

+
η̃(1 + η̃2)(1− v20 − 4v0v2)

4
√

(1 + η̃2)(1− v20)(1 + η̃2v20)
ϵ log ϵ

}
. (3.4)

To fix v0, v1, and v2, one can use the small ϵ expansion of the

angular difference

∆ϕ1 = ϕ1(τ, L)− ϕ1(τ,−L) ≡ p,

where we identified the angular difference ∆ϕ1 with the magnon

momentum p on the worldsheet. The result is [7]

v0 =
cot p

2√
η̃2 + csc2 p

2

, (3.5)

and

v1 =
v0(1− v20)

[
1− log 16 + η̃2

(
2− v20(1 + log 16)

)]
4(1 + η̃2v20)

, (3.6)

v2 =
1

4
v0(1− v20).

10



By using (3.5), (3.6) in (3.4), one finds

C η̃
3 ≈ 16cd∆

3η̃

{
arcsinh

(
η̃ sin

p

2

)
+

(1 + η̃2) sin2 p
2

4
√

η̃2 + csc2 p
2

× (3.7)[(
2

√
η̃2 + csc2

p

2
arcsinh

(
η̃ sin

p

2

)
− η̃(1 + log 16)

)
ϵ + η̃ϵ log ϵ

]}
.

The expansion parameter ϵ in the leading order is given by [7]

ϵ = 16 exp

[
−

(
J1
g
+

2
√

1 + η̃2

η̃
arcsinh

(
η̃ sin

p

2

))√ 1 + η̃2 sin2 p
2

(1 + η̃2) sin2 p
2

]
.

Here we used Eq.(2.5) for the string tension T .

The final expression for the normalized structure costant is given

by

C η̃
3 ≈ 16cd∆

3η̃

{
arcsinh

(
η̃ sin

p

2

)
(3.8)

−4
η̃(1 + η̃2) sin3 p

2√
1 + η̃2 sin2 p

2

[
1 +

J1
g

√
η̃2 + csc2 p

2

1 + η̃2

]

× exp

[
−

(
J1
g
+

2
√
1 + η̃2

η̃
arcsinh

(
η̃ sin

p

2

))√ 1 + η̃2 sin2 p
2

(1 + η̃2) sin2 p
2

]}
.

Let us point out that in the limit η̃ → 0, (3.8) reduces to

C3 ≈
16

3
cd∆ sin

p

2

[
1− 4 sin

p

2

(
sin

p

2
+

J1
g

)
exp

(
− J1
g sin p

2

− 2

)]
,

which reproduces the result for the undeformed case found in [11].
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Another check is that this satisfies Eq.(2.19) with ∆ computed in

[7]

∆ ≡ E − J1 ≈ 2g
√

1 + η̃2

{
1

η̃
arcsinh

(
η̃ sin

p

2

)
(3.9)

−4
(1 + η̃2) sin3 p

2√
1 + η̃2 sin2 p

2

×

exp

[
−

(
J1
g
+

2
√
1 + η̃2

η̃
arcsinh

(
η̃ sin

p

2

))√ 1 + η̃2 sin2 p
2

(1 + η̃2) sin2 p
2

]}
.

4 Concluding Remarks

Here we obtained the exact semiclassical the 3-point correlation func-

tion between two finite-size giant magnons “heavy” string states and

the “light” dilaton operator with zero momentum in the η-deformed

AdS5 × S5. It is given in terms of the complete elliptic integrals

of first and third kind. We proved the consistency of our result by

taking a derivative of the conformal dimension w.r.t. the coupling

constant. We also provided the leading finite-size effect expansion of

the structure constant.

It will be interesting to compute other three-point correlation func-

tions of the η-deformed background to which our results may be

useful.
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