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@ M,[t] : scalar generalized Verma module induced from g

Problem:

Classify all the complex paramters t € C, for which M[t] are reducible.

Give answers to the problem for certain maximal parabolic subalgebras q of
g of type E¢, E7, Es.
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@ o : the coroot of o € A

@ U(g) := the universal enveloping algebra of g
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p(D) =3 Paecar @

An):={aeA| g, Cn}

p(n) =3 Y aeam @ =p—p(l)
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Now we set
Pli={Aebh*| (N aY) € 1+Z20 foralla € N(I)}.
For \ € P[Jr, we write

VI(A) := the simple [-module with highest weight .

Definition:

For A € P/, the generalized Verma module My()\) with highest weight
A — p is defined as

My(X) == U(8) Bu(q) Vi(A = p).

When dim V(A — p) = 1, we say that M,(\) is of scalar type.
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@ qg : the simple root corresponding to q

@ ) : the fundamental weight for o

Q@ dmVi(A—p)=1<= A=tA\+p(I) fort €C

@ p(n) = cz)q for some ¢; € 3720

Consequenlty, scalar generalized Verma modules My(\) = My(tAq + p(l))
may be parametrized by t € C. We then write

My[t] = My(tAq + p(1)) = U(8) @ui(q) Ce—cy)rq J

Definition:

We say that tg € C is a reducible point for My[t] if My[to] is reducible.
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@ Enright—Howe—Wallach and Jakobsen: Indivisually classified all the
reducible points so that the irreducible quotient of Mq[t] is
unitarizable. ('83)

e Haian He: Recently classified all the reducible points for My][t].
(arXiv:1501.01884)

e 1 k-step nilpotent with k > 2: not known

Mainly observe maximal parabolic ¢ = [ €& n with n non-Heisenberg
two-step nilpotent, namely,

@ n is two-step nilpotent ([n,n] # 0, [n, [n,n]] = 0),

e dim[n,n] > 1.
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Jantzen's criterion (a specialization for maximal parabolic q):

If g =1 n is a maximal parabolic subalgebra, then

Mjy[t] is irreducible <= Y (s(tAq + p(1))) =0,
BES:

where
o S:={BeAm)| (A +p(1).8Y) € 14229
e Y(\):=D1 ZWGW(I)(—1)‘3(W>ewA

with

@ D : the Weyl denominator,
o W(I) : the Weyl group of [,
e /(w) : the length of w



Point: Jantzen's criterion is very powerful. However, it is in general not
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Point: Jantzen's criterion is very powerful. However, it is in general not
easy to evaluate Y 5.5, Y (sp(tAq + p(1))).

Facts: (See, for instance, [Humpreys, GSM 94, Theorem 9.12].)

Let g = [@ n be a parabolic subalgebra (not necessarily maximal) and let
A € P (not necessarily dim Vi(A — p) = 1).

Q If (\,8Y) ¢ 1+ 720 for all B € A(n), then My()) is irreducible.

@ The converse also holds if A is regular.

Point: By “"Humphreys’ fact,” we only need to apply Jantzen's criterion
only for t so that tAq + p(I) is singuler.

Difficulty: It is a bit of work to evaluate (tA\q + p(I), 8Y) for all B € A(n)
when g is of type Eg, E7, and Eg.
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Let's go back to q = [ & n, maximal parabolic with n non-Heisenberg
two-step nilpotent.

e Criterion 1:

Proposition:

If g =@ n is as above, then M[t] is reducible only if t € $Z>0.




e Criterion 2: First observe the following:

Observation:

If q= 1@ nis as above, then one can give a two-grading g = @,2(:_2 g(k)
on g so that

4 = @y>0 9(k) with [ =g(0) and n = g(1) & g(2).

Definition:

We set ht(g(k)) := the height of a root 8 € A(g(k)) so that

ht(3) > ht(f’) for all 8 € A(g(k)),
where ht(f) is the height of j.
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e Criterion 2: First observe the following:

Observation:

If q= 1@ nis as above, then one can give a two-grading g = @,2(:_2 g(k)
on g so that

q = @Dy>0 9(k) with [ =g(0) and n = g(1) & g(2).

Definition:
We set ht(g(k)) := the height of a root 8 € A(g(k)) so that

ht(B8) > ht(8') for all 3 € A(g(k)),

where ht(f3) is the height of 5.




Theorem A:

Let g be a complex simple simply laced Lie algebra, and ¢ = [ & n be as
above. Suppose that ht(g(2)) — ht(g(1)) + ht(g(0)) > ¢4. If there exists
m € 17>0 so that

@ vy€ 5, and
o (mAq+p(1),7") > he(),

then M;[t] is reducible for all t € m + Z=°,

where
o Sm={8 D) | (mAg+ p(1), 3¥) € 1+ 220}
@ v : the highest root of g
® ¢, : the number in %ZZO so that p(n) = ¢\
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Results

e g = complex simple Lie algebra of type Eg, E7, or Eg.
e q = maximal parabolic subalgebra of non-Heisenberg two-step nilpotent
type

Write such parabolic subalgebra by a pair of the type of g and the simple
root aq:

(Eﬁ,a3), (Eﬁ,a5), (E7,a2), (E7,a6), (Eg,al).

(Here the Bourbaki convention is used for the numbering of simple roots.)

Theorem B

If g and q are as above, then M;[t] is reducible exactly at the following t:
(Es, 3) f€(2+Z>o)U(§+Zz 0)
(Eﬁ,a5) T te (2+Z>0)U(§—|—Zzo)
(E7,012) 1 te (1+Z>0)U(§+Zzo)
(E7,045) T te (1+Z>0)U(§+Z20)
(Es,an): t € (1+Zx0) U (3 + Zxo)




e The proof is a case-by-case analysis.

e The summary of ¢4, ht(g(0)), ht(g(1)), and ht(g(2)):

Parabolicq ¢;  ht(g(0)) ht(g(1)) ht(g(2))
(Es,a3): 3 4 8 11
(Eg, cs) : 3 4 8 11
(E7,a0) : 7 6 13 17
(E7,a): 13 7 12 17
(E7,aq) é? 11 22 29

e Observe that we have ht(g(2)) — ht(g(1)) + ht(g(0)) > ¢, for each case.
(Ex: (Es, 3):

ht(g(2)) — ht(g(1)) + ht(g(0)) =11 —-8+4=7> 2 = ¢)



Case of (Eg, a3)

e It suffices to consider t € 3770 = (14 Z=°) U (5 + Z=9).

e Handle the cases that t € 14+ Z=% and t € % + 720, separately, since
roots in Sy are different (S = {8 € A(n) | (tAq + p(1), BY) € 1 + Z=0}):

e Ift €1+ 729 then

St = {8 € Aa(2) | ht(B) > 9 —2t}.

o If t € 5+ Z=°, then

Se = {6 € Ag(1)) [ ht(B) > (9/2)—t}U{5 € A(g(2)) | ht(B) > 9-2t}.
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By inspection, for v the highest root of g, we have
v € S and (2 + p(1),7") > ht(l)
and

7 € S; and (3Xg + p(1),7) > ht(1).

Note: For o € A, we have

ht(a) if a € A(l)
(tAq + p(0), ") = ¢ (t — ¢q) + ht(a) if « € A(g(1))
2(t — cq) + ht(a) if o € A(g(2)).

By Theorem A, Myt] is reducible for all t € (24 Z=%) U (3 + Z=20).

e To determine the cases that t = 1, % we use more involved observation
on Jantzen's criterion and heights of roots.
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