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Plan of the talk:

e What are Toeplitz operators ? (including Toeplitz operators on the circle,

Berezin-Toeplitz operators on Kihler manifolds)
e Quantization (Kahler/Berezin-Toeplitz)

e My recent work with Ma, Marinescu, Pinsonnault on Berezin-Toeplitz

operators with C" symbols

e Kiihler quantization on P! and my recent work with D. Itkin



Toeplitz operators on S

o St = {2 € C||z| =1}, u normalized Lebesgue measure

e ¢, = ey(2) = 2", 2 € S', n € Z (bounded, measurable, form an

orthonormal basis in L? = L?(St, du))
o f € L?isanalyticif [o fe,du = 0foralln < 0.
e H? = the space of all functions in L? which are analytic

e P:L? — H? the orthogonal projector

Definition. [Brown, Halmos, J. Reine Angew. Math.’ 64]
Let ¢ be a bounded measurable function on S*.

Toeplitz operator: T, = PM,, : H? — H?



Le. T,,g = P(pg) for g in H?.

Some immediate observations:

o if p(z) = 1then T, is the identity operator

e o, €C, f,gbounded measurable functions on S*

= Taf+pg = Ty + BT,
o if o(2) =zthenT, = M,
o if p(2) =27 thenT,(co+ 12+ c22? +...) =1 + 2z +c32° + ...
e two T.o. don’t necessarily commute

e product ot T.o. 1s not necessarily a T.o.



It is possible to generalize this from S*! to disk, spheres, balls, C", domains in

(O
e measure
o P: 12— H?

e Toeplitz operator. 1, = PM, : H? — H?



(Berezin-)Toeplitz operators

[Berezin, Boutet de Monvel and Guillemin]

(X, w) compact Kédhler manifold
assume: w 1s integral
— 4 L. — X holomorphic Hermitian line bundle s. t. the curvature of the

Hermitian connection is equal to —2miw (= ¢1(L) = |w], L is ample)

V() = HO(X, L®") space of holomorphic sections of L&*
(finite-dimensional complex vector space,

dim V%) ~ const k™ + Lo.t. as k — 00).



For f € C°°(X) (Berezin)-Toeplitz operators

Ty = a2 0y, T =110 o MM € End(v®)

where
MM v® — L2(X, L®)
s+ fs,

and I1(%) : L2(X, L®*) — V(¥ is the orthogonal projector.

Remark. For o, 5 € C, f,g € C°(X)

(k) _ (k) k
Tozf+59 R an + ﬁTé )

Le. the map C®(X) — End(V®), f — T;k), is linear.



Quantization

quantization: classical mechanics — quantum mechanics

function f +— operator f on a Hilbert space 'H

”Quantization” is a way to associate a linear operator T}k) to a function
f € C°°(X) so that a version of Dirac’s quantization conditions holds.

X classical phase space

H = V) space of quantum-mechanical wave functions

The positive integer k is formally interpreted as 1/A, where £ is the Planck
constant. The limit k& — oo is called the semi-classical limit.

The quantum observables T}k) are (Berezin-)Toeplitz operators.



Dirac’s conditions:

for a classical phase space X we want a linear map
C'*°(X) — { operators on H} such that
1 — const(h)I

{f.g} — const(h)[f, 4]
Related mathematics: since 1950-1960s (Kostant, Kirillov, Guillemin,...)



Second quantization: language of quantum field theory

H = H°(X, L®%) (choose and fix sufficiently large k)

Fock space

F(H) = é HEn
n=0

bosonic (symmetric) Fock space, fermionic (antisymmetric) Fock space,

creation and annihilation operators

operators on H ~» operators on F'(H)



Theorem.[Bordemann, Meinrenken, Schlichenmeier, Comm. Math. Phys.’94;

based on techniques developed by Boutet de Monvel and Guillemin in the *80s]
For f, f1,...., fp € C*°(X),as k — o0

k k k 1
\H£RJ§>iﬂ)%H— %ﬂ

(k) (k) (k) Y
[ek[Ty, " Ty, "] = ﬂﬁfﬂ“‘0%>

1
k k
I, T3l = 0(3)

There is C' > 0 s.t.

k
< [ITf7]] < |floc

C
|f‘oo_g



f € C°°(X) has been a quite standard assumption in the subject.

