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Problem

g : complex simple Lie algebra

q = l⊕ n : maximal parabolic subalgebra of g

Mq[t] : scalar generalized Verma module induced from q

Problem:

Classify all the complex paramters t ∈ C, for which Mq[t] are reducible.

Today:

Give answers to the problem for certain maximal parabolic subalgebras q of
g of type E6, E7, E8.
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Setting

g : complex simple Lie algebra

h : Cartan subalgebra

∆ : the root system with respect to h

b : Borel subalgebra

∆+ : the positive system with respect to b

Π : the simple system for ∆+

ρ = 1
2

∑
α∈∆+ α

α∨ : the coroot of α ∈ ∆

U(g) := the universal enveloping algebra of g
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q : standard parabolic subalgebra

q = l⊕ n : Levi decomposition (l : Levi part, n : nilpotent radical)

∆(l) := {α ∈ ∆ | gα ⊂ l} (gα : the root space for α ∈ ∆)

∆+(l) := ∆(l) ∩∆+

Π(l) := ∆(l) ∩ Π

ρ(l) := 1
2

∑
α∈∆+(l) α

∆(n) := {α ∈ ∆ | gα ⊂ n}

ρ(n) := 1
2

∑
α∈∆(n) α = ρ− ρ(l)
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Now we set

P+
l := {λ ∈ h∗ | 〈λ, α∨〉 ∈ 1 + Z≥0 for all α ∈ Π(l)}.

For λ ∈ P+
l , we write

Vl(λ) := the simple l-module with highest weight λ.

Definition:

For λ ∈ P+
l , the generalized Verma module Mq(λ) with highest weight

λ− ρ is defined as

Mq(λ) := U(g)⊗U(q) Vl(λ− ρ).

Remark:

When dimVl(λ− ρ) = 1, we say that Mq(λ) is of scalar type.
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Hereafter, we assume that q = l⊕ n is a maximal parabolic subalgebra.

αq : the simple root corresponding to q

λq : the fundamental weight for αq

Facts:
1 dimVl(λ− ρ) = 1 ⇐⇒ λ = tλq + ρ(l) for t ∈ C

2 ρ(n) = cqλq for some cq ∈ 1
2Z
≥0

Consequenlty, scalar generalized Verma modules Mq(λ) = Mq(tλq + ρ(l))
may be parametrized by t ∈ C. We then write

Mq[t] ≡ Mq(tλq + ρ(l)) = U(g)⊗U(q) C(t−cq)λq

Definition:

We say that t0 ∈ C is a reducible point for Mq[t] if Mq[t0] is reducible.
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Previous classification results: q = l⊕ n

• n abelian (i.e. one-step nilpotent, [n, n] = 0):

Enright–Howe–Wallach and Jakobsen: Indivisually classified all the
reducible points so that the irreducible quotient of Mq[t] is
unitarizable. (’83)

Haian He: Recently classified all the reducible points for Mq[t].
(arXiv:1501.01884)

• n k-step nilpotent with k ≥ 2: not known

Today:

Mainly observe maximal parabolic q = l⊕ n with n non-Heisenberg
two-step nilpotent, namely,

n is two-step nilpotent ([n, n] 6= 0, [n, [n, n]] = 0),

dim[n, n] > 1.
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Reducible criteria

Jantzen’s criterion (a specialization for maximal parabolic q):

If q = l⊕ n is a maximal parabolic subalgebra, then

Mq[t] is irreducible⇐⇒
∑
β∈St

Y
(
sβ(tλq + ρ(l))

)
= 0,

where

St := {β ∈ ∆(n) | 〈tλq + ρ(l), β∨〉 ∈ 1 + Z≥0}

Y (λ) := D−1
∑

w∈W (l)(−1)`(w)ewλ

with

D : the Weyl denominator,

W (l) : the Weyl group of l,

`(w) : the length of w
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Point: Jantzen’s criterion is very powerful. However, it is in general not
easy to evaluate

∑
β∈St Y

(
sβ(tλq + ρ(l))

)
.

Facts: (See, for instance, [Humpreys, GSM 94, Theorem 9.12].)

Let q = l⊕ n be a parabolic subalgebra (not necessarily maximal) and let
λ ∈ P+

l (not necessarily dimVl(λ− ρ) = 1).

1 If 〈λ, β∨〉 /∈ 1 + Z≥0 for all β ∈ ∆(n), then Mq(λ) is irreducible.

2 The converse also holds if λ is regular.

Point: By “Humphreys’ fact,” we only need to apply Jantzen’s criterion
only for t so that tλq + ρ(l) is singuler.

