

A note on some theorem of Gelfand and Kirillov^{a)}

M. Havlíček^{1, b)} and S. Pošta^{1, c)}

*Department of mathematics, Faculty of nuclear sciences and physical engineering,
Czech Technical University in Prague, Trojanova 13, 120 00 Prague,
Czech republic*

(Dated: 15 June 2015)

In this we show how Lie field $D(g)$ ^{1,16} can be useful in investigations of universal enveloping algebra $U(g)$ ⁴ of Lie algebra g . Due to validity of Ore condition in $D(g)$, any system of linear equations with coefficients and right hand sides from $U(g)$ can be solved in $D(g)$. Solving suitable system we could find new elements having “better” commutation relations by means of which, on the contrary, generators of g could be expressed.

PACS numbers: 02.20Sv

Keywords: enveloping algebra, Lie algebra, Lie group, realization

^{a)}The authors are grateful to Č. Burdík and O. Navrátil for valuable and useful discussions. This work was partially supported by SGS15/215/OHK4/3T/14.

^{b)}Electronic mail: miloslav.havlicek@fjfi.cvut.cz

^{c)}Electronic mail: severin.posta@fjfi.cvut.cz

I. INTRODUCTION

The main idea of this article can be illustrated for the case $g = \text{gl}(2, \mathbb{C})$ where $q := E_{12}^{-1}E_{11} \in D(g)$ and $p := E_{12}$ commute as Heisenberg pair and $C = E_{11} + E_{22}$ is an element from the center of $U(\text{gl}(2, \mathbb{C}))$. These relations can be reversed and we obtain realization^{2,3,5,8–15,19} of $\text{gl}(2, \mathbb{C})$: $E_{11} = pq$, $E_{12} = p$, $E_{22} = -pq + C$.

Let us now consider $g = \text{gl}(n, \mathbb{C})$. We will show that “small” extension $\tilde{U}(g)$ of $U(g)$ is isomorphic to $U(H_{2(n-1)} \oplus \text{gl}(n-1, \mathbb{C}) \oplus Z)$, where $\dim Z = 1$ and $H_{2(n-1)}$ is $2(n-1)$ -dimensional Heisenberg algebra. Main technical tool for our proof are Capelli identities¹⁸. This result consists in generalization of Hamilton-Cayley equation for matrix $E = (E_{ij})_{i,j=1}^n$, namely

$$E^n + a_{n-1}E^{n-1} + \dots + a_1E + a_0 = 0, \quad (1)$$

where coefficients a_k belong to the center $Z(g)$ of g ¹⁷. From this equation we obtain explicit form of “inverse” matrix E^{-1} of E . The alternative proof of (1) is given in the appendix.

II. PRELIMINARIES

Let E_{ij} , $i, j = 1, \dots, n$ be generators of the Lie algebra $\text{gl}(n, \mathbb{C})$ satisfying usual commutation relations

$$[E_{ij}, E_{kl}] = \delta_{jk}E_{il} - \delta_{il}E_{kj}, \quad i, j = 1, \dots, n.$$

Then the center $Z(U(g))$ of the enveloping algebra $U(g)$ is generated by Casimir elements (Gelfand generators)

$$C_s = \sum_{i_1, i_2, \dots, i_s=1}^n E_{i_1, i_2}E_{i_2, i_3} \dots E_{i_s, i_1}, \quad s = 1, \dots, n.$$

Let us denote the $n \times n$ matrix having its (i, j) -entry defined as E_{ij} by E . Let us define the matrix $E(u)$, where $u \in \mathbb{C}$, by

$$E(u) = (E + (u - i + 1)\delta_{ij})_{i,j=1}^n$$

and take

$$C(u) = \text{coldet } E(u) = \sum_{\sigma \in S_n} \text{sgn } \sigma (E + uI)_{\sigma(1),1}(E + (u - 1)I)_{\sigma(2),2} \dots (E + (u - n + 1)I)_{\sigma(n),n},$$

where I is $n \times n$ identity matrix. We often abbreviate $E + uI$ by $E + u$ in what follows. The column determinant $C(u)$ can be rewritten in the collected form

$$C(u) = \sum_{k=0}^n a_k u^k. \quad (2)$$

In the appendix we give an easy proof for the well known fact:¹⁸

Theorem 1. *a) We have*

$$[C(u), E_{ij}] = 0,$$

therefore the coefficients a_k in (2) are, in fact, functions of Casimir elements C_1, \dots, C_{n-k} .

