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I. INTRODUCTION

The main idea of this article can be illustrated for the case g = gl(2,C) where q :=

E−112 E11 ∈ D(g) and p := E12 commute as Heisenberg pair and C = E11 + E22 is an

element from the center of U(gl(2,C)). These relations can be reversed and we obtain

realization2,3,5,8–15,19 of gl(2,C): E11 = pq, E12 = p, E22 = −pq + C.

Let us now consider g = gl(n,C). We will show that “small” extension Ũ(g) of U(g)

is isomorphic to U(H2(n−1) ⊕ gl(n − 1,C) ⊕ Z), where dimZ = 1 and H2(n−1) is 2(n − 1)-

dimensional Heisenberg algebra. Main technical tool for our proof are Capelli identities18.

This result consists in generalization of Hamilton-Cayley equation for matrix E = (Eij)
n
i,j=1,

namely

En + an−1E
n−1 + ...+ a1E + a0 = 0, (1)

where coefficients ak belong to the center Z(g) of g17. From this equation we obtain explicit

form of “inverse” matrix E−1 of E. The alternative proof of (1) is given in the appendix.

II. PRELIMINARIES

Let Eij, i, j = 1, ..., n be generators of the Lie algebra gl(n,C) satisfying usual commuta-

tion relations

[Eij, Ekl] = δjkEil − δilEkj, i, j = 1, ..., n.

Then the center Z(U(g)) of the enveloping algebra U(g) is generated by Casimir elements

(Gelfand generators)

Cs =
n∑

i1,i2,...,is=1

Ei1,i2Ei2,i3 ...Eis,i1 , s = 1, ..., n.

Let us denote the n× n matrix having its (i, j)-entry defined as Eij by E. Let us define the

matrix E(u), where u ∈ C, by

E(u) = (E + (u− i+ 1)δij)
n
i,j=1

and take

C(u) = coldetE(u) =
∑
σ∈Sn

sgnσ (E + uI)σ(1),1(E + (u− 1)I)σ(2),2...(E + (u− n+ 1)I)σ(n),n,
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where I is n × n identity matrix. We often abbreviate E + uI by E + u in what follows.

The column determinant C(u) can be rewritten in the collected form

C(u) =
n∑
k=0

aku
k. (2)

In the appendix we give an easy proof for the well known fact:18

Theorem 1. a) We have

[C(u), Eij] = 0,

therefore the coefficients ak in (2) are, in fact, functions of Casimir elements C1, ..., Cn−k.

b) We have

C(−E + n− 1) = 0, C(−ET ) = 0,

where ET is usual transposition, (ET )ij = Eji.

Theorem 1 b) allows to write down the explicit formulas for “inverse” matrices (E − n+

1)−1 and (ET )−1 which satisfy

(E−n+1)−1(E−n+1) = (E−n+1)(E−n+1)−1 = C(0)I, (ET )−1ET = ET (ET )−1 = C(0)I.

Namely we have

(E − n+ 1)−1 =
n∑
k=1

ak(−E + n− 1)k−1, (ET )−1 =
n∑
k=1

ak(−ET )k−1.

Apparently, “inverse” matrices exist for any matrix of the form E + u or ET + u, u ∈ C.

III. HEISENBERG PAIRS

Let us solve (in D(g)) the set of linear equations

Ein =
n∑
j=1

Eijqj, i = 1, ..., n− 1. (3)

for unknown variables q1, ..., qn−1. We have

qj = C−1E−1ij Ejn,

where C is some central element from Z(U(gl(n− 1))).
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Lemma 2. We have

[Ekl, qj] = δjlqk. (4)

Proof. Commuting (3) with Ekl we obtain the relation

δilEkn = δliEkjqj − Eilqk + Eij[Ekl, qj]

and then, using (3) again, we come to the equation

Eij ([Ekl, qj]− δjlqk) = 0.

Applying inverse matrix E−1, we get (4).

Lemma 3. We have

[Ein, qj] = qjqi.

Proof. Commuting eq. (3) with Ekn we have

0 = −δjkEinqj + Eij[Ekn, qj].

Using again (3) we conclude, that

Eij ([Ekn, qj]− qjqk) = 0.

Theorem 4. We have

[qi, qj] = 0.

Proof. We commute eq. (3) with qk and use the results above. We obtain

qkqi = qiqk + Eij[qj, qk],

which can be written in the form

(Eij + δij)[qj, qk] = 0.

Commuting qj with Eij in (3) we get

Ein = qj (Eij + (n− 1)δij) = qj
(
ET
ji + (n− 1)δji

)
. (5)

This is linear equation for the unknown qj with the following solution:

qj = Ein(ET + n− 1)−1ij C̃
−1,

where C̃ is some central element from Z(U(g)).
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Theorem 5. We have

[qi, Enj] = δij, Enn = Eniqi.

Proof. Commuting eqs. (3) and (5) with Enk we obtain

C([ql, Enk]− δlk) = E−1lk (Enjqj − Enn), (6)

([ql, Enk]− δlk)C̃ = (qjEnj − Enn − n+ 1)(ET + n− 1)−1kl .