Difficulty: It is a bit of work to evaluate 〈tλq + ρ(l), β∨〉 for all β ∈ ∆(n)
when g is of type E6, E7, and E8.
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Two further reducibility criteria

Let’s go back to q = l⊕ n, maximal parabolic with n non-Heisenberg
two-step nilpotent.

• Criterion 1:

Proposition:

If q = l⊕ n is as above, then Mq[t] is reducible only if t ∈ 1
2Z

>0.
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• Criterion 2: First observe the following:

Observation:

If q = l⊕ n is as above, then one can give a two-grading g =
⊕2

k=−2 g(k)
on g so that

q =
⊕

k≥0 g(k) with l = g(0) and n = g(1)⊕ g(2).

Definition:

We set ht(g(k)) := the height of a root β ∈ ∆(g(k)) so that

ht(β) ≥ ht(β′) for all β ∈ ∆(g(k)),

where ht(β) is the height of β.
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Theorem A:

Let g be a complex simple simply laced Lie algebra, and q = l⊕ n be as
above. Suppose that ht(g(2))− ht(g(1)) + ht(g(0)) > cq. If there exists
m ∈ 1

2Z
>0 so that

γ ∈ Sm and

〈mλq + ρ(l), γ∨〉 > ht(l),

then Mq[t] is reducible for all t ∈ m + Z≥0,

where

Sm = {β ∈ ∆(n) | 〈mλq + ρ(l), β∨〉 ∈ 1 + Z≥0}
γ : the highest root of g

cq : the number in 1
2Z
≥0 so that ρ(n) = cqλq



Results

• g = complex simple Lie algebra of type E6, E7, or E8.

• q = maximal parabolic subalgebra of non-Heisenberg two-step nilpotent
type

Write such parabolic subalgebra by a pair of the type of g and the simple
root αq:

(E6, α3), (E6, α5), (E7, α2), (E7, α6), (E8, α1).

(Here the Bourbaki convention is used for the numbering of simple roots.)

Theorem B:

If g and q are as above, then Mq[t] is reducible exactly at the following t:

(E6, α3) : t ∈ (2 + Z≥0) ∪ ( 3
2 + Z≥0)

(E6, α5) : t ∈ (2 + Z≥0) ∪ ( 3
2 + Z≥0)

(E7, α2) : t ∈ (1 + Z≥0) ∪ ( 5
2 + Z≥0)

(E7, α6) : t ∈ (1 + Z≥0) ∪ ( 1
2 + Z≥0)

(E8, α1) : t ∈ (1 + Z≥0) ∪ ( 5
2 + Z≥0)
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Proof:

• The proof is a case-by-case analysis.

• The summary of cq, ht(g(0)), ht(g(1)), and ht(g(2)):

Parabolic q cq ht(g(0)) ht(g(1)) ht(g(2))

(E6, α3) : 9
2 4 8 11

(E6, α5) : 9
2 4 8 11

(E7, α2) : 7 6 13 17
(E7, α6) : 13

2 7 12 17
(E7, α1) : 23

2 11 22 29

• Observe that we have ht(g(2))− ht(g(1)) + ht(g(0)) > cq for each case.

(Ex: (E6, α3):

ht(g(2))− ht(g(1)) + ht(g(0)) = 11− 8 + 4 = 7 > 9
2 = cq)



Case of (E6, α3)

• It suffices to consider t ∈ 1
2Z

>0 = (1 + Z≥0) ∪ ( 1
2 + Z≥0).

• Handle the cases that t ∈ 1 + Z≥0 and t ∈ 1
2 + Z≥0, separately, since

roots in St are different (St = {β ∈ ∆(n) | 〈tλq + ρ(l), β∨〉 ∈ 1 + Z≥0}):

If t ∈ 1 + Z≥0, then

St = {β ∈ ∆(g(2)) | ht(β) > 9− 2t}.

If t ∈ 1
2 + Z≥0, then

St = {β ∈ ∆(g(1)) | ht(β) > (9/2)−t}∪{β ∈ ∆(g(2)) | ht(β) > 9−2t}.
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By inspection, for γ the highest root of g, we have

γ ∈ S2 and 〈2λq + ρ(l), γ∨〉 > ht(l)

and

γ ∈ S 3
2

and 〈3
2λq + ρ(l), γ∨〉 > ht(l).

Note: For α ∈ ∆, we have

〈tλq + ρ(l), α∨〉 =


ht(α) if α ∈ ∆(l)

(t − cq) + ht(α) if α ∈ ∆(g(1))

2(t − cq) + ht(α) if α ∈ ∆(g(2)).

By Theorem A, Mq[t] is reducible for all t ∈ (2 + Z≥0) ∪ ( 3
2 + Z≥0).

• To determine the cases that t = 1, 1
2 , we use more involved observation

on Jantzen’s criterion and heights of roots.
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