In [T. Barron, X. Ma, G. Marinescu, M. Pinsonnault. Semi-classical properties
of Berezin-Toeplitz operators with C*-symbol. J. Math. Phys. 55, 042108
(2014) 25 pages.] we address the case when f is C" (not necessarily C'°).
Work done 1n this paper implies, in particular, the following:

Theorem 1. Let f1, ..., f, € C"(X). As k — ¢

Ok™1) ifm=2
o(k=1/2) ifm=1
o(1) ifm=0

k k k
T )



[BMMP ’14]:
Theorem 2. Suppose f € L°°(X) and there is xo € X such that f(zg) =

| f|oo and f is continuous at z:g. Then
: k
lim (T3] = | f]oo-
If f € CYX)thend C > 0s.t.

C
oo = = S IT1 < oo
If f € C*(X)then3 C > 0s.t.

C
|f‘oo_z

k
< |77 < | floo-



Also

Theorem 3.[BMMP ’14] Let f, f1,..., f, € C™(X). Ask — o0

| i Ok™1) ifm=2

—tr(T..T) :/ frofo—4+<{ OFV2) ifm=1

kn 1 p X ’n/' . L
o(1) ifm =20

Theorem 4.[BMMP ’14] Let f,g € C"(X). As k — oo

o(1
ol =9 o(k71?) ifm =3

ifm =2
ik[Ty, T — 1% |
s O(k~1)  ifm =4



Comments:

e Paper [BMMP ’14] does not contain examples.

o A standard example is X = S? = P! with the Fubini-Study form.
Explicit constructions of Toeplitz operators on sphere (and torus), with

C'>° symbol, were worked out in

[BGPU] A. Bloch, F. Golse, T. Paul, A. Uribe. Dispersionless Toda and
Toeplitz operators. Duke Math. J. 117 (2003), no. 1, 157-196.

See also [BU] D. Borthwick, A. Uribe. On the pseudospectra of Berezin-
Toeplitz operators. Methods Appl. Anal. 10 (2003), no. 1, 31-65.



My recent work with David Itkin:
examples related to the context of Theorems 1, 2 above, on the sphere,

for T;M with discontinuous f.

X = §? = P!, with the Fubini-Study form
L the hyperplane bundle

V(k=1) the space of polynomials in z of degree < k — 1

[ )
00) = 5= | G5 R dad:

Orthonormal basis in V (F—1)

) — v 1 i=0,.k—1




Realize X as

1 1
(&m0 R+ +(C - 5% = 1)

Stereographic projection 52 — {(0,0, 2)} — C, (§,7n,¢) — z = z +1y, where

MU S
1—(’ 1 —
Also we have:
. . B Y . x2—|—y2
x2—|—y2—|—1’77 2492417 a224+y2+1



Define f, g, h : S — R by

1 if¢<1/2
(1 if¢<1/5

[0 if¢<1/2

Stereographic projection gives the following functions on the xy-plane:

A 1 ifz?+y? <1

(., y) = 1 ifz? +y? <1/4
NEY =V 0 ifa?+y?>1/4
. {O if x? +9°% < 1

h(z,y) = 22 402 :



Write Ték) as a matrix, in the basis (gp§k> ). The jl-th matrix element of T,gk) is
k) (k
(T[gk))jl _ <Tp(k) ( )7905 )>

@R MF R o) = (pp) o)y =
i k! /A(z 227! dzdz
2 ik = Dk I Je 77 7 )R

Proposition. (T.B., D. Itkin) As k — oo

. k 1
) [IT371l =1~ 55
(i) || TV =1 —
? (5/4)"
(i) ||T® TR — <k>||_i( ! )
f—g (5/4)k

, 2
iv)1-> <[] <1



Sketch of proof: forp = f,g,h

(Tp(k>)jl = 0 forj #1

191 = Jnax. (T35
||T(k>|| - 2k'0<m31i< 1 5!(k —1j —1)! /01 (1 12:;)1"3“ ar
||T(k)” B 2k'0<m<aé< 1 5!(k —1j —1)! /1/2 (1 —:ﬁ:’ﬁﬂ dr
HT(k>|| = 2k! 0<m<ali< L1k _1]. )1 /OO ( izi;r;kzj% dr

Proof of (i), (i1), (iv) is finished by long tedious calculations,

(111) 1s an immediate consequence of (1), (11). O