Multiplying the first equation by C̃ from the left hand side and the second by C from the

right hand side and subtracting the equations we obtain

E−1lk (Enjqj − Enn)C̃ = C(qjEnj − Enn − n+ 1)(ET + n− 1)−1kl .

Multiplying by Eil from the left and by (ET + n− 1)li from the right we get

C(Enjqj − Enn)C̃ = C(qjEnj − Enn − n+ 1)C̃

and because the elements C, C̃, Enjqj − Enn and Ejnqj − Enn commute with Eij (and due

to nonexistence of nonzero divisors of zero) we have

qjEnj − Enjqj = n− 1, Enn = Enjqj.

From (6) we get the desired assertion.

IV. SUBALGEBRA gl(n− 1,C) OF D(gl(n,C))

Let us have any c ∈ Z(U(g)) and define

Fij = Eij − qipj + c,

where

pj = −Enj.

Then we have

Theorem 6. a)

[Fij, qk] = [Fij, pk] = 0,

[Fij, Fkl] = δkjFil − δilFkj.
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Proof. These relations can be verified by direct computation.

Let us define the following subalgebra of D(gl(n,C)):

Ũ(gl(n,C)) = span
{
qr11 ...q

rn−1

n−1 p
s1
1 ...p

sn−1

n−1 F
t11
11 F

t12
12 ...F

tn−1,n−1

n−1,n−1 c
u
∣∣∣ri, si, tij, u = 1, 2, ..., n− 1

}
.

Because

Eij = Fij + qipj − c,

Ein = (Fij + qipj − c)qj,

Eni = −pi,

Enn = Eniqi,

Ũ(gl(n,C)) is extension of enveloping algebra U(gl(n,C)). On the other side subalgebra

Ũ(gl(n,C)) is isomorphic to the enveloping algebra of direct sum of (2n + 1)-dimensional

Heisenberg algebra H2n+1, Lie algebra gl(n− 1,C) and 1-dimensional algebra span{c}:

U (H2n+1 ⊕ gl(n− 1,C)⊕ span{c}) ' Ũ(gl(n,C)).

Appendix A: Inverse matrix to E + u

Let τ : {1, ..., n} → {1, ..., n}, not necessarily bijective. Let us denote

Cτ (u) =
∑
σ∈Sn

sgnσ (E + u)σ(1),τ(1)(E + u− 1)σ(2),τ(2)...(E + u− n+ 1)σ(n),τ(n).

Lemma 7. We have

Cτ̃ (u) = −Cτ (u),

where τ̃ is equal to τ , except for two positions, which are interchanged, i. e. τ̃(s) = τ(s+1),

τ̃(s+ 1) = τ(s), τ̃(j) = τ(j) for j = 1, ..., s− 1, s+ 2, ..., n for some s ∈ {1, ..., n}.

6



Proof. We have

Cτ̃ (u) =
∑
σ∈Sn

sgnσ (E + u)σ(1),τ(1)(E + u− 1)σ(2),τ(2)

...(E + u− s+ 1)σ(s),τ(s+1)(E + u− s)σ(s+1),τ(s)...(E + u− n+ 1)σ(n),τ(n) =

−
∑
σ∈Sn

sgnσ (E + u)σ(1),τ(1)(E + u− 1)σ(2),τ(2)

...(E + u− s+ 1)σ(s+1),τ(s+1)(E + u− s)σ(s),τ(s)...(E + u− n+ 1)σ(n),τ(n) =

−
∑
σ∈Sn

sgnσ (E + u)σ(1),τ(1)(E + u− 1)σ(2),τ(2)

...
(
(E + u− s)σ(s),τ(s)(E + u− s+ 1)σ(s+1),τ(s+1) + δτ(s+1),σ(s)Eσ(s+1),τ(s)−

δσ(s+1),τ(s)Eσ(s),τ(s+1)

)
...(E + u− n+ 1)σ(n),τ(n) =

−
∑
σ∈Sn

sgnσ (E + u)σ(1),τ(1)(E + u− 1)σ(2),τ(2)...(E + u− n+ 1)σ(n),τ(n).

Because every permutation can be written as a product of transpositions of adjacent

elements, we have

Cτ (u) = sgn τ C(u), (A1)

where sgn τ = 0 in the case when τ is not bijective.

Lemma 8.

C(u) ∈ Z(U(gl(n,C)).

Proof. Let us take, without loss of generality, u = 0. Let us denote F = (Eij+(1−i)δij)ni,j=1.

Because gl(n,C) is generated by the elements eii, ej,j+1 and ej+1,j, i = 1, ..., n, j = 1, ..., n−1,

it is sufficient to show that C(0) commutes with mentioned generators.

1. First we show that for each σ ∈ Sn we have

[Fσ(1)1...Fσ(n)n, eii] = 0.

