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In this we show how Lie field D(g)"!% can be useful in investigations of universal
enveloping algebra U(g)?* of Lie algebra g. Due to validity of Ore condition in D(g),
any system of linear equations with coefficients and right hand sides from U(g) can be
solved in D(g). Solving suitable system we could find new elements having “better”
commutation relations by means of which, on the contrary, generators of g could be

expressed.
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I. INTRODUCTION

The main idea of this article can be illustrated for the case ¢ = gl(2,C) where ¢ :=
EL'E; € D(g) and p := FEj commute as Heisenberg pair and C' = FEj; + Ey is an
element from the center of U(gl(2,C)). These relations can be reversed and we obtain
realization®35871519 of o1(2, C): Ey = pq, E1o = p, Fay = —pq + C.

Let us now consider g = gl(n, C). We will show that “small” extension U(g) of U(g)
is isomorphic to U(Hyp—1) @ gl(n — 1,C) & Z), where dim Z = 1 and Hy,—1y is 2(n — 1)-
dimensional Heisenberg algebra. Main technical tool for our proof are Capelli identities!s.
This result consists in generalization of Hamilton-Cayley equation for matrix £ = (Ej;)};—;,
namely

E"+an 1 E" '+ . 4+ E+ay=0, (1)

where coefficients a;, belong to the center Z(g) of ¢'”. From this equation we obtain explicit

form of “inverse” matrix E~! of E. The alternative proof of (1) is given in the appendix.

II. PRELIMINARIES

Let Ejj, i,j = 1,...,n be generators of the Lie algebra gl(n, C) satisfying usual commuta-
tion relations

[Eij, Bl = 0B — 0aEyj, ,]=1,...,n.

Then the center Z(U(g)) of the enveloping algebra U(g) is generated by Casimir elements
(Gelfand generators)

n
Cs == E Ei1,i2Ei2,i3“'Eis,i17 S = 1, ey N

i1,42,...is=1

Let us denote the n x n matrix having its (¢, j)-entry defined as E;; by E. Let us define the
matrix E(u), where u € C, by

and take

C(u) = coldet E(u) = Z sgno (B +ul)oy1 (£ + (u—1)1)g@)2-(E+ (=14 1)1)sm)n
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where [ is n X n identity matrix. We often abbreviate F + ul by E 4 u in what follows.

The column determinant C'(u) can be rewritten in the collected form

Clu) = apul. (2)

In the appendix we give an easy proof for the well known fact:!8

Theorem 1. a) We have
[O(u)’ Eij] =0,

therefore the coefficients ay, in (2) are, in fact, functions of Casimir elements C1, ..., Cp_y.
b) We have
C(-E+n—-1)=0, CO(-E") =0,

where ET is usual transposition, (E™);; = Ej;.

¢

Theorem 1 b) allows to write down the explicit formulas for

1)t and (ET)~! which satisfy

‘inverse” matrices (E —n +

(E—n+1)"Y(E—n+1) = (E—n+1)(E-n+1)"t =C(0), (E")'ET = ET(E")' =C(0)I.

Namely we have

n n

B = S E e, () = YT

k=1 k=1

Apparently, “inverse” matrices exist for any matrix of the form E + u or ET +u, u € C.

III. HEISENBERG PAIRS

Let us solve (in D(g)) the set of linear equations

Em:ZEijqj, 1=1,....,n—1. (3)
j=1
for unknown variables ¢, ..., ¢g,—1. We have

g = C'E ' Ejy,
where C'is some central element from Z(U(gl(n — 1))).
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Lemma 2. We have

(Eyi, ¢j] = 04
Proof. Commuting (3) with Ej; we obtain the relation

0itErn = 01Bkjq; — Eaqr + Eij[En, q5]
and then, using (3) again, we come to the equation
Eij ([Bx, 4] — 0qx) = 0.

Applying inverse matrix E~!, we get (4).
Lemma 3. We have

(Ein» 4] = ;G-
Proof. Commuting eq. (3) with Ej, we have

0 = =0k Eing; + Eij[Ekn, ¢;]-

Using again (3) we conclude, that

Eij ([Bkn, 4;] — ¢5a1) = 0.

Theorem 4. We have
9, 45] = 0.
Proof. We commute eq. (3) with g, and use the results above. We obtain
WG = Gqx + Eijlq;, ar],
which can be written in the form
(Eij + 0ij) 145 @] = 0.

Commuting ¢; with E;; in (3) we get

Ein = ¢; (Eij + (n = 1)d;) = ¢; (Ej; + (n — 1)) .
This is linear equation for the unknown ¢; with the following solution:

¢ = En(E" +n—1);'C7",

where C' is some central element from Z(U(g)).
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Theorem 5. We have
(@i, Enjl = 0ij,  Enp = Enigi.