b) We have

$$C(-E + n - 1) = 0, \quad C(-E^T) = 0,$$

where E^T is usual transposition, $(E^T)_{ij} = E_{ji}$.

Theorem 1 b) allows to write down the explicit formulas for “inverse” matrices $(E - n + 1)^{-1}$ and $(E^T)^{-1}$ which satisfy

$$(E - n + 1)^{-1}(E - n + 1) = (E - n + 1)(E - n + 1)^{-1} = C(0)I, \quad (E^T)^{-1}E^T = E^T(E^T)^{-1} = C(0)I.$$

Namely we have

$$(E - n + 1)^{-1} = \sum_{k=1}^n a_k (-E + n - 1)^{k-1}, \quad (E^T)^{-1} = \sum_{k=1}^n a_k (-E^T)^{k-1}.$$

Apparently, “inverse” matrices exist for any matrix of the form $E + u$ or $E^T + u$, $u \in \mathbb{C}$.

III. HEISENBERG PAIRS

Let us solve (in $D(g)$) the set of linear equations

$$E_{in} = \sum_{j=1}^n E_{ij} q_j, \quad i = 1, \dots, n-1. \quad (3)$$

for unknown variables q_1, \dots, q_{n-1} . We have

$$q_j = C^{-1} E_{ij}^{-1} E_{jn},$$

where C is some central element from $Z(U(\mathfrak{gl}(n-1)))$.

Lemma 2. *We have*

$$[E_{kl}, q_j] = \delta_{jl} q_k. \quad (4)$$

Proof. Commuting (3) with E_{kl} we obtain the relation

$$\delta_{il} E_{kn} = \delta_{li} E_{kj} q_j - E_{il} q_k + E_{ij} [E_{kl}, q_j]$$

and then, using (3) again, we come to the equation

$$E_{ij} ([E_{kl}, q_j] - \delta_{jl} q_k) = 0.$$

Applying inverse matrix E^{-1} , we get (4). \square

Lemma 3. *We have*

$$[E_{in}, q_j] = q_j q_i.$$

Proof. Commuting eq. (3) with E_{kn} we have

$$0 = -\delta_{jk} E_{in} q_j + E_{ij} [E_{kn}, q_j].$$

Using again (3) we conclude, that

$$E_{ij} ([E_{kn}, q_j] - q_j q_k) = 0.$$

\square

Theorem 4. *We have*

$$[q_i, q_j] = 0.$$

Proof. We commute eq. (3) with q_k and use the results above. We obtain

$$q_k q_i = q_i q_k + E_{ij} [q_j, q_k],$$

which can be written in the form

$$(E_{ij} + \delta_{ij}) [q_j, q_k] = 0.$$

Commuting q_j with E_{ij} in (3) we get

$$E_{in} = q_j (E_{ij} + (n-1)\delta_{ij}) = q_j (E_{ji}^T + (n-1)\delta_{ji}). \quad (5)$$

This is linear equation for the unknown q_j with the following solution:

$$q_j = E_{in} (E^T + n-1)_{ij}^{-1} \tilde{C}^{-1},$$

where \tilde{C} is some central element from $Z(U(g))$. \square

Theorem 5. *We have*

$$[q_i, E_{nj}] = \delta_{ij}, \quad E_{nn} = E_{ni}q_i.$$

Proof. Commuting eqs. (3) and (5) with E_{nk} we obtain

$$\begin{aligned} C([q_l, E_{nk}] - \delta_{lk}) &= E_{lk}^{-1}(E_{nj}q_j - E_{nn}), \\ ([q_l, E_{nk}] - \delta_{lk})\tilde{C} &= (q_j E_{nj} - E_{nn} - n + 1)(E^T + n - 1)_{kl}^{-1}. \end{aligned} \quad (6)$$