If σ(i) = i, then

[Fσ(1)1...︸ ︷︷ ︸
=A

Fσ(i)i ...Fσ(n)n︸ ︷︷ ︸
=B

, eii] = A[Fii, eii]B = A · 0 ·B = 0.
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If σ(i) 6= i, then

[Fσ(1)1...︸ ︷︷ ︸
=A

Fσ(i)i ...︸︷︷︸
=B

Fiσ−1(i) ...Fσ(n)n︸ ︷︷ ︸
=C

, eii] =

[Aeσ(i)iBeiσ−1(i)C, eii] = A[eσ(i)i, eii]Beiσ−1(i)C + Aeσ(i)iB[eiσ−1(i), eii]C,

and because of

[eσ(i)i, eii] = eσ(i)i, [eiσ−1(i), eii] = −eiσ−1(i),

we get

A[eσ(i)i, eii]Beiσ−1(i)C + Aeσ(i)iB[eiσ−1(i), eii]C = Aeσ(i)iBeiσ−1(i)C − Aeσ(i)iBeiσ−1(i)C = 0.

2. Now we show that

[C(0), ei,i+1] = 0.

Let us denote by
∼
E the matrix whose entries are commutators of ei,i+1 and components

of E, i. e.
∼
Ejk = [ei,i+1, Ejk].

Then thanks to

[ei,i+1, ejk] = δi+1,jeik − δikej,i+1

the matrix
∼
E takes the following form (it has nonzero elements only on the i+ 1-st row and

in the i-th column):

∼
E =

i-th column
|

−e1,i+1

0 −e1,i+2 0
...

ei1 ei2 · · · eii − ei+1,i+1 · · · ei,n−1 ein
...

0 −en,i+1 0


- i+1-th row

.

Let us now enumerate D = [ei,i+1, Cn]. From the linearity of determinant, it follows that

D =
n∑
j=1

Dj −D′i,
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where Dj is determinant of matrix, which we can get from matrix F by replacing its j-th

column by j-th column of matrix

0 0

ei1 ei2 · · · eii + n− i · · · ei,n−1 ein

0 0


- i+1-th row

, (A2)

and D′i is determinant of matrix, which we can get from matrix F by replacing its i-th

column by i-th column of matrix

i-th column
|

e1,i+1

0 e2,i+1 0
...

(ei+1,i+1 + n− i)
...

0 en,i+1 0


. (A3)

(the constant n− i is added on the position (i+ 1, i) into (A2) and into (A3)).

The determinant Dj is not changed by the following transformation: in place of zeros in

the j-th column we set to zero i+ 1-th row (except for the element eij). This is because of

the following identity, valid for both commutative and non-commutative determinants:

det



0
...

0

? · · · ? w ? · · · ?

0
...

0


= det



?
...

?

0 · · · 0 w 0 · · · 0

?
...

?


,

where w and stars are arbitraty elements. Then we can see that the sum

n∑
j=1

Dj = 0,
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because suming up we get determimant with two equal rows, i-th and i+ 1-st. Finally, the

determinant D′i has the following form:

D′i = det

i-th column
|

i+1-st column
|

e1,i+1 e1,i+1

? e2,i+1 e2,i+1 ?
...

...

(ei+1,i+1 + n− i) (ei+1,i+1 + n− i− 1)
...

...

? en,i+1 en,i+1 ?


. (A4)

Enumerating D′i we encounter the 2× 2 determimnants of the following two types:

a) det

ej,i+1 ej,i+1

ek,i+1 ek,i+1

 , where j 6= i+ 1, k 6= i+ 1,

this determinant is equal to zero, because ej,i+1 and ek,i+1 commute (if j 6= i+1 and k 6= i+1),

and

b) det

 ej,i+1 ej,i+1

ei+1,i+1 + n− i ei+1,i+1 + n− i− 1

 , where j 6= i+ 1,

this determinant is equal to zero, because we get

det

 ej,i+1 ej,i+1

ei+1,i+1 + n− i ei+1,i+1 + n− i− 1

 = (n− i− 1− (n− i))ej,i+1 + [ej,i+1, ei+1,i+1] =

− ej,i+1 + ej,i+1 = 0.

Let us now define τk by

τk(1) = 1, ..., τk(k − 1) = k − 1, τk(k) = k + 1, ..., τk(n− 1) = n, τk(n) = k.

The relation (A1) can be rewritten as

∑
σ∈Sn

sgnσ (E + u)σ(1),τk(1)(E + u− 1)σ(2),τk(2)...(E + u− n+ 1)σ(n),τk(n) = sgn τk C(u),
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which implies

n∑
j=1

( ∑
σ∈Sn, σ(n)=j

sgnσ (E + u)σ(1),τi(1)(E + u− 1)σ(2),τi(2)

... (E + u− n+ 2)σ(n−1),τi(n−1)

)
(E + u− n+ 1)j,k = (−1)n−kδikC(u),

which can be interpreted as a matrix equation

n∑
j=1

Bij(E + u− n+ 1)jk = δikC(u),

which implies that matrix B is left inverse to E + u − n + 1. Similarly, we can find right

inverse using row instead of column determinants.
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13Havliček, M. and Lassner, W., “Canonical realizations of the Lie algebras gl(n,R) and

sl(n,R). II. Casimir operators,” Rep. Mathematical Phys. 9, 177–185 (1976).
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