Proof. Commuting egs. (3) and (5) with E,; we obtain

O([Ql, Enk] - 5lk) == Eﬁgl(Eanj - Enn)? (6)

([a1, Ent] — 0%)C = (¢jEnj — Epp —n+ 1)(ET +n —1),;".

Multiplying the first equation by C from the left hand side and the second by C from the

right hand side and subtracting the equations we obtain
E N (Fniq; — Bnn)C = C(q;Enj — Bnn —n 4+ D)(ET +n — 1)
Multiplying by Ej; from the left and by (ET +n — 1);; from the right we get
C(Epjqj — Eun)C = C(gjEnj — By —n +1)C

and because the elements C, C , Enjq; — By, and Ej,q; — By, commute with E;; (and due

to nonexistence of nonzero divisors of zero) we have
qjEn; — Enjgy =n —1, Enn = Enjqj.

From (6) we get the desired assertion. O

IV. SUBALGEBRA gl(n — 1,C) OF D(gl(n,C))

Let us have any ¢ € Z(U(g)) and define
Fij = Eij — qipj + ¢,

where
pj = —Ln;.

Then we have
Theorem 6. a)

[Fij, Fral = 0 Fu — 0uF;.
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Proof. These relations can be verified by direct computation.

Let us define the following subalgebra of D(gl(n,C)):

U(gl(n, C)) = span {Cff--.QZTLTPTI-.-pii’llFfilFf§2--.Fiilf;l"ZfC“ TiySistijsw = 1,2, ..,n — 1} :

Because
Eij = Fij +qipj — ¢,
Eiy = (Fij + ¢ip; — )45,
Eni = —Di,

Enn = Liniq;,

U (gl(n,C)) is extension of enveloping algebra U(gl(n,C)). On the other side subalgebra
U(gl(n,C)) is isomorphic to the enveloping algebra of direct sum of (2n + 1)-dimensional

Heisenberg algebra Hs, 1, Lie algebra gl(n — 1,C) and 1-dimensional algebra span{c}:

U (Haypy1 @ gl(n — 1,C) @ span{c}) ~ U(gl(n,C)).

Appendix A: Inverse matrix to £ + u

Let 7: {1,...,n} — {1,...,n}, not necessarily bijective. Let us denote

OT(U) = Z sgn o (E + u)a(l),T(l)(E —+ u — 1)0(2)7T(2)...(E +u—n-+ 1)U(n)77-(n).

gESy

Lemma 7. We have

C»; (U) = —CT<U),

where T is equal to T, except for two positions, which are interchanged, i. e. 7(s) = T(s+1),

T(s+1)=7(s), 7(j) =7(j) forj=1,...,s = 1,5+ 2,...,n for some s € {1,...,n}.



Proof. We have

Cr(u) = Y sgno (B + o) (B + = Do) o)

O'GSn

(E +u—Ss-+ 1)0(3),7—(s+1)(E +u— 5)o(s+1),7—(s)---(E +u—n-+ 1)a(n)77(n) =

— Z sgno (B 4 w)o)-1) (£ +u—1)52)-(2)

gESy

(E +u—s+ 1)U(s+1)37(3+1)(E +u— S)U(S)’T(S)...(E +u—n-+ 1)0(,1)77-(”) =

— Z sgno (E+ u)g(1),r(1)(E tu— 1)0(2)77(2)

G’GSTL
((E +u— 8)0’(8),7‘(8)(E +u—s+ 1)U(S+1),T(S+1) + 6T(S+1),U(S)EO'(S+1)7T(8)_
Oo(511),m(5) Bo()r(s11) ) - (B + 1 = 104 L)) r(n) =
— Z sgno (E + u)g(l)ﬂ-(l)(E +u — 1)0(2)7.,-(2)...(E +u—n-4+ 1)0(71)’7-(,1).

O’ESn

O

Because every permutation can be written as a product of transpositions of adjacent

elements, we have

Cr(u) =sgnt C(u), (A1)

where sgn7 = 0 in the case when 7 is not bijective.

Lemma 8.

C(u) € Z(U(gl(n,C)).

Proof. Let us take, without loss of generality, u = 0. Let us denote F' = (Ej;+(1—1)d;;)7 ;-
Because gl(n, C) is generated by the elements e;;, e; ;11 and ejyq 5,0 =1,...,n,j=1,...,n—1,
it is sufficient to show that C'(0) commutes with mentioned generators.