Multiplying the first equation by \tilde{C} from the left hand side and the second by C from the right hand side and subtracting the equations we obtain

$$E_{lk}^{-1}(E_{nj}q_j - E_{nn})\tilde{C} = C(q_j E_{nj} - E_{nn} - n + 1)(E^T + n - 1)_{kl}^{-1}.$$

Multiplying by E_{il} from the left and by $(E^T + n - 1)_{li}$ from the right we get

$$C(E_{nj}q_j - E_{nn})\tilde{C} = C(q_j E_{nj} - E_{nn} - n + 1)\tilde{C}$$

and because the elements C , \tilde{C} , $E_{nj}q_j - E_{nn}$ and $E_{jn}q_j - E_{nn}$ commute with E_{ij} (and due to nonexistence of nonzero divisors of zero) we have

$$q_j E_{nj} - E_{nj}q_j = n - 1, \quad E_{nn} = E_{nj}q_j.$$

From (6) we get the desired assertion. □

IV. SUBALGEBRA $\text{gl}(n-1, \mathbb{C})$ OF $D(\text{gl}(n, \mathbb{C}))$

Let us have any $c \in Z(U(g))$ and define

$$F_{ij} = E_{ij} - q_i p_j + c,$$

where

$$p_j = -E_{nj}.$$

Then we have

Theorem 6. a)

$$\begin{aligned} [F_{ij}, q_k] &= [F_{ij}, p_k] = 0, \\ [F_{ij}, F_{kl}] &= \delta_{kj}F_{il} - \delta_{il}F_{kj}. \end{aligned}$$

Proof. These relations can be verified by direct computation. \square

Let us define the following subalgebra of $D(\mathrm{gl}(n, \mathbb{C}))$:

$$\tilde{U}(\mathrm{gl}(n, \mathbb{C})) = \mathrm{span} \left\{ q_1^{r_1} \dots q_{n-1}^{r_{n-1}} p_1^{s_1} \dots p_{n-1}^{s_{n-1}} F_{11}^{t_{11}} F_{12}^{t_{12}} \dots F_{n-1, n-1}^{t_{n-1, n-1}} c^u \mid r_i, s_i, t_{ij}, u = 1, 2, \dots, n-1 \right\}.$$

Because

$$\begin{aligned} E_{ij} &= F_{ij} + q_i p_j - c, \\ E_{in} &= (F_{ij} + q_i p_j - c) q_j, \\ E_{ni} &= -p_i, \\ E_{nn} &= E_{ni} q_i, \end{aligned}$$

$\tilde{U}(\mathrm{gl}(n, \mathbb{C}))$ is extension of enveloping algebra $U(\mathrm{gl}(n, \mathbb{C}))$. On the other side subalgebra $\tilde{U}(\mathrm{gl}(n, \mathbb{C}))$ is isomorphic to the enveloping algebra of direct sum of $(2n+1)$ -dimensional Heisenberg algebra H_{2n+1} , Lie algebra $\mathrm{gl}(n-1, \mathbb{C})$ and 1-dimensional algebra $\mathrm{span}\{c\}$:

$$U(H_{2n+1} \oplus \mathrm{gl}(n-1, \mathbb{C}) \oplus \mathrm{span}\{c\}) \simeq \tilde{U}(\mathrm{gl}(n, \mathbb{C})).$$

Appendix A: Inverse matrix to $E + u$

Let $\tau: \{1, \dots, n\} \rightarrow \{1, \dots, n\}$, not necessarily bijective. Let us denote

$$C_\tau(u) = \sum_{\sigma \in S_n} \mathrm{sgn} \sigma (E + u)_{\sigma(1), \tau(1)} (E + u - 1)_{\sigma(2), \tau(2)} \dots (E + u - n + 1)_{\sigma(n), \tau(n)}.$$

Lemma 7. *We have*

$$C_{\tilde{\tau}}(u) = -C_\tau(u),$$

where $\tilde{\tau}$ is equal to τ , except for two positions, which are interchanged, i. e. $\tilde{\tau}(s) = \tau(s+1)$, $\tilde{\tau}(s+1) = \tau(s)$, $\tilde{\tau}(j) = \tau(j)$ for $j = 1, \dots, s-1, s+2, \dots, n$ for some $s \in \{1, \dots, n\}$.

Proof. We have

$$\begin{aligned}
C_{\tilde{\tau}}(u) &= \sum_{\sigma \in S_n} \operatorname{sgn} \sigma (E + u)_{\sigma(1), \tau(1)} (E + u - 1)_{\sigma(2), \tau(2)} \\
&\quad \dots (E + u - s + 1)_{\sigma(s), \tau(s+1)} (E + u - s)_{\sigma(s+1), \tau(s)} \dots (E + u - n + 1)_{\sigma(n), \tau(n)} = \\
&\quad - \sum_{\sigma \in S_n} \operatorname{sgn} \sigma (E + u)_{\sigma(1), \tau(1)} (E + u - 1)_{\sigma(2), \tau(2)} \\
&\quad \dots (E + u - s + 1)_{\sigma(s+1), \tau(s+1)} (E + u - s)_{\sigma(s), \tau(s)} \dots (E + u - n + 1)_{\sigma(n), \tau(n)} = \\
&\quad - \sum_{\sigma \in S_n} \operatorname{sgn} \sigma (E + u)_{\sigma(1), \tau(1)} (E + u - 1)_{\sigma(2), \tau(2)} \\
&\quad \dots ((E + u - s)_{\sigma(s), \tau(s)} (E + u - s + 1)_{\sigma(s+1), \tau(s+1)} + \delta_{\tau(s+1), \sigma(s)} E_{\sigma(s+1), \tau(s)} - \\
&\quad \delta_{\sigma(s+1), \tau(s)} E_{\sigma(s), \tau(s+1)}) \dots (E + u - n + 1)_{\sigma(n), \tau(n)} = \\
&\quad - \sum_{\sigma \in S_n} \operatorname{sgn} \sigma (E + u)_{\sigma(1), \tau(1)} (E + u - 1)_{\sigma(2), \tau(2)} \dots (E + u - n + 1)_{\sigma(n), \tau(n)}.
\end{aligned}$$

□

Because every permutation can be written as a product of transpositions of adjacent elements, we have

$$C_{\tau}(u) = \operatorname{sgn} \tau C(u), \quad (\text{A1})$$

where $\operatorname{sgn} \tau = 0$ in the case when τ is not bijective.

Lemma 8.

$$C(u) \in Z(U(\operatorname{gl}(n, \mathbb{C}))).$$

Proof. Let us take, without loss of generality, $u = 0$. Let us denote $F = (E_{ij} + (1-i)\delta_{ij})_{i,j=1}^n$. Because $\operatorname{gl}(n, \mathbb{C})$ is generated by the elements e_{ii} , $e_{j,j+1}$ and $e_{j+1,j}$, $i = 1, \dots, n$, $j = 1, \dots, n-1$, it is sufficient to show that $C(0)$ commutes with mentioned generators.

1. First we show that for each $\sigma \in S_n$ we have

$$[F_{\sigma(1)1} \dots F_{\sigma(n)n}, e_{ii}] = 0.$$

If $\sigma(i) = i$, then

$$\underbrace{[F_{\sigma(1)1} \dots F_{\sigma(i)i}]}_{=A} \dots \underbrace{F_{\sigma(n)n}, e_{ii}}_{=B} = A[F_{ii}, e_{ii}]B = A \cdot 0 \cdot B = 0.$$