1. First we show that for each o € S,, we have
[Fo(1)1~--Fa(n)n7 67)7)} = 0.
If o(i) =14, then

[Fa(l)l--' Fo(i)i '-'Fa(n)na 6“'] = A[E“ 6”]3 =A-0-B=0.
—— ~———

=A =B



If o(i) # 4, then

N~
=A =B =C

[Aeo@yiBeis—11yC, €is] = Aleo(is €il Beio—15C + Aeg(yiBleic—1(3:), €] C,

[Fa(l)l--- Fo‘(i)i Fiafl(i) ---Fo'(n)na ei,-] =
—— ———

and because of
[ea(i)ia 611] = Co(i)i [eia—l(i)a eii] = —C€ig—1(s)s

we get
Alesiyis €ii) Beig-11)C + Aeqi)iBleio—1(:y, €is)]C = AegiyiBeir—1:)C — AeyiyiBeie—1:3C = 0.

2. Now we show that

[C(O), €i’i+1} = 0

Let us denote by E the matrix whose entries are commutators of e; ;+; and components

of E,1i. e.

Eji = [eiit1, Bkl
Then thanks to
[6i7i+17 ejk] = 5i+1,jeik - 5z‘k€j,z‘+1

the matrix E takes the following form (it has nonzero elements only on the i + 1-st row and

in the i-th column):

i-th ctl)lumn

—€1,i+1
0 —€1,i+2 0
E = . '
€1 €ia ttt €y — Cit1i4l 1 €in_1 € |- 1t1-th row
0 —€n,i+1 0

Let us now enumerate D = [e; ;41, Cy]. From the linearity of determinant, it follows that

D= Zn:Dj - D],
j=1
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where D; is determinant of matrix, which we can get from matrix F' by replacing its j-th

column by j-th column of matrix

0 0
. , (A2)
€i1 € - €y +n—1i .- €in—1 Cin |~ i+1-th row
0 0

and D} is determinant of matrix, which we can get from matrix F' by replacing its i-th

column by ¢-th column of matrix

i-th column

\
€1,i+1
0 €2,i4+1 0

(A3)
(€it1i41 + 1 —1)

0 €nit1 0
(the constant n — ¢ is added on the position (i + 1,4) into (A2) and into (A3)).
The determinant D; is not changed by the following transformation: in place of zeros in
the j-th column we set to zero i + 1-th row (except for the element e;;). This is because of

the following identity, valid for both commutative and non-commutative determinants:

0 *
0 *
det | x - xwx -+ x| =det|]0---0wO---0]1,
0 *
0 *

where w and stars are arbitraty elements. Then we can see that the sum
>_Di=0,
j=1
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because suming up we get determimant with two equal rows, i-th and ¢ 4+ 1-st. Finally, the

determinant D! has the following form:

i-th column i+1-st column
|
€1,i+1 €1,i+1
* €2,i+1 €2,i+1 *
D; = det . (A4)

(€i+1,i+1 +n— Z) (ei+1,z’+1 +n—1— 1)

* €ni+1 €ni+1 *

Enumerating D! we encounter the 2 x 2 determimnants of the following two types:

€ji+1 €jit1

a) det , where j#£ i1+ 1, k#i+1,

€ki+1 Ckii+1
this determinant is equal to zero, because e;,;11 and ey ;11 commute (if j # i+1 and k # i+1),
and

€jrit+1 €j,i+1

b) det , where j #1141,

Citlit1 TN —1 €101+ —1—1

this determinant is equal to zero, because we get

6'7' 1 6'7' 1 ) )
det prr P = (n —7—1— (TL — z))ejﬁl + [ej,iﬂ, 61'_;,_171'_;,_1] =

Cirlir1 TN —1 €q1i01+n—i—1

Let us now define 7 by
() =1, .., (k=1 =k—1, (k) =k+1, ....7e(n —1) =n, 7(n) =k.
The relation (A1) can be rewritten as

Z sgn o (E -+ U)a(l)ﬂ—k(l)(E +u — 1)0(2)7%(2)...(E +u—n-+ 1)0(,1)7%(”) = 8gn Ty C(u),
G’ESTL
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which implies

Z( Y sen0 (E+uwowynm(E +u—1)o@)me)

J=1 \o€Sn, o(n)=j

o (Ef+u—n+ 2)a<n1),n(n1>> (E+u—n+1)j = (=1)""6;0(u),
which can be interpreted as a matrix equation
D By(E+u—n+ 1) = 0xC(u),
j=1
which implies that matrix B is left inverse to £+ u — n + 1. Similarly, we can find right

inverse using row instead of column determinants.
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