If $\sigma(i) \neq i$, then

$$\begin{aligned} & \left[\underbrace{F_{\sigma(1)1} \dots F_{\sigma(i)i}}_A \underbrace{\dots}_{=B} \underbrace{F_{i\sigma^{-1}(i)} \dots F_{\sigma(n)n}}_C, e_{ii} \right] = \\ & [Ae_{\sigma(i)i}Be_{i\sigma^{-1}(i)}C, e_{ii}] = A[e_{\sigma(i)i}, e_{ii}]Be_{i\sigma^{-1}(i)}C + Ae_{\sigma(i)i}B[e_{i\sigma^{-1}(i)}, e_{ii}]C, \end{aligned}$$

and because of

$$[e_{\sigma(i)i}, e_{ii}] = e_{\sigma(i)i}, \quad [e_{i\sigma^{-1}(i)}, e_{ii}] = -e_{i\sigma^{-1}(i)},$$

we get

$$A[e_{\sigma(i)i}, e_{ii}]Be_{i\sigma^{-1}(i)}C + Ae_{\sigma(i)i}B[e_{i\sigma^{-1}(i)}, e_{ii}]C = Ae_{\sigma(i)i}Be_{i\sigma^{-1}(i)}C - Ae_{\sigma(i)i}Be_{i\sigma^{-1}(i)}C = 0.$$

2. Now we show that

$$[C(0), e_{i,i+1}] = 0.$$

Let us denote by \tilde{E} the matrix whose entries are commutators of $e_{i,i+1}$ and components of E , i. e.

$$\tilde{E}_{jk} = [e_{i,i+1}, E_{jk}].$$

Then thanks to

$$[e_{i,i+1}, e_{jk}] = \delta_{i+1,j} e_{ik} - \delta_{ik} e_{j,i+1}$$

the matrix \tilde{E} takes the following form (it has nonzero elements only on the $i + 1$ -st row and in the i -th column):

$$\tilde{E} = \left(\begin{array}{ccc} & -e_{1,i+1} & \\ 0 & -e_{1,i+2} & 0 \\ & \vdots & \\ e_{i1} & e_{i2} & \cdots & e_{ii} - e_{i+1,i+1} & \cdots & e_{i,n-1} & e_{in} \\ & \vdots & & & & & \\ 0 & -e_{n,i+1} & 0 \end{array} \right) - \text{i+1-th row}.$$

Let us now enumerate $D = [e_{i,i+1}, C_n]$. From the linearity of determinant, it follows that

$$D = \sum_{j=1}^n D_j - D'_i,$$

where D_j is determinant of matrix, which we can get from matrix F by replacing its j -th column by j -th column of matrix

$$\left(\begin{array}{ccccccccc} 0 & & & & & & & 0 \\ e_{i1} & e_{i2} & \cdots & e_{ii} + n - i & \cdots & e_{i,n-1} & e_{in} \\ 0 & & & & & & & 0 \end{array} \right) \xrightarrow{-i+1\text{-th row}}, \quad (A2)$$

and D'_i is determinant of matrix, which we can get from matrix F by replacing its i -th column by i -th column of matrix

$$\left(\begin{array}{ccc} & \begin{array}{c} i\text{-th column} \\ | \end{array} & \\ 0 & e_{1,i+1} & 0 \\ & e_{2,i+1} & 0 \\ & \vdots & \\ & (e_{i+1,i+1} + n - i) & 0 \\ & \vdots & \\ 0 & e_{n,i+1} & 0 \end{array} \right). \quad (A3)$$

(the constant $n - i$ is added on the position $(i + 1, i)$ into (A2) and into (A3)).

The determinant D_j is not changed by the following transformation: in place of zeros in the j -th column we set to zero $i + 1$ -th row (except for the element e_{ij}). This is because of the following identity, valid for both commutative and non-commutative determinants:

$$\det \begin{pmatrix} 0 & & \\ \vdots & & \\ 0 & & \\ \star & \cdots & \star & w & \star & \cdots & \star \\ 0 & & & & & & \\ \vdots & & & & & & \\ 0 & & & & & & \end{pmatrix} = \det \begin{pmatrix} \star & & \\ \vdots & & \\ \star & & \\ 0 & \cdots & 0 & w & 0 & \cdots & 0 \\ \star & & & & & & \\ \vdots & & & & & & \\ \star & & & & & & \end{pmatrix},$$

where w and stars are arbitrary elements. Then we can see that the sum

$$\sum_{j=1}^n D_j = 0,$$

because suming up we get determinant with two equal rows, i -th and $i + 1$ -st. Finally, the determinant D'_i has the following form:

$$D'_i = \det \begin{pmatrix} & \begin{matrix} i\text{-th column} \\ | \end{matrix} & \begin{matrix} i+1\text{-st column} \\ | \end{matrix} & \\ \star & e_{1,i+1} & e_{1,i+1} & \star \\ & e_{2,i+1} & e_{2,i+1} & \vdots \\ & \vdots & \vdots & \vdots \\ & (e_{i+1,i+1} + n - i) & (e_{i+1,i+1} + n - i - 1) & \\ & \vdots & \vdots & \vdots \\ \star & e_{n,i+1} & e_{n,i+1} & \star \end{pmatrix}. \quad (\text{A4})$$

Enumerating D'_i we encounter the 2×2 determinants of the following two types:

$$\text{a) } \det \begin{pmatrix} e_{j,i+1} & e_{j,i+1} \\ e_{k,i+1} & e_{k,i+1} \end{pmatrix}, \quad \text{where } j \neq i + 1, \ k \neq i + 1,$$

this determinant is equal to zero, because $e_{j,i+1}$ and $e_{k,i+1}$ commute (if $j \neq i + 1$ and $k \neq i + 1$), and

$$\text{b) } \det \begin{pmatrix} e_{j,i+1} & e_{j,i+1} \\ e_{i+1,i+1} + n - i & e_{i+1,i+1} + n - i - 1 \end{pmatrix}, \quad \text{where } j \neq i + 1,$$

this determinant is equal to zero, because we get

$$\det \begin{pmatrix} e_{j,i+1} & e_{j,i+1} \\ e_{i+1,i+1} + n - i & e_{i+1,i+1} + n - i - 1 \end{pmatrix} = (n - i - 1 - (n - i))e_{j,i+1} + [e_{j,i+1}, e_{i+1,i+1}] =$$

□

Let us now define τ_k by

$$\tau_k(1) = 1, \dots, \tau_k(k - 1) = k - 1, \tau_k(k) = k + 1, \dots, \tau_k(n - 1) = n, \tau_k(n) = k.$$

The relation (A1) can be rewritten as

$$\sum_{\sigma \in S_n} \operatorname{sgn} \sigma (E + u)_{\sigma(1), \tau_k(1)} (E + u - 1)_{\sigma(2), \tau_k(2)} \dots (E + u - n + 1)_{\sigma(n), \tau_k(n)} = \operatorname{sgn} \tau_k C(u),$$

which implies

$$\sum_{j=1}^n \left(\sum_{\sigma \in S_n, \sigma(n)=j} \operatorname{sgn} \sigma (E+u)_{\sigma(1), \tau_i(1)} (E+u-1)_{\sigma(2), \tau_i(2)} \right. \\ \left. \dots (E+u-n+2)_{\sigma(n-1), \tau_i(n-1)} \right) (E+u-n+1)_{j,k} = (-1)^{n-k} \delta_{ik} C(u),$$

which can be interpreted as a matrix equation

$$\sum_{j=1}^n B_{ij} (E+u-n+1)_{jk} = \delta_{ik} C(u),$$

which implies that matrix B is left inverse to $E+u-n+1$. Similarly, we can find right inverse using row instead of column determinants.

REFERENCES

¹Božek, P., Havlíček, M., and Navrátil, O., “A new relationship between lie algebras of Poincaré and de Sitter groups,” (1985), preprint.

²Burdík, Č., Exner, P., and Havlíček, M., “Highest-weight representations of $\operatorname{sl}(2, \mathbf{C})$ and $\operatorname{sl}(3, \mathbf{C})$ via canonical realizations,” Czechoslovak J. Phys. B **31**, 459–469 (1981).

³Burdík, Č. and Havlíček, M., “Boson realizations of semi-simple Lie algebras,” in *Symmetry in physics*, CRM Proc. Lecture Notes, Vol. 34 (Amer. Math. Soc., Providence, RI, 2004) pp. 87–98.

⁴Dixmier, J., *Algèbres enveloppantes*, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics] (Éditions Jacques Gabay, Paris, 1996) pp. iv+349, reprint of the 1974 original.

⁵Exner, P., Havlíček, M., and Lassner, W., “Canonical realizations of classical Lie algebras,” Czechoslovak J. Phys. **26B**, 1213–1228 (1976).

⁶Gel’fand, I. M. and Kirillov, A. A., “On fields connected with the enveloping algebras of Lie algebras,” Dokl. Akad. Nauk SSSR **167**, 503–505 (1966).

⁷Gel’fand, I. M. and Kirillov, A. A., “Structure of the Lie field connected with a semisimple decomposable Lie algebra,” Funkcional. Anal. i Priložen. **3**, 7–26 (1969).

⁸Havlíček, M. and Exner, P., “Matrix canonical realizations of the Lie algebra $o(m, n)$. I. Basic formulae and classification,” Ann. Inst. H. Poincaré Sect. A (N.S.) **23**, 335–347 (1975).

⁹Havlíček, M. and Exner, P., “On the minimal canonical realizations of the Lie algebra $O_C(n)$,” Ann. Inst. H. Poincaré Sect. A (N.S.) **23**, 313–333 (1975).

¹⁰Havlíček, M. and Exner, P., “Matrix canonical realizations of the Lie algebra (m, n) . II. Casimir operators,” Czechoslovak J. Phys. B **28**, 949–962 (1978).

¹¹Havlíček, M. and Lassner, W., “Canonical realizations of the Lie algebras $gl(n, R)$ and $sl(n, R)$. I. Formulae and classification,” Rep. Mathematical Phys. **8**, 391–399 (1975).

¹²Havlíček, M. and Lassner, W., “Canonical realizations of the Lie algebra $sp(2n, R)$,” Internat. J. Theoret. Phys. **15**, 867–876 (1976).

¹³Havlíček, M. and Lassner, W., “Canonical realizations of the Lie algebras $gl(n, R)$ and $sl(n, R)$. II. Casimir operators,” Rep. Mathematical Phys. **9**, 177–185 (1976).

¹⁴Havlíček, M. and Lassner, W., “On the “near to minimal” canonical realizations of the Lie algebra C_n ,” Internat. J. Theoret. Phys. **15**, 877–884 (1976).

¹⁵Havlíček, M. and Lassner, W., “Matrix canonical realizations of the Lie algebra $u(p, q)$,” Rep. Mathematical Phys. **12**, 1–8 (1977).

¹⁶Havlíček, M. and Moylan, P., “An embedding of the Poincaré Lie algebra into an extension of the Lie field of $SO_0(1, 4)$,” J. Math. Phys. **34**, 5320–5332 (1993).

¹⁷Howe, R. and Umeda, T., “The Capelli identity, the double commutant theorem, and multiplicity-free actions,” Math. Ann. **290**, 565–619 (1991).

¹⁸Molev, A., *Yangians and classical Lie algebras*, Mathematical Surveys and Monographs, Vol. 143 (American Mathematical Society, Providence, RI, 2007) pp. xviii+400.

¹⁹Smirnov, Y. F., Tolstoy, V. N., Havlíček, M., Burdík, Č., and Sakharuk, A. A., “The Dyson-type boson realizations for representations of the semisimple Lie algebras and superalgebras,” in *Group theoretical methods in physics, Vol. 1–3 (Zvenigorod, 1982)* (Harwood Academic Publ., Chur, 1985) pp. 67–76.